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Tábor 43a, 612 00 Brno, Czech Republic
e-mail: vopelkova@literabrno.cz

5th INTERNATIONAL CONFERENCE ON RELIABLE ENGINEERING
COMPUTING (REC 2012)
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Preface

Reliable Engineering Computing has emerged as a multi-disciplinary quality brand with
this conference series, which has been hosted at Georgia Tech Savannah in 2004, 2006,
2008 and at the National University of Singapore in 2010. The REC-meetings provide a
unique symbiosis of various engineering and associated disciplines with the kernel areas of
Civil/Mechanical Engineering, Computer Science, and Mathematics. Central issue of the
discussions is the reliability of engineering computations. Cross-disciplinary advisements
generate synergy and impulses of a new quality for research and development, as well as
for innovative applications.

REC2012 is focusing on providing solutions for Practical Applications and dealing with
Practical Challenges in incorporating Reliable Computing in engineering practice. While
there is an underlying theoretical framework for Reliable Computing, translation from
theory to practice in engineering is still needed. As, in the previous conferences, papers in
this proceeding address different fields of engineering, sciences, and mathematics within
the context of risk and uncertainty. While providing solutions for real life problems
represents the ultimate goal of the engineering profession, the papers endeavor to retain
the rigor of mathematical formulations and their computational implementations to ensure
safety, reliability, and more accurate predictions. The keystone in this aspect is the
development of appropriate models of the practical applications and the use of realistic
information in parameters’ evaluation.

REC2012 continues the tradition of the conference series with a unique multi-disciplinary
character to achieve advancements in the field of Reliability Engineering Computing.

This conference is supported by:

• Cervenka Consulting Ltd.

• Dynardo GmbH

• The South Moravian Region

The organizers appreciate the support of these organizations.

Rafi L. Muhanna, Robert L. Mullen and Miroslav Vořechovský
Chairmen of REC 2012
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Abstracts of Plenary Lectures

Reliability-based Optimization: An Overview and Recent Advances

G.I. Schuëller1), M.A. Valdebenito2)

1)Professor, Institute of Engineering Mechanics, University of Innsbruck, Techniker-
straße 13, A-6020, Innsbruck, Austria, EU, e-mail: Mechanik@uibk.ac.at (presenter)

2)Assistant Professor, Departamento de Obras Civiles, Universidad Tecnica
Federico Santa Maria, Av. Espana 1680, Valparaiso, Chile

Abstract

Engineering aims at designing systems that can fulfill prescribed performance objectives
within a certain life time. For example, consider the design of a metallic structure subject
to cyclic loading. In this particular case, a relevant design objective would be ensuring
that fatigue damage leads neither to loss of serviceability nor to collapse. This design
objective may be achieved, e.g. by sizing structural members such that stresses are below
a certain threshold or by scheduling appropriate maintenance activities. As resources
for constructing and maintaining any structure are always scarce, the final design of the
target system should not only comply with prescribed performance objectives but also its
life time cost should be as economic as possible. In view of this last statement, it is clear
that the design task may be interpreted as the solution of an optimization problem, i.e.
the objective is to minimize overall costs, while ensuring that the structural performance
is within acceptable limits [1].

Although the formulation of the design problem within the context of optimization
is certainly advantageous, there is a major issue present in almost all practical design
situations: several parameters which are relevant for design cannot be quantified by pre-
cise, deterministic values, as they are inherently uncertain. Typical examples of these
parameters include loadings, member sizes, material properties, etc. The uncertainties
in these parameters affect the structural response. In consequence, the behavior of the
structure will be uncertain as well. Therefore, the presence of these uncertainties should
be reflected in the design process of a system. A possible means to quantify the effects
of uncertainty in the system’s response is resorting to probability concepts, as they al-
low calculating reliability, i.e. the probability that the performance objectives will be
fulfilled [2]. The consideration of the effects of uncertainty by means of reliability within
the design process (formulated as an optimization problem) is known in the literature as
reliability-based optimization (RBO) [3].
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Although RBO constitutes a most powerful tool for design in engineering, its appli-
cation to problems of engineering interest has remained limited in the past due to high
numerical costs involved in its solution. These high costs are due to repeated evaluation of
structural response (by means of numerical methods such as finite elements) required for
solving problems of optimization and structural reliability. Nonetheless, in recent years
several new methodologies have been developed which render involved RBO problems
tractable. Within this context, the objective of this lecture is presenting some of the most
recently developed tools for RBO. The focus is on two aspects. The first one comprises
the application of advanced simulation techniques, which have opened the possibility for
assessing structural reliability for large structures [4], particularly for problems involving
a large number of uncertain parameters (in the order of thousands) as well as a large
number of failure criteria. The second aspect is the efficient assessment of reliability sen-
sitivity [5], i.e. how much does the structural reliability vary due to a perturbation in
variables that are controlled by the designer. Theoretical as well as practical aspects on
the application of tools for solving RBO problems are discussed. Case studies are also
analyzed in order to show the applicability and efficiency of the tools introduced. Special
emphasis is given to applications involving optimal structural design for stochastic linear
and nonlinear dynamics [5,6] as well as optimal maintenance scheduling for fatigue-prone
structures [7].

Keywords: Uncertainties; structural reliability; advanced simulation techniques; reliability-
based optimization; reliability sensitivity; optimal maintenance scheduling.
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namics EURODYN 2005 – Proc. of the 6th Int. Conf. on Structural Dynamics,
pages 717–722, Paris, France, September 4–7, 2005. Millpress, Rotterdam.
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Terror, Security and Money: Balancing the Risks, Benefits,
and Costs of Critical Infrastructure Protection

M.G. Stewart1), J. Mueller2)

1)Australian Research Council Professorial Fellow Director,
Centre for Infrastructure Performance and Reliability, The University of Newcastle

New South Wales, 2308, Australia
Corresponding Author – phone: +61 2 49216027, email: mark.stewart@newcastle.edu.au

2)Professor and Woody Hayes Chair of National Security Studies
Mershon Center for International Security Studies and Department of Political Science

Ohio State University, Columbus, Ohio 43201, United States

Abstract

The loading and response of structures to explosive blast loading is subject to uncertainty
and variability. This uncertainty can be caused by variability of dimensions and material
properties, model errors, environment, etc. Limit state and LRFD design codes for rein-
forced concrete and steel have been derived from probabilistic and structural reliability
methods to ensure that new and existing structures satisfy an acceptable level of risk.
These techniques can be applied to the area of structural response of structures subject
to explosive blast loading. The use of decision theory to determine acceptability of risk is
crucial to prioritise protective measures for built infrastructure. Government spending on
homeland security will reach $141.6 billion worldwide in 2009 and is projected to reach
$300 billion by 2016. The question is, is this or other expenditure necessary? Clearly,
scientific rigour is needed when assessing the effectiveness and the need for protective mea-
sures to ensure that their benefits exceed the cost. The paper will assess terrorist threats
to buildings, bridges and transportation infrastructure and the cost-effectiveness of pro-
tective and counter-terrorism measures. Structural reliability and probabilistic methods
are used to assess risk reduction due to protective measures. The key innovation is incor-
porating uncertainty modelling in the decision analysis, which in this case will maximise
net benefit. This analysis will then consider threat likelihood, cost of security measures,
risk reduction and expected losses to compare the costs and benefits of security measures
to decide which security measures are cost-effective, and those which are not.

For additional and wider-ranging assessments of the issues raised and the approaches
used, see the reference.

Reference

J. Mueller and M.G. Stewart. Terror, Security, and Money: Balancing the Risks,
Benefits, and Costs of Homeland Security. Oxford University Press, forthcoming
September 2011.
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Reliable Computing and Fuzzy Information

R. Viertl

Professor, Department of Statistics and Probability Theory,
Vienna University of Technology, Wiedner Hauptstr. 8, 1040 Wien, Austria

phone: +43-1-58801-10720, email: R.Viertl@tuwien.ac.at

Abstract

In engineering computations there exist different kinds of uncertainty. The most impor-
tant are variability, imprecision of data, model uncertainty, and uncertainty of a-priori
information. Whereas variability is modeled since a long time by probability models, the
quantitative mathematical description of imprecision by so-called fuzzy models was done
more recently. Especially in reliability calculations in the Bayesian context also a-priori
information is best modeled by so-called fuzzy probability distributions. Examples of
non-precise data and related fuzzy models and relationships to stochastic models will be
given in the contribution.

Reference

R. Viertl. Statistical Methods for Fuzzy Data. Wiley, Chichester, 2011.
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Different models of soil-structure interaction and consequent reliability of foun-
dation structure 103
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Králik, J.

Application of the Direct Optimized Probabilistic Calculation 241
Krejsa, M.

Determination of statistical material parameters of concrete using fracture test
and inverse analysis based on FraMePID-3PB tool 261
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Power Transformer Protective System Reliability Assessment 

 
Abdelkader ABEDLMOUMANE*, Hamid BENTARZI* and Dris OUAHDI** 

*Signals and Systems Laboratory, IGEE, UMBB University, Boumerdes, ALGERIA 

E-mail: sisylab@yahoo.com 

** Department of Electrification and Automation, FHC, 

UMBB University, Boumerdes, ALGERIA 

 
Abstract: The reliability and the safety of the power systems are mainly related to the power transformers. 

Many precautions have been taken for protecting well these transformers from defects because when they 

break down causing large fires and explosions, and hence the consequences can be very heavy in terms of 

damage as well as in terms of economic loss. 

Published statistics on failures, fires and explosions of these large power transformers show that these 

types of incidents frequently appear, so that power companies pay a special attention to the effectiveness 

and the reliability of the protective systems. In this work, a new approach allowing an evaluation of the 

reliability of the protective systems of power transformer with and without redundancy has been presented.  

Models of protective system (without redundancy and with redundancy) have been developed using the 

fault tree. Then, a comparative study has been carried out using our software program ERPT
1
 which has 

shown that the failure rate significantly decreases in the case of protective system with redundancy.  
 

Keywords: Reliability Evaluation, Redundancy, Protection system, Power transformer, Fault tree. 

 

 

 

1. Introduction 

 

The safety of the power systems is mainly related to the power transformers. Many precautions have been 

taken for protecting these transformers against faults because when they break down they often cause large 

fires and explosions, and hence the consequences can be very heavy in terms of damage as well as in terms 

of economic loss. 

A great number of experts have noticed that an important increase in transformers failures during the 

last years. In the majority of the countries, the privatization of companies of production and distribution of 

electricity gives place to a reduction of investments. Moreover, the consumption of electricity increases 

regularly by 2% per year around the world. The old transformers are, therefore, often overloaded. 

Moreover, published statistics on failures, fires and explosions of these large power transformers show that 

these types of incidents frequently appear, so that power companies pay a special attention to the 

effectiveness and the reliability of the protective systems. 

In this work, a new approach allowing an evaluation of the reliability of the protective systems of 

power transformer with and without redundancy has been presented. The first part of the paper is devoted 

with the presentation of the various defects undergone by the transformers and their adequate protection 

                                                      
1
ERPT (version 1.1 2011) software of calculation and simulation developed by the authors in the university of 

Boumerdes, Algeria. 
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techniques, (Abdelmoumene, 2009). Then, models using the fault tree, (Chafai, Refoufi, and Bentarzi, 

2009), have been developed for both protective systems: without redundancy and with redundancy. A 

comparative study shows that the reliability of the protective system with redundancy is increased several 

times as compared to its reliability without redundancy using our software program ERPT. 

 

 

 

2. Faults and their Origins in Power Transformer 

 

Transformers are subjected to many external electrical stresses upstream and downstream. The 

consequences of any failure can be very great in terms of damage as well as in terms of operating losses. 

Therefore, knowledge of faults and their origins is very important to choose the adequate interruption 

devices, protective relays and their adjustments. The determination and the evaluation of these faults 

become difficult in some cases. The use of specialized software program helps us to carry out these 

calculations and simulations more quickly and more precisely during steady state as well as transient state. 

Among these electrical stresses such as overvoltage, overload and short circuit may cause faults as 

illustrated in Fig.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Transformer failures and causes diagram. 
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 Power Transformer Protective System Reliability Assessment  

 

2.1.  OVERVOLTAGE 

 

The transformers are subjected to transient over-voltages coming from the networks to which they are 

connected. These over-voltages have produced either by direct or induced lightning which strokes on HV or 

LV networks, or from switching actions of elements in the upstream network. Besides, they can be 

produced from ferro-resonance that is a non-linear resonance phenomenon. This phenomenon typically 

involves the saturated magnetizing inductance and a capacitive of any elements of the network. Its 

occurrence is more likely in the absence of adequate damping (Boutora, Bentarzi and Ouadi, 2010). 

 

2.1.1 Lightning 

Studies showed that incidents which have occurred in transformers are due to the internal over-voltages 

created by lightning shocks, whose propagation on line excited the specific resonance of the transformers.It 

was shown that for a thunderbolt striking a high voltage line to about 12 km up to the transformer, an 

important overvoltage of resonance may be generated and hence the dielectric breakdown noted in the tap 

changer ( Ahmad, 1992). At the time of a direct thunderbolt fall on lines or transformers (this is rarely 

happened, once every 100 years in a determined place) these last don’t dissolve, they vaporize!! (Gérard, 

2008), (Tessier, 2006). In France, about 5000 power transformers per year destroyed by the lightning. 

(France Transfo, 2007). 

 

2.1.2 Stakes under and over voltage 

During the energizing or de-energizing by switchgear situated immediately upstream, over-voltages can be 

generated by the combined transformer- supply circuit, switchgear set leads to a dielectric stress in the 

transformer. This stress causes premature ageing, or even an insulation fault between turns or to ground. 

 

2.2.  OVERLOADS 

The overload can be due to the increase in the number of loads fed simultaneously or to the increase in the 

power absorbed by one or more loads. It results in an over-current which causes a rise in temperature 

prejudicial to the characteristics of insulators and the longevity of the transformer. 

 

2.3.  SHORT-CIRCUIT 

 

A short-circuit is an accidental connection between conductors with small or null impedance such as solid 

short-circuit. It can be internal within the transformer or external. 

 

2.4.  INTERNAL FAULT 

 

The main causes of internal faults are: dielectric breakdown, flash between spires or windings and the inner 

temperature increasing. 
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3. Protection of Transformer  

 

3.1.  OVERVOLTAGE PROTECTION 

 

Techniques that may be used to protect the power transformers against over-voltage are described below: 

Earth wires. The earth wires placed above the power lines attract the thunderbolt, and hence avoid the 

thunder-striking on the phase conductors.  

 Spark-gaps with horns. The spark-gap is a simple device consists of two electrodes, the first 

connected to the conductor to be protected, the second connected to the ground. At the place where it is 

installed in the network, it presents a weak point for discharging the over-voltages to the ground and thus 

protects the equipments. The arcing-voltage setting of the spark-gap is adjusted by acting on the distance in 

the air between electrodes.  

Lightning arresters. The lightning arrestors are apparatuses intended to limit the over-voltages imposed 

on electric transformers, instruments and machines by the lightning and by maneuvers of commutation. The 

upper part of the lightning arrestor is connected to one of wire of the power line to be protected and the 

lower part is connected to the ground by a low resistance earthing, generally with less than one ohm. Their 

principle of operation is based on strongly non-linear resistances which present an important reduction in 

their inner resistance above of a certain terminal voltage value (Boutora, Bentarzi, Ouadi, 2011). 

 

3.2.  OVERLOADS PROTECTION 

 

An overload protection must act with a threshold values ranging between 110 and 150 % of the rated current 

and preferably operate in a time dependant manner. The protective devices that have above mentioned 

characteristics are fuses and thermal relays. The fuses are widely used in the distribution transformers, 

primarily because of simplicity and of the limited cost. However, the technological limits of their realization 

involve a certain number of disadvantages. 

The protection system can be placed on either primary or secondary side of power transformer. For low 

transformer power, the position of the protection is suitable on the low voltage side. While, for high power, 

the more chosen place of protection is on the HV side (Fulchiron, 1992). 

 

3.3.  PROTECTION AGAINST THE SHORT-CIRCUITS 

 

The protective devices that may be used for protecting the power transformer against the short-circuits are: 

electromagnetic relays and fuses: Due to disadvantages of the fuses such as they can be used once time and 

they cannot be adjusted but they are still used as back up protection as well as they are used for protecting 

the circuit breaker.  

 

3.4.  PROTECTION AGAINST THE INTERNAL FAULTS 

 

The protection of the transformers against the internal defects (internal Breakdowns HT/Ground or between 

turns) is ensured by the Buchholz and differential protection. The latter (differential protection) is sensitive 

and a fast clearing technique. This technique of protection detects nonzero differential current, and then 

activates a circuit breaker that disconnects the transformer (Bouderbala, Bentarzi 2011). 
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The choice of power transformer protections is relatively complex because that requires to take into 

account a great number of parameters and several technical specifications can be retained to ensure the 

same type of protection. 

Even if protections are well chosen and dimensioned, the degradation of their characteristics and the 

consequences of a possible failure leads to search for the technical solutions to overcome these drawbacks 

in order to reach a high level of reliability. 

 

 

 

4. Failure and Reliability Evaluation 

 

Reliability is the aptitude of an entity to achieve a required function, under certain conditions and for a 

given time t (TEBBI, 2005).It is given by 
 

                 (1) 
 

The function of failure indicates the probability that a failure occurs before a given time, it concerns the 

distribution function: 
 

                 (2) 
 

 

4.1. USUAL MATHEMATICAL MODELS OF RELIABILITY  

 

Reliability is described by decreasing mathematical laws during time. The density of failure is defined by 

the following relation: 
 

                                                  
     

  
       (3) 

 

The failure rate is the probability that a system is failing between t and t + dt knowing that it functioned at t:  
 

        
    

                                             

                           
 

 

Then, 
 

       
      

    
            (4) 

 

From the expression (4), the general expression of the law of reliability as a function of the failure rate can 

be deduced by (Fulchiron, 1998): 
 

              
 

             (5) 
 

If the failure rate is constant       , the expression of reliability is: 
 

               (6) 

 

 
 
 
5th International Conference on Reliable Engineering Computing (REC 2012)

 
 
 
 
 

 
 
 
5



 A. Abdelmoumene, H. Bentarzi and D. Ouahdi 

Equation (6) is the exponential law. If the failure rate depends on time, the used function is generally the 

function of Weibull which can be written: 
 

      
  

 
 
 
 

       (7) 
 

Where   is the parameter of the form and   is the parameter of the scale. 

Reliability of a series system. A series system functions if and only if all the components function. Its 

reliability is calculated by the following relation: 
 

             
                                                                  

                                                                                                           
                         (8) 

 

Reliability of a parallel system. A parallel system functions so at least one of its components functions. 

Reliability for this system is given by: 
 

            
                                                                                

                            (9) 

 

4.2.  SAFETY  

 

Safety is the probability of the system does not have any catastrophic failure between the initial time and 

the time t. The concept of safety is directly related to the criticality of the failures. The failures can present 

several classes of external consequences on the application of the system: benign, severe, and critical 

catastrophic. Safety is the privileged criterion of the applications of high criterion for which the 

consequences of certain failures are catastrophic. This criterion measures confidence ascribable to the 

product not to present a failure whose external consequences are catastrophic. 

 

 

 

5. Redundancy 

 

Redundancy is the existence in an entity of more than one means for accomplishing a required function. It 

can be noted that there exists several techniques of redundancies such as active redundancy, passive 

redundancy, the redundancy m among N, the differential redundancy and the redundancy with voting 

system etc. (Ward, 2004). 

 

5.1 ACTIVE REDUNDANCY 

 

We speak about active redundancy, when all the elements permanently function. We distinguish the total 

and partial active redundancy. In total active redundancy, the system becomes failing only with the failure 

of the last surviving element. In partial active redundancy, when a system comprises N elements, where m 

(m < N) components are strictly necessary for its functioning. The system can thus accept (N − m) failures. 
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If the components are independent and are identically distributed (R = Ri, i = 1,2,…,N), then the 

reliability of the system is given by: 

        
 
  

                  (10) 

with 

 
 

 
  

  

       
 

 

5.2.  PASSIVE REDUNDANCY 

 

In a passive redundancy, the redundant components are brought into service only when the components of 

the system are failing. If the components have the same law of reliability R(t), the reliability of this system 

is given by: 
 

                          
 

 
    (11) 

 

5.3.  SEQUENTIAL REDUNDANCY 

 

The redundancy is qualified as sequential when the superabundant elements are brought into service only at 

time of need; that means that among N elements only K is in service. This implies that certain elements will 

be in reserve or stock. 

 

5.4.  DIFFERENTIAL REDUNDANCY 

 

In the differential redundancy, different tools are used to assure the same function. 

 

 

 

6. Fault Tree Method 

 

The Method of fault tree is widely used in the field of the Reliability. It offers a framework privileged to the 

deductive and inductive analysis by means of a tree structure of logical gates.  

The principal treatments carried out on the fault tree are the research of the minimal cuts and the 

quantitative evaluation.  

The minimal cuts represent the smallest combinations of events whose simultaneous realization 

involves that of the undesirable event. They have as an order the number of events which constitutes them. 

 

 

 

7. Protective System Without Redundancy 

 

Generally; the power transformer’s protection system is constituted of several elementary protections, each 

of them assure one or more function. 

In our study we will consider that the protection system is composed of: 
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 Overvoltage protection: lightning arrester. 

 Overload protection: fuse. 

 Short-circuits protection: circuit-breaker. 

 Internal faults protection: Buchholz relay. 

  

7.1 MODELING  

 

Figure 1 represents the fault tree model of this system. Where, 

E1:  is the event of overvoltage protection failure. 

E2: event of overvoltage appearance.  

E3: event of overload protection failure. 

E4: event of an overload appearance. 

E5: event of short-circuit protection failure. 

E6: event of appearance of short-circuit. 

E7: event of failure of protection against internal fault. 

E8: event of appearance of an internal fault. 

Eu: undesirable event transformer in defect 

 

 
Figure 2: Fault Tree model of the Protection system without Redundancy (FTPOR). 
 

7.2 QUALITATIVE ANALYSIS 

 

According to the model shown in Fig.2, there are four immediate causes of the undesirable event; which are 

the intermediate events: E9, E10, E11 and E12. 

E9:  r ep re sent s  an  overvoltage,   

E10:  overload fault,   

E11:  short-circuit fault, 

Eu 

E1 E2 E3 E4 E5 E6 E7 E8 

E9 E10 E11 E12 
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E12:  internal fault. 

The decomposition of these events leads to the initial eventsE1, E2,... E8. 
 

                      
                       
                       
                       

                                                                       
                                        (12) 

 

Equation (12) is the logical equation of the FTPOR model. The minimal cuts are as follow: E1 E2, E3E4, 
E5E6& E7E8. 
 

7.3.  QUANTITATIVE ANALYSIS 

 

A step of such analysis exploits information of quantitative nature or quantified: it is, for example, the 

failure rates of components, the conditions of working and of environment, probabilities of events, etc. 

Failure rate of over-voltages protection is 0.0570. Failure rate of overloads protection is 0.0690. Failure rate 

of short-circuits protection is 0.0750. A failure rate of internal protection is 0.0953. Probability of an 

overvoltage appearance is 0.1600. Probability of an overload appearance is 0.1900. Probability of a short-

circuit appearance is 0.0800. Probability of an internal defect appearance is 0.0329. 

The calculation carried out by our software program ERPT gives the following results (see Fig.3). 

According to this model, it can be noted that: 

 The probability of failure of the protective system is about: 3%. 

 The highest failure rate is that of protection against the internal faults. 

 The most critical protection is the overload protection. 

By using ERPT software, we can plot reliability or failure curves of the different elements of the FTPOR 

model as shown in Fig.4. These curves make it possible to determine the reliability of the elements in a 

given instant. They also allow the determination of the most critical elements, from reliability point of 

view, in the protective system. More the curve is concave, more the represented element is critical. 

The analysis of criticality is the object of another analysis method; it is the FMECA method: Failure 

Mode Effect and Criticality Analysis. 

We can deduce easily that: 
 

                        (13) 

 

 

 

8. Reliability Modeling of Protective System with Redundancy 

 

8.1.  MODELING  

 

We will consider that the protective system is composed of: 

 Overvoltage protection: the earth-wire and the lightning arrestor. 

 Overload protection: circuit breaker and fuse. 
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Figure 3: Results of calculation of the FTPOR model. 

 

 
 

Figure 4: Reliability of protections (without Redundancy). 
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 Protection against the short-circuits: circuit breaker and fuse. 

 Protection against the internal defects: Buchholz and temperature sensors. 

 

The fault tree model of this system is represented on the figure5. Where, 

E1: is the event of Fusible failure. 

E2: event of circuit breaker failure. 

E3: event of failure of Lightning arrestor. 

E4: event of Earth-wire failure. 

E5: event of fuse failure. 

E6: event of circuit breaker failure. 

E7: event of failure of Buchholz relay. 

E8: event of failure of thermal protection. 

E10: event of appearance of a short-circuit.  

E12: event of appearance of an overvoltage.  

E14: event of overload appearance. 

E16: event of appearance of an internal defect. 

Eu: undesirable event transformer in defect. 

 

8.2.  QUALITATIVE ANALYSIS 

 

As in the previous model, we have four immediate causes which lead to the undesirable event. 

E17: overvoltage fault. 

E18: overload fault. 

E19: short-circuit fault. 

E20: internal fault. 

Decomposition of these events:  
 

                              
                                        
                                      

                                          
 

Finally, we find the logical equation of the model: 
 

                                                              
 

The minimal cuts are the following ones: E1E2E10, E3E4E12, E5E6E14 & E7E8E16. 
 

8.2.  QUANTITATIVE ANALYSIS 

 

The computation results of the model which is obtained by software ERPT  are shown in Figs.6 and 7. 

It may be noted that: 

 The probability of failure of the protective system is approximately 3‰; 

 Overvoltage protection has the highest probability of failure. 

 

 
 
 
5th International Conference on Reliable Engineering Computing (REC 2012)

 
 
 
 
 

 
 
 
11



 A. Abdelmoumene, H. Bentarzi and D. Ouahdi 

 The most critical protection is the protection against overvoltage faults. 
 Within the operational limits, it is more practical to model the function R(t) of this protective system by the 

following equation: :                      
 

 

 

Figure 5: Fault Tree model of the Protection system with Redundancy (FTPR). 

 

The decreasing order of failure rates is: 
 

                         (14) 
 

We can also model the failure function of the protective system in the following manner: 
 

                

                           
 

 

 

9. Comparison Between Two Models 

 

In order to judge the effectiveness of the redundancy technique; we will introduce the concept of the 

improvement factor. 

The improvement factor    
      

     
 , then        The failure rate is approximately ten times smaller 

in the protective system with redundancy relatively to the protective system without redundancy. The 

reliability of the protective system with redundancy is increased several times the reliability of protective 

E8 E7 E6 E5 E4 E3 E2 E1 

E16 E14 E12 E10 

Eu 

E9 E11 E13 E15 

E1
7 

E18 E19 E20 
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system without redundancy. According to Figure 8, it clearly that the factor of improvement of reliability is 

not constant; it is a function of time (t) such as: 
 

            
 

with    
 

                 
 

 
 

Figure 6: Results of calculation of the FTPR model. 
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Figure 7: Reliability of protections (with Redundancy) 

 

 

 
 

Figure 8: Reliability of protection systems: without & with redundancy. 
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10. Conclusion 

 

The evaluation and the optimization of the reliability of protection system are essential to safeguard any 

element in large electrical systems. 

In this paper, we proposed a comprehensive approach leading to reduce the failure rate to about one 

tenth in the power transformer protected by protective system with redundancy and hence its reliability has 

been enhanced. 

The use of the redundancy technique in the power transformer protection systems leads: 

 to reduce the failure rate; 

 to increase the reliability and the lifespan of the transformers; 

 to ensure a continuity of service more reliable and more secure; 

 to improve the technical and economic indices of the exploitation. 
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Abstract: The sparse polynomial chaos expansion (SPCE) methodology is an efficient approach that 

deals with uncertainties propagation in case of high-dimensional problems (i.e. when a large number of 

random variables is involved). This methodology significantly reduces the computational cost with 

respect to the classical full polynomial chaos expansion (PCE) methodology. Notice however that when 

dealing with computationally-expensive deterministic models, the time cost remains important even 

with the use of the SPCE. In this paper, an efficient combined use of the SPCE methodology and the 

global sensitivity analysis (GSA) is proposed to solve such a problem. The proposed methodology is 

validated using a relatively non-expensive deterministic model.  
 

Keywords: Sobol indices; spatial variability; sparse polynomial chaos expansion, global sensitivity 

analysis. 

 

 

 

1. Introduction 

 

An efficient approach to deal with uncertainties propagation in case of high-dimensional problems (i.e. 

when a large number of random variables is involved) was recently presented by Blatman and Sudret 

(2010). This approach is based on a Sparse Polynomial Chaos Expansion (SPCE) for the system 

response and leads to a reduced computational cost as compared to the classical Polynomial Chaos 

Expansion (PCE) methodology. Notice that both, the PCE and the SPCE methodologies, aim at 

replacing the original expensive deterministic model which may be an analytical model or a finite 

element/finite difference model by a meta-model. This allows one to calculate the system response 

using a simple analytical equation (e.g. Isukapalli et al., 1998; Huang et al., 2009; Mollon et al., 2011; 

Mao et al., 2012). Notice however that when dealing with computationally-expensive deterministic 

models with a large number of random variables, the time cost remains important even with the use of 

the SPCE. Consequently, a method that can reduce once again the cost of the probabilistic analysis is 

needed. In this paper, an efficient combination between the SPCE methodology and the Global 

Sensitivity Analysis (GSA) is proposed to solve such a problem. In this method, a small SPCE order is 

firstly selected to approximate the system response by a meta-model. A GSA based on Sobol indices is 

then performed on this small SPCE order to determine the weight of each random variable in the 

variability of the system response. As a result, the variables with very small values of their Sobol 

indices (i.e. those that have a small weight in the variability of the system response) can be discarded. 
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 Consequently, a response which only depends on a smaller number of random variables is obtained. 

In other words, one obtains a response with an 'effective dimension'. This dimension is smaller than the 

initial dimension where the total number of random variables was considered. As it will be shown later, 

the use of a small SPCE to perform the GSA is not a concern since higher SPCE orders lead to the same 

influential random variables. Once the 'effective dimension' was determined, a higher SPCE order that 

makes use of only the most influential random variables can be used. This significantly reduces the 

computation time. The use of a higher SPCE order is necessary in order to lead to an improved fit of the 

SPCE.  

 The proposed methodology is validated using a relatively non-expensive model which was 

extensively investigated by Al-Bittar and Soubra (2011, 2012). This model involves the computation of 

the ultimate bearing capacity of a strip footing resting on a weightless spatially varying (c, φ) soil where 

c is the soil cohesion and φ is the soil angle of internal friction. It should be noticed here that the random 

fields of c and φ are discretized into a finite number of random variables. This number is small for very 

large autocorrelation distances and significantly increases for small values of the autocorrelation 

distances.    

 The paper is organized as follows: The next two sections aim at briefly presenting both the sparse 

polynomial chaos expansion (SPCE) and the global sensitivity analysis (GSA). Then, the proposed 

efficient combination between the SPCE methodology and the GSA is presented. It is followed by the 

numerical results. The paper ends with a conclusion.   

 

 

 

2. Sparse polynomial chaos expansion (SPCE) methodology 

 

In this section, one first presents the polynomial chaos expansion (PCE) and then its extension, the 

sparse polynomial chaos expansion (SPCE). The Polynomial Chaos Expansion (PCE) methodology 

allows one to replace an expensive deterministic model which may be an analytical model or a finite 

element/finite difference numerical model by a meta-model. Thus, the system response may be 

calculated using a simple analytical equation. This equation is obtained by expanding the system 

response on a suitable basis which is a series of multivariate polynomials that are orthogonal with 

respect to the joint probability density function of the random variables.  

 The PCE theory was originally formulated with standard Gaussian random variables and Hermite 

polynomials (Ghanem and Spanos, 1989). It was later extended to other types of random variables that 

use other types of polynomials (Xiu and Karniadakis, 2002). In this paper, standard normal random 

variables in conjunction with Hermite polynomials are used. The coefficients of the PCE may be 

efficiently computed using a non-intrusive technique where the deterministic calculations are done using 

for example an analytical model or a finite element/finite difference software treated as a black box. The 

most used non-intrusive method is the regression approach (e.g. Isukapalli et al., 1998; Huang et al., 

2009; Blatman and Sudret, 2010; Mollon et al., 2011; Mao et al., 2012). This method is used in the 

present work. The PCE methodology can be briefly described as follows:  

 For a deterministic model Γ with M random variables, the system response can be expressed by a 

PCE of order p fixed by the user as follows: 
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where P is the number of terms retained in the truncation scheme,  
1,....,i i M

 


  is a vector of M 

independent standard random variables that represent the M random variables, a are unknown 

coefficients to be computed and 
  are multivariate Hermite polynomials which are orthogonal with 

respect to the joint probability density function (PDF) of the standard normal random vector ξ. These 

multivariate Hermite polynomials can be obtained from the product of one-dimensional Hermite 

polynomials as follows: 

1

( )


  i

M

i

i

H  
 

(2) 

where αi (i = 1, …, M) are a sequence of M non-negative integers and (.)
i

H
 is the th

i one-dimensional 

Hermite polynomial. The expressions of the one-dimensional Hermite polynomials are given in Ghanem 

and Spanos (1989) among others.  

 In practice, the PCE with an infinite number of terms should be truncated by retaining only the 

multivariate polynomials   of degree less than or equal to p. For this purpose, the classical truncation 

scheme based on the determination of the first order norm 
1

1

M

i

i

 


  is used. This first order norm 

should be less than or equal to the order p of the PCE. This leads to a number P of the unknown PCE 

coefficients equal to 
( )!

! !

M p

M p


. This number is significant in the present case of random fields 

(especially when considering small values of the autocorrelation distances) and thus, one needs a great 

number of calls of the deterministic model (see Al-Bittar and Soubra 2011, 2012). The SPCE 

methodology presented by Blatman and Sudret (2010) is an efficient alternative that can significantly 

reduce the number of calls of the deterministic model. In this methodology, Blatman and Sudret (2010) 

have shown that the number of significant terms in a PCE is relatively small since the multivariate 

polynomials   corresponding to high-order interaction (i.e. those resulting from the multiplication of 

the 
i

H with increasing αi values) are associated with very small values for the coefficients a. Thus, a 

truncation strategy (called the hyperbolic truncation scheme) based on this observation was suggested 

by these authors. Within this strategy, the multivariate polynomials 
  corresponding to high-order 

interaction were penalized. This was performed by considering the hyperbolic truncation scheme which 

suggests that the q-norm should be less than or equal to the order p of the PCE. The q-norm is given by: 

1

1

qM
q

iq
i

 


 
  
 


 

(3) 

where q is a coefficient (0 < q < 1). In this formula, q can be chosen arbitrarily. Blatman and Sudret 

(2010) have shown that sufficient accuracy is obtained for 0.5q  .  
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 The proposed SPCE methodology leads to a sparse polynomial chaos expansion that contains a 

small number of unknown coefficients which can be calculated from a reduced number of calls of the 

deterministic model. This strategy was used in Al-Bittar and Soubra (2011, 2012) and will also be used 

in this paper to build up a SPCE of the system response. The iterative procedure suggested by Blatman 

and Sudret (2010) for building up a SPCE is detailed in Blatman and Sudret (2010) and Al-Bittar and 

Soubra (2011, 2012) and is not repeated herein. Once the coefficients a have been computed, the 

statistical moments (mean, standard deviation, skewness, and kurtosis) can be calculated with no 

additional cost. The next subsection is devoted to the method used for the computation of the 

coefficients a of the SPCE using the regression approach. 

 

2.1. COMPUTATION OF THE SPCE COEFFICIENTS BY THE REGRESSION APPROACH  

 

Consider a set of K realizations    (1) ( )

1 1{ ,..., ,..., ,..., }K

M M       of the standard normal random 

vector ξ. These realizations are called experimental design (ED) and can be obtained from Monte Carlo 

(MC) simulations or any other sampling scheme (e.g. Latin Hypercube (LH) sampling or Sobol set). We 

note     (1) ( ),..., K     , the corresponding values of the response determined by deterministic 

calculations.  

The computation of the SPCE coefficients using the regression approach is performed using the 

following equation: 

1( )T Ta      (4) 

where the data matrix η is defined by: 

( )( ), 1,..., , 0,..., 1   i

i i K P   
 

(5) 

In order to ensure the numerical stability of the treated problem in Eq.(4), the size K of the ED must be 

selected in such a way that the matrix 1( )T    is well-conditioned. This implies that the rank of this 

matrix should be larger than or equal to the number of unknown coefficients. This test was 

systematically performed while solving the system of equations of the regression approach. 

 The quality of the output approximation via a SPCE closely depends on the SPCE order p. To 

ensure a good fit between the meta-model and the true deterministic model (i.e. to obtain the optimal 

SPCE order), the simplest error estimate is the well-known coefficient of determination R
2
 given by: 
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The value 12R   indicates a perfect fit of the true model response Γ, whereas 02R   indicates a 

nonlinear relationship between the true model Γ and the SPCE model 
SPCE . The coefficient R

2
 may be 

a biased estimate since it does not take into account the robustness of the meta-model (i.e. its capability 

of correctly predicting the model response at any point which does not belong to the experimental 

design). As a consequence, one makes use of a more reliable and rigorous error estimate, namely the 

leave-one-out error estimate (Blatman and Sudret, 2010). This error estimate consists in sequentially 

removing a point from the experiment design composed of K points. Let \i  be the meta-model that 

has been built from the experiment design after removing the i
th
 observation and let 

( ) ( )( ) ( )i i i

\i     be the predicted residual between the model evaluation at point ( i ) and its 

prediction based on \i . The corresponding coefficient of determination is often denoted by Q
2
: 
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 (8) 

This coefficient will be used in the present paper to check the accuracy of the fit. 

 

 

 

3. Global sensitivity analysis (GSA) 

 

Once the SPCE coefficients are determined, a global sensitivity analysis (GSA) based on Sobol indices 

can be easily performed. Notice that the first order Sobol index of a given random variable ξi (i = 1,…, 

M) gives the contribution of this variable in the variability of the system response. The first order Sobol 

index is given by Saltelli (2000) and Sobol (2001) as follows: 

 

 

|
( )

i

i

Var E Y
S

Var Y




  


 

(9) 

where Y is the system response,  | iE Y   is the expectation of Y conditional on a fixed value of 
i , and 

Var denotes the variance. 

 In the present paper, the system response Y is represented by a SPCE. Thus, by replacing Y in 

Eq. (9) with the SPCE expression, one obtains the Sobol index formula as a function of the different 

terms of the SPCE (Sudret, 2008). This formula is given by:  

   
2 2

( ) iI

i

PC

a E

S
D

 





 
  





 

(10) 

where a
 are the obtained SPCE coefficients,   are the multivariate Hermite polynomials,  .E  is 

the expectation operator, and 
PCD  is the variance of the response approximated by the SPCE. The 

response variance DPC is given by Sudret (2008) as follows: 
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(11) 

Notice that the term  
2

E 
 
  

 that appears in both Eq. (10) and Eq. (11) is given by Sudret (2008) as 

follows: 

 2

1

!
M

i

i

E  


 
 

(12) 

where the αi are the same sequence of M non-negative integers 1,....., M  used in Eq. (2). Notice 

finally that Ii in Eq. (10) denotes the set of indices β for which the corresponding 
  is only a function 

of the random variable ξi (i.e. it only contains the variable ξi), and Ii (i = 1, …, M) regroup all the indices 

β for which the corresponding   is only a function of the random variable ξi (i = 1, …, M). 

 In order to illustrate the PCE theory and the global sensitivity analysis based on Sobol indices in a 

simple manner, an illustrative example of a PCE of order p = 3 using only M = 2 random variables (ξ1 

and ξ2) is presented in Appendix A. 

 

 

 

4. Efficient combination between the SPCE methodology and the global sensitivity analysis 

 

As mentioned previously, the time cost of the probabilistic analysis remains important even with the use 

of the SPCE when dealing with computationally-expensive deterministic models. Consequently, a 

procedure that can reduce once again this time cost is needed. An efficient combination between the 

SPCE methodology and the GSA is proposed in this section. The basic idea of this combination is that, 

for a given discretized random field, the obtained random variables do not have the same weight in the 

variability of the system response. The variables with a very small contribution in the variability of the 

system response can be discarded which significantly reduces the dimensionality of the treated problem. 

This allows one to perform a probabilistic analysis using a reduced Experiment Design (ED) and thus a 

smaller number of calls of the computationally-expensive deterministic model. The main challenge 

remains in detecting the most influential random variables in order to reduce the dimensionality of the 

problem. For this purpose, a procedure that makes use of both the SPCE and the GSA (denoted hereafter 

by SPCE/GSA) is proposed in this regard. The SPCE/GSA procedure can be summarized by the 

following steps: 

a) Discretize the random field(s): This step was made in this paper using EOLE method and its 

extensions by Vořechovsky (2008). Let us consider NRF anisotropic non-Gaussian cross-correlated 

random fields ( , )NG

iZ x y ( 1,..., RFi N ) described by: (i) constant means and standard deviations 

(μi, σi; 1,..., RFi N ), (ii) non-Gaussian marginal cumulative distribution functions CDFs named Gi 

( 1,..., RFi N ), (iii) a target cross-correlation matrix C
NG

 and (iv) a common square exponential 
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autocorrelation function 
NG

Z [(x, y), (x', y')] which gives the values of the correlation function 

between two arbitrary points (x, y) and (x', y'). This autocorrelation function is given as follows: 

22

[( , ), ( , )] exp
Z

NG

x y

x x y y
x y x y

a a


                   

 (13) 

where ax and ay are the autocorrelation distances along x and y respectively. The Expansion Optimal 

Linear Estimation method (EOLE) and its extension by Vořechovsky (2008) to cover the case of 

correlated non-Gaussian random fields are used herein to generate the NRF random fields. Notice that 

EOLE was first proposed by Li and Der Kiureghian (1993) for the case of uncorrelated Gaussian 

fields, and then extended by Vořechovsky (2008) to cover the case of correlated non-Gaussian fields. 

In this method, one should first define a stochastic grid composed of q grid points (or nodes) 

 1 1( , ), ..., ( , )q qx y x y  for which the values of the field are assembled in a vector 

 1 1( , ), ..., ( , )q qZ x y Z x y  . Then, one should determine the common correlation matrix for 

which each element  ; ,

NG

i j   is calculated as follows: 

 ; ,
( , ), ( , )

NG NG

Z i i j ji j
x y x y         (14) 

The common non-Gaussian autocorrelation matrix 
;

NG

 
  and the target non-Gaussian cross-

correlation matrix C
NG

 should be transformed into the Gaussian space using Nataf model (Nataf, 

1962) since the discretization of the random fields using EOLE is done in the Gaussian space. As a 

result, one obtains NRF Gaussian autocorrelation matrices ;

i

  ( 1,..., RFi N ), and a Gaussian cross-

correlation matrix C that can be used to discretize the two random fields. The value iZ  of a random 

field obtained using this method is given by the following equation (cf. Al-Bittar and Soubra, 2011, 

2012): 

 ,

( , );

1

( , ) . . 1, ...,

j

DN
Ti j i i

i i i j Z x y RF
i

j

Z x y µ i N


 



     (15) 

where NRF  is the number of random fields, N is the number of terms retained in the series expansion, 

,

D

i j  are NRF cross-correlated blocks of independent standard normal random variables obtained using 

the Gaussian cross-correlation matrix C between the NRF fields, ( , ; 1,...,
j

i i

j RFi N   ) are the 

eigenvalues and eigenvectors of the NRF Gaussian autocorrelation matrices ;

i

  evaluated at the 

different points of the stochastic mesh, and ( , );Z x y   is the correlation vector between the value of the 
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field 
iZ  at an arbitrary point (x, y) and its values at the different points of the stochastic mesh. Notice 

finally that ,

D

i j , i

j , and ( , );Z x y  in Eq.(15) are vectors whose size is equal to N. 

 Once the two Gaussian random fields are obtained, they should be transformed into the non-

Gaussian space (in case of non-Gaussian random fields) by applying the following formula: 

 1( , ) ( , ) 1, ...,NG

i i i RFZ x y G Z x y i N       
(16) 

where (.)  is the standard normal cumulative density function (CDF). For more details about the 

EOLE method and its extensions to cover the case of cross-correlated non-Gaussian random fields, the 

reader may refer to Vořechovsky (2008) and Al-Bittar and Soubra (2011, 2012). 

 After the discretization procedure, a random field is represented by N independent standard normal 

random variables. For the NRF random fields that have the same autocorrelation function, the total 

number of random variables is NT = NRF·N which can be relatively large especially for small values of 

the autocorrelation distances. 

b) Use a preliminary small order of the sparse polynomial chaos expansion (e.g. p = 2) to approximate 

the system response by a meta-model. The main reason for selecting a small order is the exploration 

of the most influential random variables (i.e. those that have a significant weight in the variability of 

the system response) using a small Experiment Design (ED). It should be emphasized here that the 

reduced number of the unknown SPCE coefficients related to the small value of the SPCE order leads 

to a significant decrease in the size of the experiment design, i.e. in the number of calls of the 

deterministic model. 

c) Perform a GSA based on Sobol indices (using the obtained second order SPCE) to determine the 

weight of each random variable in the variability of the system response. The variables with very 

small values of their Sobol indices have no significant impact in the variability of the system response 

and can thus be discarded. Consequently, a response that only depends on a smaller number of 

random variables is obtained. In other words, one obtains a response with an 'effective dimension' Ne 

that is smaller than the initial dimension where the total number NT of random variables was 

considered. It should be mentioned here that the small SPCE order (i.e. p = 2) used firstly to perform 

the GSA is sufficient to provide the weight of each random variable in the variability of the system 

response since higher SPCE orders lead to the same influential random variables as will be seen later 

in the numerical results. 

d) Use the same Experiment Design (ED) which was employed in step (b) but this time by only keeping 

the most influential random variables. By reducing the number of random variables from NT to Ne 

(Ne < NT), one has the possibility to use a higher SPCE order (i.e. p > 2). The use of a higher SPCE 

order is necessary to lead to an improved fit of the SPCE since the leave-one-out error estimate Q
2
 

given in Eq. (8) increases when the SPCE order increases as it will be shown in the numerical results.  

 As a conclusion, the use of the SPCE/GSA procedure has the advantage of performing a good fit of 

the deterministic model with a reduced number of model evaluations as compared to the classical SPCE 

approach. 

 

 

 

 

 
 
 
24

 
 
 
 
 

 
 
 
5th International Conference on Reliable Engineering Computing (REC 2012)



 Efficient Sparse Polynomial Chaos Expansion Methodology for Computationally-expensive deterministic models 

 

 

5. Numerical results 

 

The aim of this section is to validate the present SPCE/GSA procedure. For this purpose, a comparison 

between the results obtained by using the classical SPCE methodology and those given by the proposed 

SPCE/GSA procedure is presented. A computationally non expensive deterministic model was used for 

the validation. The problem used for the validation was presented in Al-Bittar and Soubra (2011, 2012). 

It aims at computing the ultimate bearing capacity of a strip footing resting on a c−φ spatially varying 

soil. The input parameters are similar to those considered in Al-Bittar and Soubra (2011, 2012). They 

are briefly presented in Table I. For a more detailed description on these data, the reader may refer to 

Al-Bittar and Soubra (2011, 2012). The deterministic model is based on numerical simulations using 

FLAC3D and it involves the case of a weightless soil. Thus, one obtains the soil bearing pressure due to 

only the soil cohesion; the contribution of the soil friction angle being neglected in the present paper. It 

should be mentioned here that when neglecting the soil weight γ, the computation time decreases from 

10 to 5 min per simulation. This significantly reduces the computation time for the validation of the 

present SPCE/GSA procedure. 

 As shown in Figure 1, the adopted soil domain considered in the analysis is 15 m wide by 6 m deep. 

For the boundary conditions, the horizontal movement on the vertical boundaries of the grid is 

restrained, while the base of the grid is not allowed to move in both the horizontal and the vertical 

directions. 

 

 
Figure 1. The adopted soil domain 

 

 The validation of the SPCE/GSA procedure is done for the illustrative case [ax = 10 m, ay = 1 m, 

r(c, φ) = −0.5] referred to hereafter as the reference case. For this configuration, the discretization of the 

two random fields c and φ has led to a total number of random variables NT equal to 24 (12 random 

variables for each random field as was shown in Al-Bittar and Soubra (2011, 2012)). By using the total 

number of random variables NT, Al-Bittar and Soubra (2011, 2012) have shown that a third order SPCE 

was sufficient to reach a target accuracy of 0.999. An ED involving 800 points was needed to solve the 

regression problem given in Eq. (4) (i.e. to obtain a well-conditioned regression problem for which the 

rank of the matrix 1( )T    is larger than or equal to the number of unknown coefficients). By using the 

present SPCE/GSA procedure, a GSA was performed to detect the most influential random variables. 

Different SPCE orders (i.e. orders 2, 3, and 4) were considered in order to check if the SPCE order has 

an impact on the most influential random variables.  
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Figure 2 depicts the values of Sobol indices for the 24 random variables, as given by SPCEs of 

orders 2, 3 and 4. The first 12 random variables [i.e. ξi for i = 1, …, 12] correspond to the cohesion 

random field and the last 12 random variables [i.e. ξi for i = 13, …, 24] are those corresponding to the 

friction angle random field. Figure 2 shows that whatever the SPCE order is, the two first random 

variables of both fields, (i.e. ξ1, ξ2, ξ13, ξ14) are the most influential. For the two random fields, a very 

fast decay in the weight of the random variables is noticed with quasi negligible values beyond the first 

two random variables. In fact, the first two random variables of the two random fields, which 

correspond to the first two eigenmodes of both fields involve 95% of the response variability as may be 

seen from Table II. This is logical since the system response (i.e. the ultimate bearing capacity) is an 

averaged quantity over the soil domain which is therefore quite insensitive to small-scale fluctuations of 

the spatially varying shear strength parameters c and φ. 

0 2 4 6 8 10 12 14 16 18 20 22 24
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Index i of random variable 
i

S
o
b
o
l 

in
d
e
x

 

 
SPCE order 2

SPCE order 3

SPCE order 4

 
Figure 2. Sobol indices for SPCEs of orders 2, 3 and 4 using the total number of eigenmodes ξi (i = 1, …, 24) 

 

 
Table II. Sobol indices for the reference case where ax = 10 m, ay = 1 m, and r(c,φ) = −0.5 

ξi (i = 1, ..., 12) for the cohesion random field 

 ξ1 ξ2 ξ3 ξ4 ξ5 ξ6 ξ7 ξ8 ξ9 ξ10 ξ11 ξ12 

Sobol 

index 
0.50 0.17 0.002 0.002 0.03 0.002 0.009 0.0002 0.0002 9 x10-05 0.0002 7 x10-05 

ξi (i = 13, ..., 24) for the friction angle random field 

 ξ13 ξ14 ξ15 ξ16 ξ17 ξ18 ξ19 ξ20 ξ21 ξ22 ξ23 ξ24 

Sobol 

index 
0.2 0.08 0.001 0.0008 0.002 0.0005 0.0006 0.0003 0.0001 4 x10-05 4 x10-05 5 x10-05 
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Figure 2 clearly shows that the Sobol indices of the different random variables do not significantly 

change with the SPCE order. Thus, a second order SPCE is sufficient to identify the influential random 

variables (i.e. those that have a significant weight in the variability of the ultimate bearing capacity). 

Increasing the SPCE order has led to the same influential random variables which justify the small 

SPCE order chosen to perform the preliminary investigations. The main advantage of a small SPCE 

order is that a small ED is sufficient to solve the regression problem. As shown in Table III, 150 calls of 

the deterministic model are needed to solve the regression problem for a second order SPCE. This 

number attains 800 for a fourth order SPCE. This significant increase is because the number of 

unknown coefficients significantly increases from 29 to 144 when one chooses a fourth SPCE order 

instead of a second SPCE order. 

 
Table III. Number of unknown coefficients and model evaluations for different SPCE order 

SPCE order 2 3 4 

Number of unknown 

coefficients P 
29 35 144 

Number of model 

evaluations  
150 350 800 

 

 

To choose the number of random variables which will be retained hereafter, the different random 

variables of the two random fields are firstly sorted in a descending order according to the values of 

their Sobol indices (cf. first and second columns in Table IV). A threshold of acceptance ta is then fixed 

as a percentage of the most influential (weighted) random variable. In the present paper, the most 

influential random variable is ξ1 and it has a Sobol index equal to 0.5. Different values of the threshold 

were tested (cf. first line in Table IV). The random variables having a Sobol index smaller than the 

prescribed threshold ta are discarded. In this paper, a threshold of 2% of the Sobol index of the most 

weighed random variable is considered as sufficient; the corresponding retained random variables 

provide 98% of the total variance of the system response as may be seen from column 6 of Table IV. 

For this threshold, an 'effective dimension' Ne = 5 is obtained (i.e. 5 random variables are considered to 

be the most weighed). The 5 retained random variables will now be used with the already existing 150 

model evaluations which were firstly employed to approximate the second order SPCE with the total 

number of random variables NT = 24.  

 The reduction in the number of random variables from NT = 24 to Ne = 5 provides the possibility to 

use higher SPCE orders (i.e. p > 2) with the same ED (i.e. the 150 model evaluations). The use of a 

higher SPCE order is necessary to lead to an improved fit of the SPCE since the leave-one-out error 

estimate Q
2
 given in Eq. (8) increases when the SPCE order increases as shown in Table V for both the 

classical SPCE approach (using the total number of random variables NT = 24) and the present 

SPCE/GSA procedure (where the effective dimension is equal to 5 (i.e. Ne = 5)). Using the SPCE/GSA 

procedure, an SPCE up to p = 8 was reached using only 150 model evaluations. From Table V, one can 

notice that with the use of the SPCE/GSA procedure, the Q
2 

increases with the increase of the SPCE 

order and stabilizes beyond the order 5. This means that no improvement in the fit is obtained beyond 

this order. On the other hand, the value of Q
2 
given by the present approach is smaller than the classical 

SPCE approach with a fourth order. This is because 19 random variables were discarded which slightly 

affect the goodness of the fit.  
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Table IV. Sobol indices of the different random variables and the retained random variables for the different values of the 

threshold of acceptance 

Random 

variable 

Sobol 

index   

t a
 =

 0
.5

%
 x

 

ξ 1
 =

 0
.0

0
2
5
 

t a
 =

 1
%

 x
 

ξ 1
 =

 0
.0

0
5
 

t a
 =

 1
.5

%
 x

 

ξ 1
 =

 0
.0

0
7
5
 

t a
 =

 2
%

 x
 

ξ 1
 =

 0
.0

1
 

t a
 =

 2
.5

%
 x

 

ξ 1
 =

 0
.0

1
2
5
 

t a
 =

 3
%

 x
 

ξ 1
 =

 0
.0

1
5
 

t a
 =

 4
%

 x
 

ξ 1
 =

 0
.0

2
 

t a
 =

 5
%

 x
 

ξ 1
 =

 0
.0

2
5
 

ξ1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

ξ13 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 

ξ2 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 

ξ14 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 

ξ5 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 

ξ7 0.009 0.009 0.009 0.009      

ξ6 0.002 0.002        

ξ17 0.002 0.002        

ξ3 0.002 0.002        

ξ4 0.002 0.002        

ξ15 0.001         

ξ16 0.0008         

ξ19 0.0006         

ξ18 0.0005         

ξ20 0.0003         

ξ8 0.0002         

ξ9 0.0002         

ξ11 0.0002         

ξ21 0.0001         

ξ10 9.0 x10-05         

ξ12 7.0 x10-05         

ξ24 5.0 x10-05         

ξ22 4.0 x10-05         

ξ23 4.0 x10-05         

Sum of 

Sobol 

indices 

1.001 0.997 0.989 0.989 0.98 0.98 0.98 0.98 0.98 

 

 
Table V. SPCE using the total and the reduced number of random variables 

 SPCE order 2 3 4 5 6 7 8 

Total number of 

random variables NT 

Coefficient of 

determination R2 
0.998 0.999 0.999 - - - - 

Leave-one-out 

cross-validation Q2 
0.824 0.932 0.9943 - - - - 

Reduced number of 

random variables Ne 

Coefficient of 

determination R2 
0.961 0.963 0.968 0.970 0.972 0.972 0.972 

Leave-one-out 

cross-validation Q2 
0.791 0.883 0.957 0.961 0.963 0.963 0.963 
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Figure 3 shows the PDF of the ultimate bearing capacity as obtained by both the classical SPCE 

approach (with the total number of random variables NT = 24) and the proposed SPCE/GSA procedure 

(using only five random variables). Table VI provides the corresponding statistical moments and error 

estimates. Notice that the results of the present SPCE/GSA approach are given in Table VI for different 

values of the model evaluations (from 150 to 800). From this table, one can see that the error estimate of 

the SPCE/GSA procedure is quasi constant with the increase in the number of model evaluations. This 

means that 150 model evaluations are sufficient and there is no need for more model evaluations to 

improve the accuracy of the fit. On the other hand, one can observe (see Figure 3 and Table VI) that the 

first two statistical moments are well estimated with the present SPCE/GSA approach using the 150 

model evaluations. However, the third and fourth statistical moments need more model evaluations (800 

model evaluations) in order to converge to their reference values given by the SPCE approach (cf. 

Table VI). This demonstrates the efficiency of the present SPCE/GSA procedure to compute the first 

two statistical moments with a much reduced number of the model evaluations with respect to the 

classical SPCE approach.  

 As for the Sobol indices of the two random fields c and φ, Table VII shows that the SPCE/GSA 

procedure with only 150 model evaluations gives the same results obtained by the classical SPCE 

approach using 800 model evaluations which demonstrates once again the efficiency of the present 

SPCE/GSA procedure.   
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Figure 3. PDF of the ultimate bearing capacity for both the classical SPCE with the total number of random variables NT = 24 

and the proposed SPCE/GSA procedure with only five random variables Ne = 5. 
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Table VI. Error estimates of the SPCE and statistical moments of the ultimate bearing capacity as given by the classical 

SPCE approach and by the present SPCE/GSA procedure 

 

Number of 

model 

evaluations 

Mean μqult 

(kPa) 

Standard 

deviation σqult 
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800 658.2 93.57 0.287 0.163 0.999 0.995 
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150 657.84 90.80 0.105 0.0129 0.972 0.957 

200 658.98 91.53 0.168 0.0563 0.972 0.951 

250 659.90 92.10 0.188 0.0630 0.964 0.956 

300 659.73 92.15 0.202 0.0600 0.962 0.963 

400 660.05 90.95 0.291 0.0500 0.969 0.960 

500 659.50 90.81 0.296 0.0430 0.970 0.963 

600 659.75 90.99 0.272 0.116 0.968 0.963 

700 659.50 90.85 0.280 0.1637 0.968 0.963 

800 659.85 91.20 0.30 0.160 0.970 0.967 
 

 

Table VII. Sobol indices as computed from the classical SPCE approach and the present SPCE/GSA procedure. 
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800 

1 0.5 13 0.2 

0.715 0.285 

2 0.17 14 0.08 

3 0.002 15 0.001 

4 0.002 16 0.0008 

5 0.03 17 0.002 

6 0.002 18 0.0005 

7 0.009 19 0.0006 

8 0.0002 20 0.0003 

9 0.0002 21 0.0001 

10 9.0 x10-05 22 4.0 x10-05 

11 0.0002 23 4.0 x10-05 

12 7.0 x10-05 24 5.0 x10-05 
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 150 

1 0.510 4 0.076 

0.721 0.279 2 0.200 5 0.190 

3 0.010   
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6. Conclusions 

 

An efficient combined use of the SPCE methodology and the global sensitivity analysis (GSA) has been 

proposed. The aim is to reduce the cost of the probabilistic analysis of computationally-expensive 

deterministic models. This methodology was validated in this paper using a relatively non-expensive 

deterministic model. The validation consists in comparing the results of both the classical SPCE 

methodology with the total number of random variables and the proposed combination between the 

SPCE and the GSA. Satisfactory results were obtained using a much smaller number of model 

evaluations with the proposed methodology. The first two statistical moments and the Sobol indices 

have been well estimated with the very small number of model evaluations. On the other hand, the third 

and fourth statistical moments need more model evaluations in order to converge to their reference 

values obtained using the classical SPCE. Since the present SPCE/GSA procedure was shown to be 

efficient for the probabilistic computation with a reduced calculation cost with respect to the classical 

SPCE approach, this approach may now be applied with confidence to costly deterministic models. 

 

 

 

Appendix A 

 

Illustrative Example 

In order to illustrate the PCE theory in a simple manner, a PCE of order p = 3 using only M = 2 random 

variables (ξ1 and ξ2) will be considered in this illustrative example. Using the classical truncation 

scheme, Table A.1 presents the retained PCE terms which are those having a first order norm 

1
 smaller than or equal to p (i.e. p = 3). These terms are presented in Table A.1 in bold characters. As 

may be easily seen from Table A.1, the PCE basis contains P = 10 terms whose expressions are 

computed using Eq.(2).  

 

 

 

Table A.2 presents the expressions of the PCE basis  . Using Table A.2, on can write the PCE 

expression as function of the input random variables (ξ1 and ξ2) as follows: 

   
0 0 1 1 9 9

2 2 2 2 3 3

0 1 1 2 2 3 1 2 4 1 5 2 6 1 2 7 1 2 8 1 1 9 2 2

( ) ...

+a ( 1) ( 1) 1 1 ( 3 ) ( 3 )

PCEY a a a

a a a a a a a a a



             

         

             
 (A.1) 

Table A.1. Terms retained using the classical truncation scheme for M = 2 and p = 3 

α1 0 1 0 1 2 0 2 1 2 3 0 3 1 3 3 3 

α2 0 0 1 1 0 2 1 2 2 0 3 1 3 2 3 3 

1


 0 1 1 2 2 2 3 3 4 3 3 4 4 5 6 6 
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In this expression, the unknown coefficients can be computed using Eq.(4) by simulating an ED which 

contains K initial realizations of the two random variables (ξ1, ξ2) and computing the corresponding 

responses from deterministic calculations. It should be mentioned here that the size K of the ED should 

ensure the numerical stability of the regression problem and thus it can be enriched each time the matrix 
1( )T    is badly-conditioned.  

 The first order Sobol indices for the two random variable (ξ1 and ξ2) can be easily obtained once the 

coefficients a0,…, a9 are computed using Eq. (10). The only additional step is to compute  2E   

corresponding to these two random variables. Table A.2 shows the values of  2E   computed using 

Eq. (12) for the different   terms. The expression of the first order Sobol indices of the two random 

variables ξ1 and ξ2 are written as follows: 

2 2 2 2 2 2

1 4 8 2 5 9
1 22 2 2 2 2 2 2 2 2 2 2 2

1 4 8 2 5 9 1 4 8 2 5 9

2 6 2 6
( ) ; ( )

2 6 2 6 2 6 2 6

a a a a a a
S S

a a a a a a a a a a a a
 

   
 

           
(A.2) 

with 

   1 21,4,8 ; 2,5,9I I 
. (A.3) 

 

 

Table A.2. Basis of the PCE with the classical truncation scheme for M = 2 and p = 3 

β PCE order p 
1

( )


  i

M

i

i

H  
 

 2

1

!
M

i

i

E  


 
 

0 P = 0 H0(ξ1) × H0(ξ2) = 1 α1! × α2! = 0! × 0! = 1 

1 
P = 1 

H1(ξ1) × H0(ξ2) = ξ1 α1! × α2! = 1! × 0! = 1 

2 H0(ξ1) × H1(ξ2) = ξ2 α1! × α2! = 0! × 1! = 1 

3 

P = 2 

H1(ξ1) × H1(ξ2) = ξ1 ξ2 α1! × α2! = 1! × 1! =1 

4 H2(ξ1) × H0(ξ2) = 2

1 1   α1! × α2! = 2! × 0! = 2 

5 H0(ξ1) × H2(ξ2) = 2

2 1   α1! × α2! = 0! × 2! = 2 

6 

P = 3 

H2(ξ1) × H1(ξ2) =  2

1 21   α1! × α2! = 2! × 1! = 2 

7 H1(ξ1) × H2(ξ2) =  2

1 2 1    α1! × α2! = 1! × 2! = 2 

8 H3(ξ1) × H0(ξ2) = 3

1 13   α1! × α2! = 3! × 0! = 6 

9 H0(ξ1) × H3(ξ2) = 3

2 23   α1! × α2! = 0! × 3! = 6 
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Abstract: Recycling is becoming essential to reduce the amount of solid waste, which is becoming a global 

environmental crisis, in addition to conserving the world recourses, which are becoming scarce, to the 

future generations. Demolish concrete may be utilized for making a new concrete. The durability of 

concrete depends on heavily of aggregates. The properties of recycled concrete are different than those of 

new aggregates because of its exposed to many environments. The concrete mix design will be affected to 

its strength because of the properties of aggregates. Properties of recycled aggregates were comparing to the 

new aggregates. 

The consistency was evaluated for three batches of recycled aggregates which are collected from 

different structure with different types of concrete. Their properties expected to differ from each other. The 

aim of this study is to investigate the possibility of producing good concrete from recycled aggregate. 

Concrete samples were produced from mixed that used recycled aggregates. The properties of concrete 

were evaluated and compare to the control mix which used a new virgin aggregates. 
 

Keywords: aggregates, recycling, concrete, demolish, durability. 

 

 

 

1. Introduction 

 

Waste concrete may be collected and utilized in the production of new concrete. Properties of aggregates 

have a great impact on the durability and strength of the resulting concrete. As recycled aggregates contain 

concrete rebels and have been exposed to different environments for different durations, their properties are 

expected to differ compared to those of virgin new aggregates. Properties of aggregates affect the mix 

design and the proportions of the constituent materials. The suitability of the recycled aggregates for 

concrete production was assessed through standard aggregates tests. Properties were compared to of new 

aggregates. 

As recycled aggregates are collected from different structures with different types of concrete with 

different types and durations of exposure, their properties are expected to differ between batches. Most of 

the properties were determined for three different batches of recycled concrete and a preliminary statistical 

evaluation was performed to investigate consistency. 

 

 

 

2. Methodology 

 

A plane of experiments and tests laboratories were carried out to complete the aims of this limited study, 

this included choosing recycled aggregate sizes to be evaluated and set for laboratory tests.   

 

5th International Conference on Reliable Engineering Computing (REC 2012) 
Edited by M. Vořechovský, V. Sadílek, S. Seitl, V. Veselý, R. L. Muhanna and R. L. Mullen 
Copyright © 2012 BUT FCE, Institute of Structural Mechanics 
ISBN 978-80-214-4507-9. Published by Ing. Vladislav Pokorný − LITERA

 
 
 
 
 

 
 
 
35



Naser Alenezi 

3. Laboratory Evaluation 

 

Laboratory estimation was exploited to judge the features of the aggregates used for concrete.  The 

selections of recycled aggregate were taken for test such as: water absorption and density (ASTM C-127, C-

128), abrasion and degradation resistance test.  Fine and coarse aggregate samples were analyzed to 

determine the chloride and sulfate contents in the lab.  The prepared concrete specimen which used a 

recycled aggregates were cured in the lab and tested for compressive strength (ASTM C39) 

 

3.1.  WATER ABSORPTION AND DENSITY TEST 

 

Water absorption and density were assessed according to ASTM C-127 and C-128.    This test is of 

importance since it identifies the density of the essentially solid portion of a large number of aggregates 

particles and provides an average value of representing samples. 

 

3.2.  RESISTANCE TO DEGRADATION BY ABRASION AND IMPACT TEST 

 

Aggregates were also tested for abrasion and degradation resistance according to ASTM C131 using the 

Los Angeles machine.  This test is to identify the relative quality or competence of various sources of 

aggregate having similar mineral compositions.   

 

3.3.  CHLORIDE AND SULPHATE CONTENTS TESTS 

 

Chloride and sulphate contents play an important role in the rate and type of deterioration in concrete. They 

also affect the way concrete mix should be designed. Chloride and sulphate contents were evaluated for 

both the fresh and three batches of recycled crushed aggregates collected at different times from the 

crushing factory 

This test is to identify percentage of water absorbed which indicates the quantity of voids in aggregate, and 

this would give the idea of aggregate capacity to keep hold of water and its potential to deterioration. 

 

 

 

4. Tests Results 

 

4.1.  LABORATORY EVALUATION 

 

4.1.1.  Water absorption and density test 

Water absorption and density were assessed according to ASTM C-127 and C-128 the results for the virgin 

and three sizes of recycled aggregates are shown in Table I. The average values, standard deviations and 

coefficients of variations for both the density and water absorption are given for the three sizes along with the 

overall aggregates in Table II. As can be seen the values of the standard deviations and coefficient of 

variations are very small and insignificant which means that small variations between samples were detected. 

The coefficient of variations between the three average values of densities and water absorption were 

calculated and found to be 1.33 and 15.06%, in order. The values indicate that no significant changes in 

densities were detected and the value of 2.48 may be considered constant for recycled aggregates. For water 
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absorption, however, although no changes for each size were detected, the values have some dependence on 

aggregates size. These results, however, should be verified by continuous testing or long term monitoring of 

recycled aggregates, as only three samples were considered in this work. 

 

 
Table I.  Density and water absorption of aggregates 

Aggregate Type Density (g/cm3) Water Absorption (%) 

New Aggregate 3/4" 2.81 0.73 

New Aggregate 1/2" 2.65 0.98 

New Aggregate 3/8" 2.65 1.30 

Crushed Aggregate 3/4", batch 1 2.64 4.97 

Crushed Aggregate 3/4", batch 2 2.444 4.706 

Crushed Aggregate 3/4", batch 3 2.468 4.69 

Crushed Aggregate 1/2", batch 1 2.55 5.18 

Crushed Aggregate 1/2", batch 2 2.437 5.334 

Crushed Aggregate 1/2", batch 3 2.461 5.20 

Crushed Aggregate 3/8", batch 1 2.52 7.18 

Crushed Aggregate 3/8", batch 2 2.383 6.735 

Crushed Aggregate 3/8", batch 3 2.408 6.71 

 

 

4.1.2.  Abrasion and degradation resistance test 

Aggregates were also tested for abrasion and degradation resistance according to ASTM C131 using the 

Los Angeles machine. The Los Angeles values are shown for new and three recycled batches of 

aggregates, using grade B, in Table III. The resistance to crushing and abrasion using steel balls was 

also assessed using the 10% fines method according to BS 882, wet method. The values are also shown 

in Table III.  

 

 
Table II.  Statistical values for density and water absorption of aggregates 

 Density Water absorption 

 Average S.D. V Average S.D V 

¾ in aggregates 2.517 0.087 3.46 4.79 0.128 2.67 

½ in aggregates 2.483 0.049 1.97 5.24 0.068 1.30 

3/8 in aggregates 2.437 0.032 1.31 6.76 0.245 3.62 

Overall 2.48 0.056 2.25 5.6 0.147 2.53 

 

 

 

 

 

 

 
 
 
5th International Conference on Reliable Engineering Computing (REC 2012)

 
 
 
 
 

 
 
 
37



Naser Alenezi 

Table III.  LA and 10% fines values of aggregates 

 LA value 10% fines value 

New aggregates 18 373.3 

Recycled batch 1 33.92 150.49 

Recycled batch 2 30.41 190.8 

Recycled batch 3 33.3 150.64 

Average for recycled 32.54 163.98 

S.D. 1.40 18.97 

V. 4.30 11.57 

 

 

4.1.3.  Chloride and sulphate contents tests 

Chloride and sulphate contents play an important role in the rate and type of deterioration in concrete. They 

also affect the way concrete mix should be designed. Chloride and sulphate contents were evaluated for 

both the fresh and three batches of recycled crushed aggregates collected at different times from the 

crushing factory. The results along with the average values and standard deviations for the recycled 

aggregates are shown in Table IV.  

In general, the changes in aggregates properties between different batches are tolerable. The properties 

of recycled aggregates vary considerably compared to those of virgin new aggregates. Summary of those 

properties and the difference percentages are shown in Table V. Changes of more than 100% may be seen 

in water absorption, impact, abrasion resistance, chloride content and sulphate content. 

 

 
Table IV. Chloride and sulphate contents  

Aggregate Type 
Chloride Content 

(%) 

Sulphate Content 

(%) 

New Sand 0.003 0.17 

Recycle Crushed Concrete batch 1 0.052 0.75 

Recycle Crushed Concrete batch 2 0.054 0.52 

Recycle Crushed Concrete batch 3 0.060 0.82 

Average for recycled concrete 0.055 0.70 

Standard deviation for recycled concrete .0034 0.128 

Coeff. of Variation 6.18 18.28 

 

 

 

 

5. Conclusions 

 

The investigation done under this study have reached the following results: 
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Table V.  Comparison between recycled and new aggregates 

Property New Recycled Difference % 

Water absorption 3/4 0.73 4.79 556.2 

Water absorption 1/2 0.98 5.24 434.7 

Water absorption 3/8 1.30 6.76 420 

Density 2.70 2.48 8.1 

Impact Value 6.3 13 106.7 

LA abrasion 15.01 32.54 116.8 

10% fines 373.3 163.98 56.1 

Sulphate content 0.17 0.7 311.8 

Chloride content 0.003 0.055 1733 

 

 

1. The values indicate that no significant changes in densities were detected and the value of 2.48 may 

be considered constant for recycled aggregates. 

2. For water absorption, however, although no changes for each size were detected, the values have 

some dependence on aggregates size. 

3. Lack of covering and storing concrete a materials and mixing machinery on site from direct sun 

light and open air have increased temperature of concrete and exposed its materials to all kind of 

pollution. 

4. The changes in aggregates properties between different batches are tolerable. 

5. The properties of recycled aggregates vary considerably compared to those of virgin new 

aggregates. 
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Abstract.
In the last decades, a lot of research in the area of decentralized energy supply systems has been focused on
design and development of solid oxide fuel cells (SOFC). These devices convert chemical energy directly
into electricity and represent an environmentally friendly alternative for the use as auxiliary power supply
units. The advantages of SOFCs include high efficiency and flexibility with respect to the kind of fuel,
whereas the main disadvantages are the complicated production process and the necessity for advanced
control procedures to deal with instationary operating points. Contrary to this demand, most state-of-the-art
control strategies for fuel cells cover stationary operating points only. Another difficulty is that many system
parameters are influenced by significant uncertainty.

An important goal of a current joint project between the Universities of Rostock and Duisburg-Essen is
to develop dynamic system models which accurately describe the instationary behavior of SOFCs. Here, one
possibility to deal with parameter and model uncertainty is the use of interval analysis. Aside from providing
a natural representation of bounded uncertainties, interval and similar methods guarantee the correctness of
simulation results. We apply a verified global optimization algorithm based on that from (Hansen and Wal-
ster(2004)) to identify uncertain parameters of a dynamic SOFC model by (Rauh et al.(2011)). The model
covers the effects of preheated air and fuel gas supply along with the corresponding reaction enthalpies on
the thermal behavior. The parameters of interest describe the thermal resistances of the stack materials, the
dependency of heat capacities on temperature, and the heat produced during the electrochemical reactions
on the surface of each individual fuel cell. Because of the complex structure of the goal function, the
optimization software has to be adjusted to the problem, which was one of the reasons we chose the solver
UNIVERMEC by (Dyllong and Kiel(2010)) allowing for additional flexibility.

Keywords: Interval analysis, verified optimization, SOFC systems, software design

1. Introduction

Solid oxide fuel cells (SOFCs) convert chemical energy directly into electricity and represent an environ-
mentally friendly alternative for the use as auxiliary power supply units in, for example, different types
of vehicles or stationary industrial or domestic systems. These devices are currently in the focus of re-
search on decentralized energy supply systems due to their high efficiency and flexibility with respect to
the kind of fuel. However, SOFCs are difficult to produce and in need of procedures for dealing with
instationary operating points. Control strategies for SOFCs are mostly designed for constant operating
conditions and are based on simplifying assumptions which are not valid for wide operation ranges (Bove
and Ubertini(2008); Pukrushpan et al.(2005)). This makes development of approaches taking into account
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also instationary points necessary, which is the major goal of a current joint project between the Univer-
sities of Rostock and Duisburg-Essen (Rauh et al.(2011); Rauh et al.(2012a); Dötschel et al.(2012); Rauh
et al.(2012b)).

Control-oriented mathematical models for SOFCs should be both accurate and applicable in real time
for engineers to be able to develop robust controllers and state estimators. The thermal behavior of SOFC
systems is usually described by partial differential equations. To obtain a model of the fuel cell stack tem-
perature suitable for control design, the stack is semi-discretized into L ×M × N finite volume elements
(cf. Figure 1). This leads to a set of L ×M × N nonlinear ordinary differential equations (ODEs). They
are generated by the use of the first law of thermodynamics for each finite volume element to express the
spatial temperature distribution in the interior of the SOFC stack. The ODEs are derived in such a way as
to be valid in a wide operating range including not only the neighborhood of the desired operating point,
but also the SOFC system’s heating and cooling phases. The influence of varying electrical load conditions
can be included in the thermal system model by means of a disturbance input. At the moment, the models
are developed under the assumption that the temperature is homogenous in each volume element. However,
using finite element approaches which approximate the actual situation of temperature inhomogeneities is
also possible and a topic for our future work.

In this paper, we discuss possibilities to parameterize such control-oriented mathematical models in an
accurate and robust way. The parameters of interest describe the thermal resistances of the stack materials,
the dependency of heat capacities on the temperature, and the heat produced during the electrochemical
reactions on the surface of each individual fuel cell. The parametrization is performed on the basis of
measured data for the SOFC test rig available at the Chair of Mechatronics at the University of Rostock. The
basics for parameter identification in our case are shown in (Rauh et al.(2011)). Note that parameters of the
models developed for SOFCs are influenced by a considerable uncertainty. Aside from the inevitable model
simplification, its sources are temporal and spatial discretizations as well as measurement and rounding
errors.

One possibility to deal with the uncertainty (which can be accepted as bounded for the purpose of this first
study) is the use of verified methods and, in particular, interval analysis (Moore et al.(2009)). They provide

Figure 1. Semi-discretization of the fuel cell stack module into finite volume elements.
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a natural representation of such kind of incertitude and guarantee the correctness of results. A successful
attempt at using verified techniques for parameter identification has been made in (Rauh et al.(2012a)). By
employing a basic interval optimization routine for three possible system orders (corresponding to spatial
resolutions 1× 1× 1, 1× 3× 1, and 3× 3× 1, cf. Figure 1), the authors managed to reduce the estimation
error in comparison to the non-verified procedure which used Nelder-Mead simplex algorithm provided by
MATLAB (fminsearch).

Optimization tasks for practical applications often have to deal with a complex goal function structure.
It might include, for example, solutions to initial value problems and many summands, as is the case for
the identification problem considered in this paper. Because of the complex structure of the goal function,
the optimization software has to be adjusted to the problem at hand. These two reasons (complexity and the
need for adjustments) usually render the use of such well known verified optimizers as GLOBSOL (Kear-
fott(1996)) difficult. In this paper, we consider the simplest situation of the 1 × 1 × 1 spatial discretization
in detail and show how the results obtained using the basic procedure from (Rauh et al.(2012a)) can be im-
proved by exploiting the flexibility of the newly developed solver UNIVERMEC (Dyllong and Kiel(2010)).
Besides implementing the usual global optimization algorithm from (Hansen and Walster(2004)) in C++,
this solver allows users to choose the underlying data type for the evaluation of the goal function (e.g.
naive interval or Taylor model (Berz(1995))) or the optimization strategy (e.g. with/ without differentiation,
cf. Section 4.1) freely. Additionally, it is implemented in such a way as to allow for parallelization. Note
that although the issue of real-time applicability is not important for the considered case of the offline
parametrization, the complexity of the problem makes parallelization necessary if we want to obtain results
in an acceptable time, especially if models for fluidic and electrochemical SOFC subsystems are to be
included in the simulation process along with the thermal one (Rauh et al.(2011)).

The use of UNIVERMEC has one more reason. In the context of the already mentioned joint project, we
plan to develop a framework for modeling, simulation, and control of SOFC systems based on the strategies
developed in (Rauh et al.(2011); Dötschel et al.(2012)). This framework, supplemented by a graphical
interface, should allow users to perform both verified and usual floating point computations with SOFC
models of their choice easily, making flexibility of the underlying routines with respect to basic data types
and algorithms unavoidable. Obviously, optimization software should also comply with this requirement,
which UNIVERMEC does.

The paper is structured as follows. In Section 2, the considered problem is described in detail. A basic
identification procedure for this task is summarized in Section 3. The new optimizer, parameter identification
results and a comparison between the basic procedure and UNIVERMEC are reported on in Section 4.
Finally, conclusions are in Section 5.

2. Problem Formulation

To describe the dynamics of fuel cell systems such as SOFCs, it is necessary to subdivide the overall model
into three parts characterizing its fluidic, electrochemical and thermal behavior. Each of these subsystems
is modeled by nonlinear ODEs expressing the corresponding dynamics in terms of the dominant physical
phenomena such as temperature dependent heat capacities, current density dependent partial pressures of
the gas mixtures, and internal Ohmic losses combined with electrical storage effects. For the modeling of
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the thermal subsystem, the electrochemical reactions

2 H2 + 2O2− → 2 H2O + 4e− and O2 + 4e− → 2O2− (1)

at the anode and the cathode of the fuel cell are considered. A finite dimensional model is generated by
using integral balances of the internal energy to characterize the temperature distribution. The modeling
procedure described in detail in (Rauh et al.(2011)) leads to the following ODE for the discretization with
L = M = N = 1:

θ̇FC = ṁH2 ·
(
p∆H,2 · θ2

FC + p∆H,1 · θFC + p∆H,0

)
+ 6 · pA · (θA − θFC) + (θAG − θFC) (2)

· (ṁH2 · (pH2,2 · θ2
FC + pH2,1 · θFC + pH2,0) + ṁH2O · (pH2O,2 · θ2

FC + pH2O,1 · θFC + pH2O,0)
+ ṁN2 · (pN2,A,2 · θ2

FC + pN2,A,1 · θFC + pN2,A,0)) + IFC · pel − ṁA · (θFC − θCG)
· (77 · pN2,C,0/100 + 11 · pO2,0/50 + 77 · pN2,C,1 · θFC/100
+ 11 · pO2,1 · θFC/50 + 77 · pN2,C,2 · θ2

FC/100 + 11 · pO2,2 · θ2
FC/50)

with the initial condition θFC(0) = 299.7053 K. Initial guesses for the time invariant parameters along
with their meanings are shown in Table I. Here, the temperature dependent heat capacities cH2 of hydrogen,
cH2O of water vapor, cN2,A of nitrogen at the anode, cN2,C of nitrogen at the cathode, and cO2 of air as well
as the reaction enthalpy ∆rH are replaced by their second-order polynomial approximations with certain
coefficients αg,i for g ∈ {H2, H2O,N2, O2} and i = 0, 1, 2. After some expression manipulations, the
corresponding coefficients pg,i from Table I appear, which are proportional to αg,i (Rauh et al.(2011); Rauh
et al.(2012a)).

The identification is performed with respect to parameters for which interval bounds are given in the
table, namely, the zero-order terms of the polynomial approximations of the temperature-dependent specific
heat capacities and the reaction enthalpy. Time variant inputs are shown in Table II. Their values along
with the temperature θFC are measured each second (h = 1) for the time period of T = 19963 seconds.
The measurement device is known to cause the uncertainty of ∆ym ∈ [∆ym]. Aside from including the
information about the measurement error of the device, the interval [∆ym] should enclose the effects of not
being able to measure the temperature at exactly the same point as defined by the output variable of a certain
finite volume element in the model.

Since we plan to use verified techniques, the task is to minimize the upper bound J of the goal function

J =
T∑
k=1

(y(tk, p)− ym(tk))
2 (3)

with respect to the six parameters p = [pH2,0 pH2O,0 pN2,A,0 pN2,C,0 pO2,0 p∆H,0] , where y(tk, p) =
θFC(tk, p) is the simulated temperature of the fuel cell at the time tk = 1, . . . , T obtained from Eq. (2) and
ym(tk) the measured temperature at the same point. Note that here and in the following, the goal function
is written down for our situation of h = 1, tk = h · k, k = 1, . . . , T . The function J quantifies deviations
between the measured output vector and the simulated temperature vector acquired with T samples and a
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Table I. Meanings and values of the constant parameters in Eq. (2)

Name Value Physical meaning (proportional to)

pA −2.111896 · 10−5 inverse of the thermal insulation resistance
pel 1.645381 · 10−3 resistance of SOFC materials
pH2,0 −7.614159± 1 heat capacity of hydrogen (order 0)
pH2,1 −6.023259 · 10−5 heat capacity of hydrogen (order 1)
pH2,2 9.513841 · 10−8 heat capacity of hydrogen (order 2)
pH2O,0 0.6273529± 1 heat capacity of water vapor (order 0)
pH2O,1 −6.479947 · 10−4 heat capacity of water vapor (order 1)
pH2O,2 −1.583060 · 10−7 heat capacity of water vapor (order 2)
pN2,A,0 −0.8367768± 1 heat capacity of nitrogen at the anode (0)
pN2,A,1 6.250080 · 10−4 heat capacity of nitrogen at the anode (1)
pN2,A,2 −6.366022 · 10−9 heat capacity of nitrogen at the anode (2)
pN2,C,0 0.4525605± 1 heat capacity of nitrogen at the cathode (0)
pN2,C,1 −1.453636 · 10−4 heat capacity of nitrogen at the cathode (1)
pN2,C,2 1.974873 · 10−8 heat capacity of nitrogen at the cathode (2)
pO2,0 −0.5931353± 1 heat capacity of air (0)
pO2,1 −8.060370 · 10−6 heat capacity of air (1)
pO2,2 −2.049129 · 10−9 heat capacity of air (2)
p∆H,0 −217.3967± 1 reaction enthalpy (0)
p∆H,1 −5.236888 · 10−2 reaction enthalpy (1)
p∆H,2 −5.014673 · 10−6 reaction enthalpy (2)

constant sampling time h. An additional condition, which is induced by the accuracy of the measurements
[∆ym], is

y(tk) ⊆ [ym(tk)− 15, ym(tk) + 15] =: [∆ym(tk)] for tk = 1, . . . , T . (4)

Note that since we have only one temperature to model the thermal behavior of the whole stack in the
1× 1× 1 case, the uncertainty of ±15 also includes the incertitude arising from spacial discretization.

The global optimization problem (3) can be solved in the following two general ways, if there is no
possibility to find an analytical solution to Eq. (2):

1. Verified approximation. The true solution θFC(t) = y(t) of the Eq. (2) is approximated by the explicit
Euler method as

[yk] := [yk−1] + h · f([yk−1], [p]) , (5)

where f denotes the right side of the Eq. (2). The approximation [yk] is substituted for the exact solution
y(tk) in the goal function (3) and the discretization error ignored. In our setup, the sampling time h of
1 second is by at least two orders of magnitude smaller than the dominant time constants of the thermal
process (2). For this reason, [yk] is an acceptable approximation of the true solution y(tk). Although we
cannot verify the whole process by applying interval procedures in this case, the results of optimization of
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Table II. Time-dependent inputs in Eq. (2)

Name Meaning

ṁH2 mass flow of hydrogen
ṁN2 mass flow of nitrogen at the anode
ṁH2O mass flow of water vapor
ṁA mass flow of air at the catode
θAG initial temperature of the anode gas in K
θCG initial temperature of the cathode gas in K
θA temperature of the environment in K
IFC electric current in A

the approximated goal function

Japp =
T∑
k=1

(yk−1 − ym(tk) + h · f(yk−1, p))
2 (6)

are verified. It is easy (although costly) to find the first (and second) derivatives of Japp with the help
of algorithmic differentiation using, for example, FADBAD++ (Stauning and Bendtsen(2006)), should the
chosen optimization algorithm (Kearfott(1996); Hansen and Walster(2004); Rauh et al.(2012b)) require that.
2. Verified solution. The true solution θFC(t) = y(t) of the Eq. (2) is enclosed numerically by a verified
IVP solver such as VNODE-LP (Nedialkov(2011)). It is more difficult to compute the derivatives ∂J/∂p
of the cost function J , because it requires solving an additional IVP of the form

ṡi =
∂f

∂θFC
· si +

∂f

∂pi
with si =

∂θFC
∂pi

(7)

in our one-dimensional case for each parameter pi in each iteration step since

∂J

∂pi
= 2 ·

T∑
k=1

(y(tk, pi)− ym(tk)) · si . (8)

This procedure can be very expensive, especially if the sensitivity equations cannot be derived analytically
and must be obtained by algorithmic differentiation. Therefore, it is advisable to prefer derivative-free
optimization techniques in this case, although the additional information provided by derivatives usually
improves the performance of a method.

For the purpose of an initial verified study, we consider only the first situation in this paper. Note that even
the approximated situation (2), (6), (4) is not a simple one. Although the summands from (6) are easier to
compute, the approximated problem is affected by the same difficulties as (3) from the point of view of veri-
fication in addition to suffering from discretization errors. For example, it involves at least T occurrences of
the same (interval) parameters leading to the dependency problem and overestimation (Kieffer et al.(2011)).
Since T is equal to 19963 in our case, overestimation reduction is not trivial for the considered optimization
task.
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3. Basic Approach to Verified Optimization

In this section, we describe the basic procedure shown in Figure 2, which was applied to the problem
(2), (6), (4) in (Rauh et al.(2012a)). It is implemented as a C++ routine using PROFIL/BIAS (Keil(2008))
for basic interval evaluations and FADBAD++ for algorithmic differentiation. The first step is to define the
interval vector bounding the search space. To find the globally optimal solution, this vector is subdivided
further in the direction µ, chosen in each iteration step in such a way as to maximize the sensitivity measure

∆J<l> =
T∑
ν=1

[
∂[y<l>(tν)]
∂[p<l>]

· w([p<l>])2

w([p<0>])

]
(9)

for each parameter p, where L is the current list length, l = 0, . . . , L, and w(·) the width of the box. Intervals
from the list which produce a small upper bound for J<l> are preferred for subdivision. For the resulting
subintervals, a validity criterion based on the condition in (4) is applied additionally. The following three
cases are distinguished:

Consistent parameter vectors are no longer subdivided. They are characterized by

[y(t, p)] ⊆ ym(t) + [∆ym] (10)

for each t ∈ [0, T ] with the worst-case measurement error [∆ym] = [−15, 15].

Inconsistent parameter vectors are excluded. They are identified by

[y(t, p)] ∩ (ym(t) + [∆ym]) = ∅ (11)

for at least one point of time t ∈ [0, T ].

Undecided parameter vectors are subdivided further either until they fall below a minimum diameter or
until a maximum number of subdivisions is reached. They are characterized by

[y(t, p)] ∩ (ym(t) + [∆ym]) 6= ∅ (12)

for each t ∈ [0, T ] and
[y(t, p)] * ym(t) + [∆ym] (13)

for at least one point of time.

Note that this procedure is not an all-encompassing one. The basic branch-and-bound algorithm is tailored
for the problem at hand by exploiting the condition in Eq. (4) as its constituent part (cf. the validity test in
Figure 2). In return, it can handle higher system orders (1×3×1 and 3×3×1 finite volume elements along
with the 1× 1× 1 problem considered here) and more parameters (e.g. all from Table I), a difficult task for
a general-purpose solver. The results produced by this procedure for the problem described in Section 2 in
comparison to those obtained with UNIVERMEC (which is a highly adjustable general-purpose solver) will
be shown in Section 4.2.
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Initialization of the parameter range [p<0>] = [p<L>], L = 1

Determine the parameter vector [p<l>] to be subdivided from the
complete list [p<1>], . . . , [p<L>]

Determine the component µ of the parameter vector [p<l>] to be
subdivided

Splitting procedure: [p<L+1>] := [p<l>]

[p<l>µ ] :=
[
inf
(
[p<l>µ ]

)
,mid

(
[p<l>µ ]

)]
[p<L+1>
µ ] :=

[
mid
(
[p<L+1>
µ ]

)
, sup

(
[p<L+1>
µ ]

)]
Evaluate state equations for [p<l>]

Validity test: Delete [p<l>] from the parameter list if guaranteed to be
inconsistent

Evaluate state equations for [p<L+1>]

Validity test: Delete [p<L+1>] from the parameter list if guaranteed to be
inconsistent

Recount the length L of the list

while (stopping criterion is not reached)

Figure 2. The basic routine for verified parameter identification.

4. Application of a General-Purpose Optimizer and Comparison of Results

In this section, we show how to apply the general-purpose optimizer UNIVERMEC to the problem
(2), (6), (4). The major difficulty here is to overcome overestimation. Besides, we need to incorporate the
condition in Eq. (4) in an appropriate form. First, we describe the software-oriented foundation making our
optimizer more flexible than other general-purpose ones such as GLOBSOL. After that, we show the results
of its application to the problem of SOFC parameter identification. Finally, we compare the outcome to that
of the basic routine from Section 3.

4.1. UNIVERMEC: DESIGN, ALGORITHMS, FEATURES

The optimization algorithm (Dyllong and Kiel(2010)) is implemented in the uniform framework UNI-
VERMEC (Unified Framework for Verified GeoMetric Computations), originally developed for geometric
computations (Dyllong and Kiel(2011)). UNIVERMEC provides a conceptual and a software basis for
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Figure 3. The basic structure of UNIVERMEC. Every layer depends only on the ones left of it. The parameters of each layer can
be changed through the user interface. Words in italics denote information from the framework.

handling different kinds of (verified) arithmetics (e.g interval, affine (de Figueiredo and Stolfi(1997)), or
Taylor model) and algorithms uniformly. Owning to its design, the framework allows users to evaluate their
models (e.g. for geometric objects) with the arithmetic suitable for their task. If necessary, various decom-
position or branching schemes can be applied to user-defined models regardless of their actual mathematical
representation. Higher level algorithms, such as parameter identification or distance computation, can ac-
cess these different methods easily, allowing for ready reuse and exchange. Additionally, UNIVERMEC
provides a fair comparison between specific techniques inside high level algorithms because the overhead
and implementations of the algorithms themselves are identical.

An overview of the framework components is given in Figure 3. The code is organized into five concep-
tual layers. The first layer (Core) implements arithmetic concepts in form of an abstract algebra and wrap-
pers for actual libraries (e.g. C-XSC (Hofschuster and Krämer(2004)) for intervals or YALAA (Kiel(2012))
for affine arithmetic). The second layer (Functions) defines an interface for scalar functions formally
and independently of the chosen kind of arithmetic. The layer Objects specifies a uniform formal rep-
resentation for different models of objects, which is important for geometric computations and can be
skipped in our context of parameter identification. The forth layer Decomp encapsulates various hierarchical
decomposition and multisection strategies. Finally, the layer Algorithms provides a basis for flexible
implementations of different kinds of high level algorithms, in particular, the optimization algorithm we
use in this paper to solve the problem (2), (6), (4). Although the algorithm can be implemented without the
framework, UNIVERMEC ensures the maximum flexibility necessary to solve the task.

The optimizer is developed to solve a general problem with inequality constraints according to the
approach described in (Hansen and Walster(2004)):

minφ(x) with x ∈ Rd (14)
subject to gi(x) ≤ 0 for i = 1, ...,m,

where the objective function φ : Rd 7→ R is scalar. The algorithm calculates a verified interval enclosure of
the minimum and maintains three lists: the working list L, the temporary list Ltmp, and the result list Lfinal.
All lists contain parts of the search space in the form of boxes. L accommodates the boxes to be processed
further, while Lfinal is filled with the final results. The basic structure of the algorithm is outlined in Figure 4.

 

 
 
 
5th International Conference on Reliable Engineering Computing (REC 2012)

 
 
 
 
 

 
 
 
49



E. Auer, S. Kiel, A. Rauh

To allow users to adapt the algorithm to their problems, it is subdivided into several stages (PHASE in
the figure), the behavior of which can be changed individually. Following (Hansen and Walster(2004)), we
choose contractors and strategies for box reduction in dependence on the feasibility of the current box. That
is, it is necessary to distinguish the stages PHASE POS INFEAS, PHASE FEAS, and
PHASE STRICT FEAS for boxes with unknown, certain and strictly certain feasibility, respectively (cf.
Figure 4). The contractors in the stages PHASE A to PHASE D are called independently of the feasibility
of the current box in each iteration, while PHASE SPLIT is called on boxes directly after the multisection
step.

Inside an apply contractor call, a box may be pruned, completely discarded or moved to Lfinal if
it satisfies the termination criterion. In the latter two cases, the main loop is restarted. Unlike other global
optimization algorithms, UNIVERMEC maintains not only the lists L and Lfinal, but also Ltmp similarly
to the distance computation algorithm in (Dyllong and Kiel(2011)). If a box is subdivided below a certain
minimum width εt, it is temporarily deleted from L and moved into Ltmp. This strategy ensures that the
problem domain is subdivided more uniformly and prevents heuristics such as best-first from causing a deep
subdivision in the wrong region. When L becomes empty, all boxes from Ltmp are moved back into L, and
the user can alter the algorithm stages again. In this way, accelerating devices such as interval Newton can
be configured dynamically.

The algorithm can be parallelized efficiently, since it can work on parts of the search region indepen-
dently of other parts. The search region cannot be subdivided a priori, because it is unknown where a deep
search will take place. For workload sharing, a permanent synchronization among all threads is important.
In our current implementation, L is shared among all threads, which is suitable only for shared-memory
architectures. Besides, there is a possible bottleneck in the algorithm, because every access to L represents
a critical section. However, the time spent there can be reduced by an intelligent initialization approach for
the verified upper bound of the minimum φ̃ (e.g. using IPOPT (Wächter and Biegler(2006))).

In practice, evaluating the goal function is expensive. While derivatives are theoretically available through
FADBAD++ in UNIVERMEC, we do not use them, because their recursive evaluation at every time step
slows down the computations considerably. Instead, we employ the following derivative-free strategies:

PHASE SPLIT: Bounds the goal function with interval arithmetic and test condition (4).

PHASE PA: Tests the feasibility.

PHASE POS FEAS: Tests the box consistency on constraints.

PHASE TMP: Tries to find a verified upper bound on the minimum using the midpoint test.

PHASE FINAL: Bounds the goal function using affine arithmetic and pruning by (15)–(16).

We use the implicit linear interval estimation (ILIE) technique (Bühler(2002)) to take the condition in
Eq. (4), which cannot be written down in terms of expressions valid globally for all t = 1, . . . , T , into
account in our general purpose solver. Originally, this technique was developed and used for computer
graphics applications. However, it also helps to incorporate such heuristic conditions as Eq. (4) into the
overall optimization procedure.
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Input: Search region X0

Output: Enclosure of minimum φ∗

L := {X0}; S := RUNNING;1

while S == RUNNING do2

if L = ∅ then3

Get configuration for next phase;4

forall X ′ ∈ Ltmp do5

apply contractors(PHASE TMP, X ′);6

end7

L := Ltmp; Ltmp := ∅;8

if L == ∅ then S := FINISHED; continue;9

end10

X := head(L); L := tail(L);11

apply contractors(PHASE A, X);12

if ¬feasible(X) then13

apply contractors(PHASE POS INFEAS, X);14

end15

apply contractors(PHASE B, X);16

if feasible(X) then apply contractors(PHASE FEAS, X);17

apply contractors(PHASE C, X);18

if strictly feasible(X) then19

apply contractors(PHASE STRICT FEAS, X);20

end21

apply contractors(PHASE D, X);22

if w(X) < εt then Ltmp ← X ;23

else24

N := split(X);25

forall X ′ ∈ N do26

apply contractors(PHASE SPLIT, X ′);27

end28

L ← N ;29

end30

end31

forall X ′ ∈ Lfinal do32

apply contractors(PHASE FINAL, X ′);33

end34

φ∗ := min
X∈Lfinal

(φ(X)); φ∗ := min( max
X∈Lfinal

(φ(X)), φ∗);
35

Figure 4. Interval optimization algorithm UNIVERMEC: φ̃ is a verified upper bound on the minimum.

Let y(tk, p) be the solution of the IVP (2) at the point tk, p the parameter vector (p ∈ R6 in our case),
and L(tk, p) its linearized enclosure

L(tk, p) :=
6∑
i=1

aipi + [l] with [l] ∈ I, pi ∈ R . (15)

Further, if [∆ym(tk)] is the measurement with the corresponding uncertainty at the point tk and [p] the
current interval box for the (unknown) parameters p, then the interval L(tk, p) for each p ∈ [p] should not
exceed [∆ym(tk)] for the condition in Eq. (4) to be valid. After factoring out a parameter pi, i = 1 . . . 6,
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from this relation, we obtain the following transformed condition:

pi ∈
[∆ym(tk)]− [l]−

6∑
j=1,j 6=i

ajpj

ai
, (16)

which can be incorporated as a solution strategy into the overall algorithm. Here, the coefficients ai and
the enclosure of the nonlinearity [l] are determined by using affine arithmetics and, in particular, the library
YALAA, which UNIVERMEC allows us to access.

4.2. RESULTS AND COMPARISON

We solved the optimization problem with UNIVERMEC on an Intel Xeon CPU x5570, 2.9 GHz, 12Gb
RAM virtualized computer with four cores. The algorithm was parallelized with the help of OpenMP
(http://openmp.org). To obtain results comparable to those from the basic routine in Section 3, we
limited the number of iterations to 54000 as had been done there. Besides, we used only the midpoint test as
a discarding strategy. Note that the search space is bisected inside the basic routine, whereas UNIVERMEC
uses the multisection scheme according to (Ratz(1992)). To reduce the computational effort, we updated the
upper bound only between stage switches (cf. Figure 4). The value for εt was initially set to w(X0)/5 and
then reduced by half during every change of the stage.

After 54000 iterations, we obtained 36942 candidate boxes for optimal parameters p. No verified solution
strictly complying with (4) could be found, as was also the case for the basic procedure from Section 3. The
results are shown in Figure 5, right, in comparison to those from the basic procedure (Figure 5, left). In
the figure, the difference δ(tk) between the simulated and the measured temperature value is shown for the
midpoints of the set of candidate optimal parameters [p̂], chosen in such a way as for the absolute error value
|δ(tk)| to be the smallest. Note that by selecting such [p̂], we no longer work with entirely verified results, but
only with candidates. The results obtained by UNIVERMEC have less deviation from the measured values
than those from the basic routine.

In Table III, we compare the outcome for the problem (2), (6), (4) obtained by a floating-point optimiza-
tion in MATLAB, the basic interval routine from Section 3, and UNIVERMEC. The non-verified results are
described in more detail in (Rauh et al.(2012a)). As the comparison measure e given in the table, we use the
following practice-motivated expression:

e =

√√√√√ T∑
k=1

(yk−1 − ym(tk) + f(yk−1,mid([p̂])))2

T
. (17)

This choice leads to values of e similar to the usual root mean square error measure in the floating point
case. The table shows that the interval based strategies are less accurate than the floating point one for this
rudimentary model of order 1× 1× 1, although the results obtained in UNIVERMEC are better than those
from the basic routine. More accurate interval solutions can be produced by using higher order temperature
models as shown in (Rauh et al.(2012a)). We plan to test these enhanced models with UNIVERMEC in the
future.

In the third line of Table III, we provide CPU times for all three kinds of computations. Note that
they cannot be considered absolutely, because they were obtained on different computers (Intel dual core
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Figure 5. Difference between the simulated and measured temperatures for the model of order 1× 1× 1 for the basic optimization
routine from Section 3, left, and UNIVERMEC, right.

CPU, 2.8 GHz, 2 GB RAM for the basic interval and floating point routines) and in different environments
(MATLAB for floating point vs. C++ for the others). Besides, the floating-point optimization was carried
for all 20 parameters from Table I. However, the CPU times can give an idea of what the advantage of
parallelization can be. For UNIVERMEC, we provide both the CPU time and the real time to show how
long the computations took in reality. The results demonstrate that the usage of derivative free techniques
in UNIVERMEC speeds up the computations (3.2 vs. 10 hours of CPU time) and that parallelization is
effective in this case ( 1.33 hours of real time). Note that the CPU times include not only the ones needed to
obtain candidate solutions, but also those for constructing the solutions in Figure 5 in all cases.

Table III. Empirical comparison between floating point routine, the basic
interval routine, and UNIVERMEC for the SOFC model of order 1× 1× 1

floating point basic interval UNIVERMEC

error e in K 5.17 11.84 7.68

CPU time in hours ≈ 6 ≈ 10 3.2 (1.33 real time)

Other experiments we performed showed that the settings we chose represented a good compromise
between performance and accuracy for this rudimentary model. Increasing the number of iterations up to
270000 lead to a slightly smaller value of 7.5 for the root mean square error measure while increasing
the CPU time considerably. The linearization strategy (15)–(16) does not offer much improvement in such
situations because the resulting boxes are still too large. Setting the termination criterion to the box width of
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10−1 (for which the linearization might work) is accompanied by computing times of over a week, which is
not justified for this simple model. That is, if better accuracy is requested, better models should be used.

5. Conclusions

In this paper, we considered the simplest model for the temperature of a fuel cell stack in detail from the
point of view of obtaining accurate and robust results for the problem of identification of its parameters.
We showed how to apply a range of interval based algorithms to it. Although the results obtained using
interval procedures are slightly less accurate than the floating point ones in this simplest case, the research
in this direction seems promising because the accuracy of interval techniques improves if better models
are used (Rauh et al.(2012a)). The presented verified optimizer UNIVERMEC helped to increase both the
accuracy and the performance of interval techniques. The reasons were its flexible implementation, the use
of derivative-free techniques and parallelization.

Our future work includes three general directions. The first one concerns SOFC modeling and control.
The developed models will be used for a nonlinear state and disturbance observer design. Sensitivity based
parameter identification routines will be implemented for a further improvement of the model quality. The
second direction is to incorporate all the developed models and algorithms into a unified tool for modeling,
simulation, and control of SOFCs with the help of both verified and floating point methods.

The last future work direction concerns the improvement of the quality of the obtained parameter set.
For that purpose, we plan to implement the fully verified identification technique mentioned in Section 2 in
UNIVERMEC. Moreover, the use of better models of orders 1× 3× 1 and 3× 3× 1 might help to actually
verify the optimum of the problem (2), (6), (4). Besides, more thought should be given to the empirically
motivated condition (4) itself. Although it helps to reduce the overestimation in the goal function (6), our
tests have shown that the midpoints of the obtained parameter sets are infeasible with respect to it in spite
of a high subdivision depth. Therefore, we should either prove the validity of the condition mathematically
(at least, under certain assumptions), or try to reduce the overestimation in the goal function in other ways.
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A. Wächter and L. T. Biegler. On the Implementation of an Interior-Point Filter Line-Search Algorithm for Large-Scale Nonlinear

Programming. Math. Program., 106(1):25–57, 2006. ISSN 0025-5610.

 

 
 
 
5th International Conference on Reliable Engineering Computing (REC 2012)

 
 
 
 
 

 
 
 
55



 

 
 
 
56

 
 
 
 
 

 
 
 
5th International Conference on Reliable Engineering Computing (REC 2012)



Random Sets-based estimation of soundings density for geotechnical 

site investigation 

 
D. Boumezerane

1)
, S. Belkacemi

2)
 

1) 
Civil Engineering Department, University of Bejaïa, 06000 Bejaïa, Algeria, 

dboumezerane@gmail.com 
2) 

Civil Engineering Department, Ecole Nationale Polytechnique, Algiers 16000, 

smainbelkacemi@yahoo.com 

 
Abstract: Geotechnical site investigation is a process conducted generally in two steps. One preliminary 

stage consisting in collecting available information and executing a limited number of soundings on site, 

and a second step of investigation based on the first stage using more soundings for soil testing. The 

optimal number of soundings is not known, it depends on number of factors such as geology of the site, soil 

variability and the type of project to build. Intervals of values are proposed by number of experts 

(engineers) concerning the soundings density based on preliminary information from site (soil variability, 

geology, type of project). Each engineer can give an interval of values based on his degree of belief. He will 

support his judgment by available information. As a first step we used only one parameter (soil variability) 

to construct the random sets. For certain soil variability degree between [1,10] the expert will give the 

corresponding number of soundings (with a degree of belief mij). Using Eurocode7 recommendations for 

site soundings, we constructed an “objective function” f(X) to rely “soil variability” to the number of 

soundings. This function permits constructing the random set and obtain the number of soundings by unit 

area for each expert (engineer). The next step consists in aggregating information from other parameters 

(Geology, Project type…) and computing the random sets. The construction of upper and lower 

probabilities permits us optimizing the number of soundings to carry out on site. 
 

Keywords: Geotechnical Investigation; Soundings density; Random Sets; Upper and Lower probabilities. 

 

 

 

1. Introduction 

 

Geotechnical site investigation is a process conducted generally in two steps. One preliminary stage 

consisting in collecting available information and executing a limited number of soundings on site, and a 

second step of investigation based on the first stage using more soundings for soil testing. The optimal 

number of soundings is not known, it depends on number of factors such as geology of the site, soil 

variability and the type of project to build. 

 The geotechnical engineer in charge of investigation should take into account all those factors and 

preliminary information to decide on the number of soundings to conduct in the second stage of 

investigation.  

According to Cambefort (1980) there is no specific rule on the number of soundings to execute for 

geotechnical investigations. If an arbitrary loose mesh of soundings used in the preliminary study shows 

that the project area is relatively homogeneous then this quantity is satisfactory. However, if the results of 

the preliminary study show erratic conditions, the site characterization requires more soundings.  
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Previous information on the site is generally given in form of geological and topographic maps and 

eventual results from adjoining sites. The engineer’s judgement is important on the way investigation 

should be conducted, and especially on the number of soundings to make. The engineer will have a degree 

of belief about the density of boreholes depending on the preliminary information (soil variability, geologic 

profiles and type of project).  The more important the preliminary information the more significant will be 

the degree of belief on the density of soundings to carry out. The degree of belief could be expressed as a 

subjective probability by experts. For a geotechnical investigation to be done, and given preliminary 

information, experts can formulate a subjective probability (degree of belief) related to the density of 

soundings to carry out. When variability of soil properties is very important for example experts will 

propose a “high” degree of belief that the density of boreholes should be “important” to complete an 

efficient investigation, on the other hand if the given preliminary information indicates a “low” variability 

of soil this will suggest an “important” degree of belief that the number of soundings to execute out will be 

“low”. The approach will need certain number of experts to be reliable. The more experts the more reliable 

will be the result.  

In a previous study we proposed to use fuzzy sets for this purpose (Boumezerane et al., 2011). In the 

present work we will use random sets to estimate intervals of soundings to carry out on site. 

 

 

 

2. Parameters Affecting Geotechnical Investigations 

 

The distribution of soundings to be made in a project area does not follow particular rules (Magnan, 2000), 

it depends on preliminary information among which; 

 The geologic context of the project area,  

 The preliminary results of investigation,  

 The project type, and  

 The knowledge of the neighbouring areas. 

 

2.1.  GEOLOGY 

 

The available information about site’s geology helps engineers to plan efficient geotechnical investigations. 

Information is obtained using geological and topographical maps. A visit on site is necessary, it permits 

having a reliable idea about the visible ground and formations constituting the soil.  

The degree of information (knowledge) depends mainly on the scale of geological maps used, on the 

quality of information available (rough or precise) and on the on-site engineer’s judgement. Geological 

published maps are fundamental tools for any of the analysis; however details have to be revealed by more 

specific studies. The use of maps is essential to have a first idea on the geologic formations constituting the 

site, their properties, as well as the possibilities of inadequate or adverse geologic details. Clayton et al 

(2005) recommend for geotechnical studies to use geologic maps in the scale 1/2500.  

The spacing of borings depends on the geology of the area and may vary from a site to another. Boring 

spacing should be selected to intersect distinct geological characteristics of the project. Borings should be 

situated to confirm the location of significant changes in subsurface conditions as well as to confirm the 

continuity of apparently consistent subsurface conditions (US Corps of Engineers, 1994). 
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2.2.  SOIL VARIABILITY 

 

The preliminary step of geotechnical investigation consists in few soundings that permit to have a rough 

idea about the variability of soil properties. The parameter “Soil Variability” is important for the engineer to 

decide on how many soundings will be necessary in the second stage of site investigation. The soil 

variability is related to the number of different soil layers, their orientations and thickness. Average values 

of soil parameters can be obtained from different points of the site. For important variability of soil 

properties the density of soundings should be significant.  

 

 

 

3. Random Sets Concept and Uncertainty 

 

According to Helton (1997) uncertainty is classified into two distinct groups: aleatory and epistemic. 

Aleatory uncertainty is related to the natural variability of the variables involved. Epistemic uncertainty is 

related to lack of knowledge or data, therefore it can be reduced when new information is available. 

Possibility, evidence, interval analysis and random set (RS) theories have shown to be appropriate to deal 

with this type of subjective uncertainty, and here the information is expressed by means of intervals and 

linguistic terms (Alvarez, 2008). 

 

3.1.  RANDOM SETS 

 

A random set, sometimes also referred to as a Dempster-Shafer structure, is given by finitely any subsets 

Ai, i = 1, . . . , n of a given set X, called the focal sets, each of which comes with a probability weight 

mi = m(Ai),         . An example of a random set is shown in Fig. (Oberguggenberger, 2005). 

  

 

 

 

 

  

 

 

 
Figure 1. A random set 

 

In the Dempster-Shafer approach (Alvarez, 2008), the random set allows to define a degree of belief 

γ(S) and a degree of plausibility η(S), respectively, that the realizations of the parameter A lie in S by; 
 

           

    

 

 

(A1, m1) 

(A2, m2) 

(A3, m3) 
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The belief function γ(S) or Bel, of a subset S is a set-valued function obtained through summation of 

basic probability assignments of subsets Ai included in S and the plausibility function η(S), or Pl, of subset 

S is a set-valued function obtained through summation of basic probability assignments of subsets Ai having 

a non-zero intersection with S. They are envelopes of all possible cumulative distribution functions 

compatible with the data. 

 
Figure 2. Upper bound (Pl) and lower bound (Bel) on precise probability (Pro) 

 

 
Figure 3. Random set ; (a) construction, (b) upper and lower discrete cumulative distribution function 
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Let’s consider for instance a Dempster Shafer (D.S) structure which is formed by gathering the 

information provided by four different sources (e.g. books, experts, previous analysis, etc.) on the friction 

angle of some soil; each of those opinions will form one element Ai of the focal set A. Suppose that 

A = {A1 = [20°,22°], A2 = [21°,23°], A3 = [18°,20°], A4 = [20°,25°]}. The basic mass assignment given to 

each of those focal elements will represent the importance of each of those opinions in our assessments. 

Suppose for example that (m(A1) = 0.4, m(A2) = 0.2, m(A3) = 0.1, m(A4) = 0.3; this means that we are giving 

to our first source of information the largest relevance (Alvarez, 2008). 

 

 

 

4 Situation of the Problem 

 

The idea underlying the use of random sets as a tool to estimate soundings density is supported by their 

ability to handle vague and uncertain information. The degree of belief an engineer could have given 

preliminary information is used to construct the upper and lower probabilities to estimate the number of 

soundings for geotechnical investigation. The calibration is done upon minimal number of soundings per 

surface recommended by Eurocode7. 

Let’s have the opinions of different engineers concerning the soundings density based on preliminary 

information from site (soil variability, geology, type of project). Each engineer can give an interval of 

values based on his degree of belief. He will support his judgment by available information. If “Soil 

Variability” obtained from preliminary soundings is “Very Important” for instance then he will propose an 

important number of soundings with a strong degree of belief.   

How Soil Variability is quantified by experts? A scale between 1 and 10 is proposed representing 

intervals of “Very Low”, “Low”, “Medium” and “High” Variability. Eurocode 7 recommends 1sounding 

per 40 × 40 m² as a minimum for an investigation. The degree 1 of soil variability corresponds to a “very 

low” variability. We consider this degree of variability necessitating the minimal number of soundings 

recommended by Eurocode7. The maximum number of soundings recommended by codes and some 

authors (Hunt, 2007) is given by 1 sounding / area of 15 × 15 m². Globally the number of soundings per 

unit area of 40 × 40 m² varies between 1 as a minimum and 6 as maximum, but it is possible to have more 

soundings if information is not enough. 

Let’s consider the opinions of experts about the density of soundings on site, given soil variability. For 

certain soil variability degree between [1,10] the expert will give the corresponding number of soundings 

(with a degree of belief mij).  

 

 

 

5. Point to point approach 

 

We try first with only one expert 1. According to eurocode7 the minimum number of soundings is 1 for an 

area of 40x40m². This minimum number as explained before could be used for a “Very low” soil variability 

(which is comprised in the interval [0,2] on the scale). If the maximum number of soundings (6 to 7 / unit 

area 40x40m²) corresponds to a “High variability” (10 on the scale) we could argue a linear variation and 

construct an “objective function” to rely “soil variability” to the number of soundings. This function will 

permit us to construct Upper and Lower probability boxes as a decision aid tool.  

 

 
 
 
5th International Conference on Reliable Engineering Computing (REC 2012)

 
 
 
 
 

 
 
 
61



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4. Scheme of random set “Soil Variability” given different experts 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5. Objective function f(x), point to point approach 

 

The obtained “objective function” is given by         
 

 
  , this function permits to calculate the 

number of soundings based on the degree of variability. 

Example: Expert 1 gave the following number of soundings upon a “low” soil variability, with a degree 

of belief mi for each case.  

Soil variability = [0,3];  n1 = 2 ; m1 = ¼  

Soil variability = [1,5];  n2 = 3 ; m2 = ¼ 

Soil variability = [2,4];  n3 = 3 ; m3 = ½ 
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Using f(x) we obtain for the number of soundings / unit area (40 × 40m²) as shown in fig.6   : 

Number of soundings  [1, 2.5],  m1 = 1/4 ; 

[1.5, 3.5],  m2 = 1/4 ,  

[2, 3],   m3 = 1/2  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Construction of a random set (Number of soundings) upon         
 

 
  , according to expert 1 

 

 

The next step is the construction of the upper and lower probabilities (cumulative distribution function) 

which will give an estimation of the soundings number on site according to one expert. 

From the constructed random set we assemble upper and lower probabilities. 

 

 
 
Figure 7. The constructed Upper and Lower probabilities according to one expert. 

Expert 1 
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 The suitable number of soundings is around 2 in this case. This example was run to illustrate the way 

we use the random set-based approach. 

When considering more than one expert an aggregation is necessary. According to Hall et al. (2004) 

when there are “n” alternative random sets describing some variable x, each one corresponding to an 

independent source of information (expert in this case) for each focal element A,  
 

      
 

 
       

 

In the case when random sets (Ai, mi) : i = 1,. . . , n from different sources do not contain the same focal 

elements a merged random set is obtained using union and m(A) is obtained from the previous equation. 

There are other combination rules such as “Dempster rule”, Yager’s modified Dempster’s rule, Inkagi’s 

unified rule of combination, Dubois and Prade’s rule and others (Sentz, 2002).  

The Dempster’s rule combines multiple belief functions through their basic probability assignments 

(m). The combination (joint) m12 is calculated from the aggregation of two pba (probability basic 

assignment) m1 and m2 as it follows: 
 

       
                

   
      when         

 

         
 

where 

                   . 
 

The result of aggregation is still a cumulative function of distribution which could be used as a tool for 

decision making. 

 

 

 

Conclusion 

 

A random set-based approach is introduced to estimate the number of soundings for geotechnical 

investigations. As a first step we used only one parameter (soil variability) to construct the random sets. For 

certain soil variability degree between [1,10] the expert will give the corresponding number of soundings 

(with a degree of belief mij). Using Eurocode7 recommendations for site soundings, we constructed an 

“objective function” f(x) to rely “soil variability” to the number of soundings. This function permits 

constructing the random set and obtain the number of soundings by unit area for each expert (engineer). 

The construction of upper and lower probabilities permits us optimizing the number of soundings to carry 

out on site. The proposed system needs to be run on real sites, with different experts opinions and then 

aggregate them together to obtain a suitable upper and lower probabilities for estimating the number of 

soundings on site. 
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Abstract: Reliable assessment of the remaining life of distributed systems such as pipeline systems (PS) 

with defects plays a crucial role in solving the problems of their integrity. 

Authors propose a methodology which allows estimating the random residual time (remaining life) of 

transition of a PS from its current state to a critical or limiting state, based on available information on the 

sizes of   a set of growing defects found during an in line inspection (ILI), followed by verification or direct 

assessment (DA).  

PS with many actively growing defects is a physical distributed system, which transits from one state to 

another. This transition finally leads to (conditional) failure of its components, each component physically 

being a defect. Such process can be described by a Markov process. 

The degradation of the PS (measured as monotonous deterioration of its failure pressure) is considered 

as a non-homogeneous pure death Markov process (NPDMP) of the continuous time and discrete states 

type. Failure pressure is calculated using one of the internationally recognized pipeline design codes: B13G, 

B31Gmod, DNV, Battelle and Shell-92. 

The NPDMP is described by a system of non-homogeneous differential equations, which allows 

calculating the probability of defects failure pressure being in each of its possible states. On the basis of 

these probabilities the conditional remaining life of defects is calculated, i.e. the time from the last ILI or 

DA to the moment of conditional failure. In other words, until the moment of time t = tf, which is a random 

variable, when the failure pressure of pipeline defect Pf (tf) ≤ Pop, where Pop is the operating pressure. The 

developed methodology was successfully applied to real life case, which is presented and discussed. 
 

Keywords: remaining life, residual strength, Markov processes, pipeline systems. 

 

 

 

1. Pure Death Markov Process of Pipeline Strength Degradation 

 

A PS with many actively growing defects is a physical distributed system, which transits from one state to 

another. This transition finally leads to (conditional) failure of its components, each component physically 

being a defect. In this paper such process is described by a Markov process. 

Markov processes are described by systems of differential equations and do not depend on the nature of 

objects and their physical properties. In this sense they are universal and are widely used in various fields of 

science and technology: nuclear physics, biology, astronomy, queuing theory, reliability theory, etc. 

(Ventzel, 1969; Gnedenko, 1988; Timashev, 1982; Feller, 1967; Bolotin, 1988; Gnedenko, Belyaev and 

Solovyev, 1965; Bogdanoff and Kozin, 1989). 
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Apply the empirical Markov model to describing the degradation (reduction of the residual strength) of 

the pipeline, which is assessed by the international design codes described below. 

 

1.1  DEGRADATION MODEL OF RESIDUAL STRENGTH OF PIPELINE CROSS SECTION WITH A DEFECT  

 

Consider the cross section of pipeline with a defect. The burst pressure of a performing pipeline defective 

cross section at some fixed time t is a random variable (RV)  f opP t P , where Pop is the operating 

pressure in the pipeline. The burst pressure  fP t  can be assessed using one of the five internationally 

recognized pipeline design codes: B13G (ANSI/ASME B31G, 1991), B31Gmod (Kiefner and Vieth, 1989), 

DNV (DNV-RP-F101, 2004), Battelle (Stephens and Leis, 2000) and Shell-92 (Ritchie and Last, 1995). 

Divide the possible range of change of the burst pressure of a pipeline defective cross section 

  ; 0op fP P  into M-1 non-overlapping intervals  1,..,iI i M . Here  0fP  is the burst pressure of defect at 

the initial moment of time t = 0. 

Take the last interval (conditional failure state), which includes the lowest values of burst pressure, as 

equal to (0; Pop]. 

The burst pressure of the defective cross section can only monotonically decrease over time, i.e., at 

random moments of time transit from i-th state only to the (i + 1)-th state, where the state is one of the 

intervals  1,..,iI i M . Consider this process in detail. 

Assume that at some moment of time t the value of burst pressure  fP t  is in the i-th state (interval), and 

assume that the probability that during a small time span t  the RV  fP t  will move to the next (i + 1)-th 

interval is approximately equal to    i t t o t    . Here quantity   0i t   [1/time] is called intensity of 

transition from the i-th state to the (i + 1)-th state, and determines the rate of decrease of RV  fP t . At the 

same time the quantity  i t does not depend on how the RV  fP t  arrived at its current state. This means 

that the process in consideration is a Markov process, i.e. when the future depends on the past only via the 

present. The probability that during the small time span of t  more than one transition will occur is of 

higher order of magnitude smaller than t . 

The system of differential equations (SDE) that describes this process has the form: 
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where ( )iP t  is the probability that the RV  fP t  is in the i-th state at the moment of time t,  i t  is 

intensity of transition from the i-th state to the (i + 1)-th state. 
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System (1) describes the non-homogeneous Markov process of pure death which is characterized by 

discrete number of states and continuous time. For such process the flow of events, which transit the RV 

 fP t  from one state to another, is a non-stationary Poisson process (Ventzel, 1991). Then, according to the 

definition of a non-stationary Poisson flow of events, the expected number of events, which transit the value 

of burst pressure from one state to another within a time interval (0, t], is calculated by formula: 
 

   
0

d

t

t   


                                                                         (2) 

 

The physical meaning of the intensity (density)  t of the non-stationary Poisson flow of events 

(transitions from one state to another) is the the average number of events per unit time for an elementary 

time interval (0, Δt]. The quantity  t  is the average number of states through which the random variable 

 fP t  passes within small time interval (0, Δt]. The intensity  t  can be expressed by any nonnegative 

function and has the dimension [1/time] (Ventzel, 1991). 

Consequently, the quantity  t  may be associated with the rate of change of RV  fP t  as follows: 
 

 
 fP t

t
I




 


                                                                          (3) 

 

Where I is the length of intervals,  fP t  is the derivative of the function  fP t  with respect to time at 

time t. The minus in this formula is due to the fact that the derivative of monotonically decreasing function 

has negative values in the whole domain of its definition. 

Hence, the system (1) can be rewritten as: 
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It is obvious that at the initial moment of time t = 0 RV   10fP I . Hence the initial conditions for the 

SDE (4) have the form: 
 

     1 0 1, 0 0, 2,..,iP P i M                                                             (5) 
 

Solving the SDE (4) by the method of variation of the constant, with initial conditions (5), obtain: 
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Where ( )iP t  is the probability that the value of RV  fP t  is in the i-th state at time t, and  t  is 

calculated by formula: 
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1.2  DEGRADATION MODEL OF DISTRIBUTED PIPELINE SYSTEM RESIDUAL STRENGTH WITH A FINITE SET 

OF DEFECTS 

 

The Markov model for a distributed PS with a finite set of defects is constructed on the same reasoning as 

for single defective cross section of a pipeline.  

Assume that at the initial moment of time t = 0, using some diagnostic tools, N(0) defects were found,  

their geometric parameters identified, and for each defect an estimate of burst pressure was obtained. Now 

calculate the frequency of occurrence of the burst pressure in each of the intervals (states) at time t = 0: 
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                                                        (8) 

 

Where (0)in  is the number of defects, which burst pressure at the moment of time 0t   is in the i-th 

interval, (0)N is the overall number of defects.  

Expressions (8) are the initial conditions for the SDE (4). Solution of SDE (4) with initial conditions (8) 

has the following generalized form: 
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Where ( )iP t  is the probability that the value of burst pressure  fP t  of the PS with a set of defects is in the 

i-th state at time t. 

To determine the function  t  use the quantile approach, which holds a special place in the arsenal of 

probabilistic tools for analysis of statistical data. By controlling the quantile, it is possible to assess the 

probability of failure (POF) of the entire PS with required reliability (confidence level). 

For a PS with defects the value of  t at a given moment of time t is defined as the sample quantile of 

the order  of the set of values    1,..,i t i N  comprised of all defects found by the ILI. 

Here  j t  is the value of  t of the j-th defect at considered time t, calculated using formula (7). In other 

words,  t  = 
   k

t , where 
   k

t  is the k-th order statistic of ordered series 

           1 2
,..,

N
t t t      of the sample values of      1 2 ,.., Nt t t    at time t, аnd  1k N  , 

where […] is the integer part. The order   is chosen out of safety reasons.  

The probability of finding the burst pressure in the last state (in interval MI ) is the conditional 

probability of failure of the defect or the pipeline system under the “rupture” type failure. 

The conditionality of probability of failure is due to possible reserves of the residual strength, "hidden" 

in the existing regulations, which have a variety of embedded safety factors. 

Markov models describing the growth rate of defects (or degradation of the pipe wall thickness), which 

fail by “leaking” are given in papers (Timashev, Malyukova, Poluian and Bushinskaya, 2008; Poluyan, 

Bushinskaya, Malyukova and Timashev, 2009; Valor, Caleyo, Alfonso and others, 2007). 

 

 

 

2. Assessment of system residual life 

 

Assessment of residual life is based on the above-constructed Markov pure death process. 

Assume that the Markov process of residual strength degradation of pipeline system or a defective cross 

section of pipeline is successfully constructed, along the lines described above. Now denote as
  iT  the time 

the burst pressure is in the subset of states  1,.., , 1,.., 1i iS I I i M   . According to (Ventzel, 1991) the 

probability distribution function PDD of RV
 iT  is equal to: 

 

     
iT i iF t P T t P t                                                                  (10) 

 

Where  iP t  is the probability that at time t the burst pressure will transit from set Si to the subset of states 

 1 1,..,i i MS I I  , where M is the number of the subset states. The set 1iS   is considered to be absorbing 

(i.e., that burst pressure, once entering the set, cannot leave it). 

Consequently, the PDD of RV iT  is equal to: 
 

   1iT iF t P t                                                                    (11) 
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Where 1( )iP t  is the probability that the value of burst pressure is in the (i + 1)-th state at time t, calculated 

using formulas (6) or (9). 

Considering that the set 
1iS 
 is absorbing, the PDD of RV iT will be: 

 

     ( )
i iT T if t F t t P t                                                            (12) 

 

Where  i t  is the intensity of transition from the i-th state to the (i + 1)-th state, calculated by formula (3). 

Knowledge of the PDD of RV iT  allows finding its numerical characteristics: 
 

   

     

0

2

0

d

d

i

i

i T

i T i

M T t f t t

D T t f t t M T





 

  





                                                         (13) 

 

Where  iM T  is the mean (average time of the burst pressure being in the subset of states Si);  iD T  is its 

variance. 

Define the average time of burst pressure being in each subset of states. The average time of burst 

pressure being in the first state: 
 

           1 1
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d exp d expM T t t P t t t t t t  
 

                                       (14) 

 

The average time of burst pressure being in the first and second state, i.e., the average time at which the 

burst pressure will move into the third state: 
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                                        (15) 

 

In generalized form, the average time of burst pressure being in a subset of 

states  1,.., , 2,.., 2i iS I I i M   , i.e., the time at which the burst pressure will move into the (i + 1)-th 

state: 
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Then, the time the burst pressure is dwelling in the first (M –1) states, i.e. the average time after which 

the burst pressure will move into the last, conditional failure state, is determined by the formula: 
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                                             (17) 

 

Thus, formula (17) allows assessing the conditional residual life of a single defective cross section of 

pipeline, as well as of a distributed PS with a finite set of defects, i.e., the time from the last inspection to 
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the time of conditional failure ft t , at which the burst pressure  f f opP t P , where opP is the pipeline 

operating pressure. 

 

 

 

3. Example of application of the proposed methodology 

 

Consider the example of two defective cross sections of the pipeline. Calculate the residual life by the "gap" 

of defective sections of the pipeline, which fail in the rupture mode and whose parameters are defined in 

Table I. 

 
Table I. Initial data. Pipeline parameters 

Parameters Symbol Value 

External pipeline diameter, mm D 325.0 

Pipeline wall thickness, mm  wt 9.0 

Specified minimum yield strength of pipe material , MPa SMYS 245.0 

Minimum tensile strength of the pipe material, MPa UTS 410.0 

Design operating pressure, MPa Pop 6.4 

 

 

Consider two defect of the “metal loss” type with parameters as defined in Table II. 

 
Table II. Initial data. Defects parameters 

Parameters Symbol Value, mm 

Parameters of defect #1 

Depth 01d  2.25 

Length 01l  246.00 

Parameters of defect  #2 

Depth 02d  5.62 

Length 02l  70.00 

 

 

To estimate the parameters of the defects growth rates use the method of estimating the defects 

corrosion rate according to their conditional maximal growth, as described in (Enterprise Standard 0-03-22-

2008, 2008).  

According to this method the conditional maximal size of the defects depth and length were calculated, 

with probability γ = 0.95, as well as the growth rates, which turned out to be equal to 0.20da  mm/years 

for defects depth, and 2.34la  mm/year for defects length. 

Assume that the growth rates of the corrosion defects are close to linear. Then the sizes of defect 

parameters at time t are ruled by formulas: 
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                                                                  (18) 

 

Where 
0 0,d l  are the defect depth and length at the time of inline inspection of the pipeline; ,d la a  are the 

radial and longitudinal-axis corrosion rates, respectively. 

Consider the process of residual strength degradation of defective pipeline cross sections using the 

B31Gmod code, according to which (Kiefner and Vieth, 1985) the burst pressure is calculated by formula: 
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Where  
31 modB GM  is the Folias factor: 
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                          (19) 

 

Calculate the ranges of the burst pressure of defects under consideration. Calculate the right boundary 

for the burst pressure of each defect. To do so, calculate the burst pressure at time t = 0, using eqn. (18). For 

each defect under consideration: 
 

   
1 2

0 15.49MPa, 0 13.73MPaf fP P   
 

Where  
1

0fP  is the burst pressure of defect #1 at time t = 0;  
2

0fP is the burst pressure of defect #2 at 

moment of time t = 0. 

Divide the possible range of the burst pressure into M = 10 non-overlapping intervals. The first interval 

(conditional failure state) is equal to   0; 0; 6.40opP   . The length I  of other nine intervals is 

determined by dividing the value of the expression  0f opP P by the number of states (intervals): 
 

1 20.91 , 0.73I MPa I MPa    , 
 

Where 1I is the length of is first nine states of burst pressure of defect #1, is the length of first nine states 

of burst pressure of defect #2. 

The obtained intervals (states) for the considered defects are presented in Table III. 
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Table III. States(intervals) of burst pressures of the defects 

Interval # 
Boundaries of intervals, MPa 

defect #1 defect #2 

10 [0.00; 6.40) [0.00; 6.40) 

9 [6.40; 7.31) [6.40; 7.13) 

8 [7.31; 8.21) [7.13; 7.86) 

7 [8.21; 9.12) [7.86; 8.59) 

6 [9.12; 10.03) [8.59; 9.32) 

5 [10.03; 10.94) [9.32; 10.06) 

4 [10.94; 11.84) [10.06; 10.79) 

3 [11.84; 12.75) [10.79; 11.52) 

2 [12.75; 13.66) [11.52; 12.25) 

1 [13.66; 14.57) [12.25; 12.98) 

 

 

Estimate the probability of failure (of the rupture type) and the residual life of the defects. Using 

formulas (6) find the probability of burst pressure being in each state for three future moments of time 

t = 1,2, and 3 years. The results are given in Table IV. 

In Table IV the probabilities of finding the burst pressure in the last (tenth) failure state are the 

probabilities of defects failing in the rupture mode. 

 
Table IV. Predicted probabilities of defects burst pressures being in each state 

Interval (state) # 

The probability of finding the burst pressure in each state for 

defect #1 defect #2 

t = 1 year t = 2 years t = 3 years t = 1 year t = 2 years t = 3 years 

1 0.74 0.54 0.40 0.59 0.34 0.19 

2 0.22 0.33 0.37 0.31 0.37 0.32 

3 0.03 0.10 0.17 0.08 0.20 0.26 

4 3.45∙10-3 0.02 0.05 0.02 0.07 0.14 

5 2.62∙10-4 3.17∙10-3 0.01 1.92∙10-3 0.02 0.06 

6 1.59∙10-5 3.89∙10-4 2.24∙10-3 2.03∙10-4 4.17∙10-3 0.02 

7 8.08∙10-7 3.97∙10-5 3.45∙10-4 1.79∙10-5 7.42∙10-4 5.33∙10-3 

8 3.51∙10-8 3.47∙10-6 4.56∙10-5 1.35∙10-6 1.14∙10-4 1.26∙10-3 

9 1.33∙10-9 2.66∙10-7 5.27∙10-6 8.95∙10-8 1.54∙10-5 2.58∙10-4 

10 4.65∙10-11 1.92∙10-8 5.96∙10-7 5.55∙10-9 2.06∙10-6 5.64∙10-5 

 

 

To estimate the remaining life of the defects estimate the average time of burst pressure being in each 

subset of states. Consider the following subsets of states: 
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where ijI  is the j-th state of the  burst pressure of i-th defect, i = 1,2, j = 1,..,9. 

Calculate using formula (16) the average time of burst pressures being in these subsets of states. The 

obtained values are given in Table V and in Figure, which is a graphical interpretation of this table. 

The last row of Table V gives the values of the residual life of the pipeline defective cross sections, i.e., 

the time which will elapse  from the time of the last inspection of the pipeline to the time of conditional 

failure of pipeline defect (  f f opP t P ). 

 
Table V. Average time of burst pressures being in each subset of states for 

subsets of states # defect #1 defect #2 

1 3.2 1.8 

2 6.2 3.5 

3 9.2 5.2 

4 12.0 6.7 

5 14.8 8.2 

6 17.5 9.7 

7 20.1 11.1 

8 22.7 12.5 

9 25.2 13.9 

 
Figure . Average time of burst pressures being in each subset of states , 1,..,9iS i   
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Conclusion 

 

The developed model of residual strength degradation for a single defective cross section of pipeline and a 

pipeline system with a finite set of discrete defects in the form of a non-homogeneous Markov pure death 

process, allows estimating the probability of failure/reliability and residual life of a single defect and of a 

distributed pipeline system with multiple defects.  
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Abstract: In this paper the traditional spectral-representation-method for simulating stochastic processes is 

revisited. A modification aimed to control the variability of the simulated samples of the random process is 

proposed. Specifically, in order to avoid that the simulated samples possess similar Fourier spectrum, it is 

proposed to randomize the power spectral density function through a pass band filter with random 

parameters. The filters is selected in such a way the ensemble averaged power spectral density determined 

by the samples will match the original power spectrum, but each individual sample will possess different 

frequency distributions. Comparison between the traditional simulation technique and the new one 

proposed in this paper will be also discussed. Results show that despite the ensemble averaged power 

spectral density is the same, related quantities, such as the distribution of peaks, will be significantly 

different highlighting the needing to consider the variability of frequency distributions when stochastic 

models are calibrated from experimental data. 
 

Keywords: Monte Carlo simulation, variability, spectral-based representation 

 

 

 

1. Introduction 

 

Several problems in science and engineering involve uncertain quantities generally modeled as stochastic 

processes or stochastic fields. The evaluation of the response of structures to seismic or wind actions, the 

reliability of composite materials, the action potential generation in neurons, the drifting of particles 

suspended in fluids, the distribution of nanoparticles, the mutation of populations subjected to genetic drift 

are just few examples of the plethora of problems involving stochastic modeling. The solution of the 

stochastic problem is generally pursued through ad hoc strategies including simulation techniques, 

stochastic calculus and perturbation methods. The Monte Carlo simulation seems to be, up to now, the only 

universal method able to cope with different problems using a systematic approach: i) simulation of 

samples of the stochastic process (field), ii) solution of the deterministic problem for each individual 

sample, iii) statistical evaluation of the results. The simulation of the samples represents the first step and 

requires the definition of a proper stochastic model representing reliably the uncertainty embedded in the 

problem. Gaussian models are certainly the most used models used to represent and simulate stochastic 

processes especially for engineering applications. Accordingly, the Gaussian random process is fully 

defined by the mean and by power spectral density function (or alternatively by the mean and the 

autocorrelation function). Therefore, after defining a suitable model of the power spectral density the 

samples can be simulated through various techniques such as the spectral representation method (SRM), 

Karhunen-Loeve (KL) decomposition, ARMA models. In the framework of simulation of Gaussian 

processes (fields), the spectral representation method based on the superposition of harmonics with random 
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phases (see e.g. Shinozuka and Deodatis, 1988) is certainly one of the most diffused approaches. This 

method has been applied in the last three decades to solve efficiently several problems in the fields of civil, 

mechanical and aeronautical engineering. 

The increasing number of data collected from laboratory experiments or recorded through measuring 

stations and the sustained progress in experimental measurement techniques is compelling the research in 

stochastic modeling to validate (and eventually improve) models and the methodologies traditionally 

adopted by the comparison of observed and simulated random data. In the field of earthquake engineering, 

as an example, the increasing number of strong-motion networks installed worldwide revealed that the 

current methodologies for simulating artificial earthquakes possess the drawback that the simulated time-

histories do not manifest large variability of the seismological parameters observed for natural 

accelerograms. As a consequence, the dispersion of the consequent structural response analysis can be 

underestimated. This issue has been recently addressed by calibrating some of parameters embedded in 

traditional stochastic models by using experimental data. Specifically, Pousse et al. (2006) proposed a 

methodology for simulating accelerograms through a stochastic approach by using the K-Net Japanese 

database. The basic idea of this approach is to define an evolutionary power spectral density function 

possessing random variables determined through empirical attenuation equations. Recently, Rezaeian and 

Der Kiureghian (2010) proposed a method for simulating synthetic ground motion time histories through a 

parameterized stochastic model based on a modulated filtered white-noise process. The parameters of the 

model are random variables calibrated on a set of recorded earthquakes. Cacciola and Zentner (2012) 

introduced the natural variability of ground motion accelerograms in the model through a pertinent 

evolutionary power spectrum with random coefficients. The distribution of the random coefficients has 

been determined by the further matching with a given mean ± standard deviation response spectra evaluated 

using an European earthquake database.  

The above recent contributions addressed the issue of the discrepancy between the experimental and 

simulated samples including random parameter in the model. This approach leads to more realistic 

simulation that in general manifest greater dispersion in peak values and in general in the energy 

distribution. In this paper, based on the same motivations, the traditional spectral-representation-method for 

simulating stochastic processes is revisited. A modification aimed to control the variability of the simulated 

samples of the random process is proposed. Specifically, in order to avoid that the simulated samples 

possess the same Fourier spectrum, it is proposed to filter the power spectral density through a pass band 

filter with random parameters. The filters is selected in such a way the ensemble averaged power spectral 

density will match the original power spectrum, but each individual samples will possess different 

frequency distributions. Comparison between the traditional simulation technique and the new one 

proposed in this paper will be also discussed. 

 

 

 

2. Simulation of random processes via the spectral representation method 

 

In this section the spectral-representation-method (see e.g. Shinozuka and Deodatis, 1988, Deodatis 1996) 

is briefly described. The formulation will be based on stationary and non-stationary random process, but 

can be easily extended to homogeneous or non-homogeneous random field. Consider the one-dimensional 

and uni-variate Gaussian non-stationary stochastic process, ( )f t , having zero mean: 
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 ( ) 0,E f t    (1) 

and the correlation function ( , )R t t   given by the following equation 

 ( , ) ( ) ( ) .R t t E f t f t       (2) 

The process ( )f t  can be defined alternatively by evolutionary power spectral density function defined 

(Priestley, 1965): 

2

2 1
( , ) ( , ) ( ) ( ) d

t T

i

t

S t A t S E f e
T

    



 
  
 
 
  

  (3) 

being ( , )t t T  with T t  a small interval; also ( , )A t  and ( )S   are the (non-separable) modulating 

function and the (stationary) power spectral density function of the stochastic process, ( )f t . It is noted that 

the ensemble average in equation (3) is not commonly used to define the evolutionary spectrum due the 

difficulties in its numerical evaluation related to the Uncertainty Principle and alternative representations of 

joint time-frequency representation are also proposed (see e.g. Spanos and Failla, 2004). Therefore, the 

evolutionary power spectral density is usually defined indirectly from the knowledge of the autocorrelation 

function, that is  

1
( , ) ( , ) d .

2

iS t R t t e   








 
    

 (4) 

The correlation function therefore is related to the power spectral density function through the following 

transformation: 

( , ) ( , ) ( , ) ( ) d .iR t t A t A t S e      




      (5) 

Due to the non-stationarity of the vector process, the autocorrelation function is function of both time t  and 

time lag  , while the power spectral density function is a function of both frequency   and time t . It has 

to be emphasized that under the hypothesis of fully non-stationary processes (non-stationary processes with 

amplitude and frequency modulation), the power spectral density function is a non-separable function of 

frequency   and time t . For the special case of uniformly modulated non-stationary stochastic process (or 

generally known also as quasi-stationary process), the modulating function ( , )A t  is independent of the 

frequency  , that is: 

( , ) ( ).A t A t     (6) 

In this special case, equation (5) reduces to 

( , ) ( ) ( ) ( ) d .iR t t A t A t S e    




       (7) 

Finally in the case in which ( ) 1A t  , i.e. stationary case, the following equations hold 
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( ) ( ) d ;iR S e   




     (8) 

1
( ) ( ) d .

2

iS R e   








     (9) 

Equations (8) and (9) are generally known as the Wiener-Khintchin relationships. For the stationary case 

the power spectral density function can be also determined directly from experimental data 

2
/2

/2

1
( ) lim ( ) d

2

T

i

T
T

S E f e
T

  







 
 
 
 
 . 

  (10) 

Once defined the power spectral density function either through experimental or physical/theoretical 

approaches the simulation of the sample of the non-stationary random process through the spectral 

representation method is performed using the following equation  

 
1

( ) 2 2 ( , ) cos
N

j j j

j

f t S t t   


   , 
  (11) 

where  

1,2,...,j j j N   
 

  (12) 

with upper bound (circular) frequency N N    generally known also as the cut-off frequency beyond 

which the power spectral density function ( , )S t  is considered negligible. Also j ( 1,2,..., )j N  are 

independent random variable distributed over the range  0,2 . The simulated process is asymptotically 

Gaussian as N  tend to infinity due to the Central Limit Theorem. Also it can be shown (Shinozuka and 

Deodatis 1988, Deodatis 1996) that the ensemble averaged  ( )E f t  and  ( ) ( )E f t f t   tend to the 

corresponding target. Finally, samples of stationary processes can be simulated through equation (11) by 

substituting ( , )S t  with ( )S  . 
 

 

 

3. Enhancing the variability of the spectral representation method  

 

It has emphasized that the simulation of random samples through the spectral representation method defined 

in equation (11) is based on the definition of the power spectral density function ( , )S t . Consider the 

power spectrum determined through the ensemble averages of experimental data (see e.g. Shillinger and 

Papadopoulos, 2011). Depending from the degree of randomness, the experimental data might exhibit 

strongly different distributions of the Fourier spectrum. In such a case, to better represent the underlying 

uncertainty , the simulated samples are expected not only converge to the target mean value and correlation 

function as equation (11) guarantees, but also it is expected that they manifest the variability of the 

spectrum around is expected value. In other words it is expected that the simulated data also capture the 

variability of the Fourier distribution of the experimental data. To enhance the variability of the simulated 
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random samples in this paper it is proposed to introduce a random filter acting in series with the expected 

value of the power spectrum, that is  

( , , ) ( , ) ( , )S t H S t    , 
 (13) 

where   is the vector collecting the random parameter of the filter. ( , )H   is real positive function that 

satisfies the following equation 

( , , ) ( )d ( , ) ( , ) ( )d ( , )A A

A A

S t p H S t p S t          
.  

 (14) 

Or alternatively 

( , ) ( )d 1A

A

H p      
   

 (15) 

In equations (14) and (15) ( )Ap  is the joint probability density function of random parameter of the filter. 

It is noted the proposed definition of the resultant random power spectrum is similar to the physical 

stochastic model recently defined by Li et al. (2012), but with different meaning. Embedding the proposed 

random spectrum in the traditional spectral representation method (SRM) the following simulation formula 

is herein derived 

 
1

( ) 2 2 ( , ) ( , ) cos
N

H j j j j

j

f t H S t t    


   
  

  (16) 

The samples generated by equation (16) are Gaussian as N tends to infinity due to the Central Limit 

Theorem and converge to the target mean  ( ) 0,HE f t   and correlation function 

 ( , ) ( ) ( )H HR t t E f t f t     as the traditional SRM.  

 

Proof : the proof of convergence is based on the corresponding one proposed by Shinozuka and Deodatis 

(1988) and Deodatis (1996) to prove the convergence of equation (11). Due to the statistical independence 

of the random phase j ( 1,2,...,j N ) and assuming   independent from j  , the expected value 

 ( )HE f t  using equation (16) becomes 

   
2 2fold

1 10 0

( ) ... 2 2 ( , ) ( , ) cos ( ) ( )d d ,
i

NNN

H j j j j A i i

j iA

E f t H S t t p p

 

      




 

 
    

 
        (17) 

Where ( ) ( 1/ 2 , 0 2 ; 0, )
i i ip otherwise         is the probability density function of i . 

Rearranging terms in equation (17) 
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2 2fold
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   (18) 

The autocorrelation function of the simulated process 
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After simple algebra  
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   (20) 

Taking into account equation (3), the condition (15) , the limit of equation (20) as 0   and N  will 

lead to equation (5).  

Interestingly, in principle any real positive function satisfying equation (15) can be used for controlling 

the variability of the simulated process.  

 

 

 

4. Butterworth filter  

 

Experimental data of random processes (e.g. earthquake, wind or ocean waves) manifest quite different 

(joint) frequency distributions, therefore ( , )H    can be determined considering the distribution of the 

energy around the expected vale for each frequency. To follow this approach is necessary a large number of 

data that make this approach practically unfeasible. An alternative strategy is to consider synthetic 

parameters defining the variability of the energy distribution such as the bandwidths and central frequency. 

To this aim the following pass-band Butterworth filter will be adopted: 
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1 2 2

2
1

1

1
( , , )

2 1

B j
H   

 





  
   
   

   
 (21) 

Where 1,2,...,j n  is a positive integer number defining the order of the filter, 1  and 2  are the random 

filter parameters defining respectively the bandwidth and the central frequency. Figure 1a shows for 

selected 1 20rad / s   and 2 40rad / s   the influence of the order of the filter j  while Figure 1b shows 

the influence of the bandwidth parameter on the shape of the filter. 

 

 

 

 

 

 

 

 

 
Figure 1. Butterworth filter for (a) different orders and (b) bandwidth ( 2 40rad / s; 2j   ) 

 

The distribution of the filter parameters 1  and 2  can be defined through experimental data measuring the 

central frequency and bandwidth of the squared Fourier spectrum of the recorded samples. In the case in 

which the experimental data are not enough to define a proper distribution of the data 1  and 2  will be 

assumed as statistical independent and uniformly distributed. Therefore, 

1 21 2

1 1 2 2

1 1
( ) ( ) ( )A A A

u l u l

p p p 
   

 
 


,  

 (22) 

where ui and li  (i = 1,2) represents the upper and lower bounds of the random variables 1  and 2 . The 

simulation formula will be then modified as follows 

 1 2

1

( ) 2 2 ( ) ( , , ) ( , ) cos
N

H B j j j j

j

f t C H S t t       


  
, 

  (23) 

where the function ( )C  is introduced to satisfy equation (15) , i.e. 

1 2

1 2

1

1 2 1 2

1 1 2 2

1 1
( ) ( , , )d d

u u

l l

B

u l u l

C H

 

 

     
   



 
  
   

     
 (24) 

It is noted that being ( )C  function of the circular frequency   the pass-band filter will be distorted, 

however being ( )C  a smooth function the main features of the filters will be preserved.  
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5. Numerical results 

 

In this section stationary and non-stationary samples are generated following the traditional spectral 

representation method and the proposed one enhancing the variability. Consider the stationary case first. It 

is assumed that the process is zero-mean, Gaussian with power spectral density function defined by the 

Clough-Penzien model, that is 

2
4

2

0 2 2
2 2 2 2

2 2

1 4

( )

1 4 1 4

g

g
f

g f

g g f f

S S

 
 



   
 

   

                 


          
                                   

 (25)  

with parameters  

20 rad / s; 0.6; 0.1 ;g g f g f g            (26) 

and 

2

0

1
2 2

2
g g

g

S


 



 

  
 

;            2100 cm / s .     (27) 

Samples of the stationary processes have been simulated using equation (11) by substituting ( , )S t  with 

( )S   and depicted in Figure 2a. The power spectral density are then randomized using the Butterworth 

pass-band filter defined in equation (21), in which the random variables 1  and 2  are assumed statistical 

independent and uniformly distributed. Pertinent selected parameters of the distributions are  

1 1 2 110 rad / s; 80 rad / s; 18 rad / s; 40 rad / s.l u l u          (28) 

Samples of the random processes with enhanced variability are then simulated using equation (23). It is 

noted that each individual sample requires N+2 realizations of independent uniformly distributed random 

variables (N phase angles j and 2 filter parameter 1  and 2 ). Figure 2b shows three simulated 

trajectories. The effect of the Butterworth filter in the simulation of the process is more appreciated in 

Figures 3 where the squared modulus of the Fourier transform of the simulated samples is depicted. It is 

noted that the samples simulated from the traditional spectral-representation method exhibit Fourier spectra 

very similar to each other, while the proposed modification lead to spectra possessing clearly visible 

different distributions.  

Comparison with the target power spectral density is shown in Figure 4. It is noted that the ensemble 

average power spectra determined using 500 samples oscillates around the target spectrum.  
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Figure 2. Simulated trajectories of the zero-mean Gaussian, stationary process through a) spectral representation method b) 

proposed with enhanced variability. 

 

 

 

 
 
 

Figure 3. Squared Fourier transform of the simulated samples a) spectral representation method b) proposed with enhanced 

variability. 
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Figure 4. Comparison between the target power spectral density function (solid line), the ensemble averaged determined by using 

the spectral representation method (dotted line) and the SRM with enhanced variability (dash-dotted line). 

 

 

The non stationary case is then investigated. The evolutionary power spectral density defined in equation 

(29) is selected for this purpose 
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 (29) 

pertinent parameters used in this numerical example include: 

 ( ) 20 7 ; ( ) 0.6 0.2 ; ( ) 0.1 ( ); ( ) ( );
30 30

g g f g f g

t t
t t t t t t             (30) 

and 

 1 2( ) expA t a t a t  ;    1 1

1 20.68s ; 1/ 4sa a   .    (31) 

Furthermore 
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;    2100cm / s .     (32) 

Samples of the non-stationary processes simulated using equations (11) and (23) are depicted in Figures 5 

and their related squared Fourier transform in Figure 6. Also in this case it can be appreciated as the random 

filter modifies the distribution of each sample. 
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Figure 5. Simulated trajectories of the zero-mean Gaussian, non-stationary process through a) spectral representation method 

b) proposed with enhanced variability. 

 

 

 
 
Figure 6. Squared Fourier transform of the simulated samples a) spectral representation method b) proposed with enhanced 

variability. 
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are compared respectively with the ensemble average of the squared samples 2 2[ ( ) ], [ ( ) ]HE f t E f t  and with 

ensemble average of the squared Fourier transform 
22

[ ( ) ], [ ( ) ]HE F E F  . The comparison shows the 

excellent agreement between the simulated and the target ones 

 

 

 

 

 
 
Figure 7. Comparison between the marginal distribution of the evolutionary power spectral density function a) mean instantaneous 

energy  and b) energy density spectrum;  target (solid line), the ensemble averaged determined by using the spectral representation 

method (dotted line) and SRM with enhanced variability (dash-dotted line). 

 

 

The influence of the enhanced spectrum variability is then investigated through the Monte Carlo study of 

the distribution of peaks value. Figure 8 shows the comparison between the mean value of the peak of the 

stationary (Figure 8a) and non-stationary process (Figure 8b). Interestingly both the simulation tends to 

very similar value and the rate of convergence is comparable. Figures 9 shows the variance of the 

distribution of maxima. It is noted that the SRM with enhanced variability leads to larger values of the 

variance. Finally the distributions of maxima along its cumulative distribution are depicted in Figures 10 

and 11. It is noted that in both stationary and non stationary case the SRM with enhanced variability leads 

to wider distribution and as a consequence sensitive different values of the tails of the distribution.  
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Figure 8. Convergence of the mean value of the peak versus the number of samples n for the a) stationary and  b) non-stationary 

process: traditional SRM (solid line), SRM with enhanced variability (dash-dotted line). 

 

 

 

 

 

 

 
 

Figure 9. Convergence of the variance of the peak value versus the number of samples n for the a) stationary and  b) non-stationary 

process: traditional SRM (solid line), SRM with enhanced variability (dash-dotted line). 
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Figure 10. Comparison between the distribution of peaks for the a) stationary and  b) non-stationary process: traditional SRM (solid 

line), SRM with enhanced variability (dash-dotted line). 

 

 

 

 

 

 
 

 

 

Figure 11. Comparison between the cumulative distribution of peaks for the a) stationary and  b) non-stationary process: traditional 

SRM (solid line), SRM with enhanced variability (dash-dotted line). 
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6. Concluding remarks  

 

In this paper the traditional spectral-representation-method for simulating stochastic processes is revisited. 

A modification aimed to control the variability of the simulated samples of the random process is proposed. 

Specifically a Butterworth pass-band filter with random parameters has been included in the simulation 

formula to generate samples with different Fourier spectra. It has been shown that the use of this filter do 

not alter the convergence of the traditional spectral representation method, offering a possible simulation 

strategy whereas it is required a variability larger than those currently offered by the traditional simulation 

technique. Comparison between the traditional spectral representation method and the enhanced variability 

introduced in this paper showed how the randomized power spectral density influence the ensemble 

simulated samples. Remarkably the peak distribution is significantly sensible to the spectrum variability and 

should be carefully considered when reliability analyses are performed. It is also expected in general that 

the spectrum variability influence the features of the process non-linearly related to the power spectrum. 
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Abstract: During the revitalization of masonry structures the post-tensioning of masonry is used frequently 

for improving the structural mechanical properties. Masonry is heterogeneous material with varied material 

properties, in older buildings affected with different type of damage and that is why in engineering practice 

the intensity of pre-stressing is often designed according to engineering judgement of the designer. 

Mathematical modelling of post-tensioned masonry structures is very valuable. Authors are interested 

particularly in so-called micromodels and macromodels of masonry structures. Structural parts are analyzed 

using ANsys computer program. Mathematical model has been verified with testing. At VSB – Technical 

University of Ostrava unique equipment was designed for experimental testing of tri-axial state of stress 

and strain of pre-stressed masonry corner. Plan dimensions of the tested corner are 900 × 900 mm, the 

thickness of the wall is 450 mm and the height is 900 mm. Experiments started in 2011 with masonry 

corner made of clay bricks and general purpose mortar. Ongoing experiments and appropriate mathematical 

modelling should contribute to higher reliability of engineering computations of masonry structures. 
 

Keywords: micromodel; macromodel; FEM, masonry structures, post-tensioning  

 

 

 

1. Testing the Pre-stressed Masonry Corner 

 

1.1.  MOTIVATION  

 

Masonry structures are often historical buildings exposed at present to higher action than they were 

designed to, as a result of changing the use of the building or e.g. undermining and related change in soil-

structure interaction (Cajka, Manasek, 2005). In engineering practice post-tensioning of masonry structure 

is used frequently because it is an effective method to enhance the static action and improve the rigidity of 

the building. Other advantages are that the existing cracks could be eliminated and the outward of the 

building does not change. Masonry is heterogeneous material with varied material properties, in older 

buildings affected with different type of damage and that is why the intensity of pre-stressing is often 

designed according to engineering judgement of the designer. From experience of practical design and also 

from available literature (Bazant, Klusacek, 2004) could be concluded that during the post-tensioning the 

failure occurs most often in the zone of pre-stressing force anchoring.  Authors aim is to contribute to better 

understanding of post-tensioned masonry and therefore it was decided to perform the testing of tri-axial 

stress/strain conditions in post-tensioned masonry corner. 
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1.2.  DESCRIPTION  

 

At VSB-Technical University of Ostrava unique equipment for was designed for testing of tri-axial 

stress/strain conditions, Fig. 1. Plan dimensions of the tested corner are 900 × 900 mm, the thickness of the 

wall is 450 mm and the height is 900 mm. It is possible to accomplish number of tests for different input 

parameters, e.g. using various materials (brick, mortar), laying out and number of pre-stressing bars, value 

of pre-stressing force, size and shape of anchoring plate, value of vertical load, number of brick layers or 

the thickness of bed joint, brick bond and the supporting of the masonry corner (simple, with slide joint and 

others). Deformation in network of points during the pre-stressing is measured. Possible tension-metrical 

measurements have not been fully accomplished yet.  

 

 

P P

P

P

p 

direction Adi
re

ct
io

n 
B

 
 

Figure 1. Testing equipment  

 

 Experiments started in 2011 with masonry corner made of clay bricks and general purpose mortar. 

Bricks were obtained from demolished building and limecement mortar was prepared from designed dry 

mixture. Pre-stressing was installed with two pre-stressing steel bars and square anchoring plates with 

dimensions 300 mm, 200 mm and 100 mm, the thickness is 10 mm. The strength of bricks and the mortar 

was checked in Faculty laboratory according to valid codes. Normalised mean strength of bricks was 

fb = 16.08 MPa and mean strength of mortar fm = 9.8 MPa. Characteristic strength of tested masonry is 

settled in (1) according to (EN 1996-1-1, 2005), where K is constant for different groups of bricks.  

 

 
0.7 0.3 0.7 0.3. . 0.55 16.08 9.8 7.6k b mf K f f    

 
MPa    (1) 

 

 Masonry corner was exposed to vertical load 0.125 MPa and 0.250 MPa corresponding to vertical load 

in common building and arbitrary pre-stressing force 50 kN and 100 kN. Pre-stressing was installed in one 

direction and released, than in second direction and released and in the end in both directions. Only short-

time deformations were measured. Primary pre-stressing force was settled according to recommendation 

that the pre-stressing force should cause the stress value of 10% vertical masonry strength.  
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1.3. TEST RESULTS  

 

The deformations are measured in regular network of measuring points in two directions, network in the 

direction A is in Fig. 2.   

 

  
 

Figure 2. Network of deformation measuring points in the direction A  

 

In the charts, Fig. 3 there are measured deformations in the direction A, section A and B (according to 

Fig. 2) for vertical load 0.125 MPa and pre-stressing force 100 kN in A direction anchored with square plate 

0.3 × 0.3 m. Horizontal line indicates the location of pre-stressing force. Deformations in particular vertical 

section are unexpectedly higher in measuring points farther from the pre-stressing force. However the 

course of measured deformations in two symmetrical sections is similar. The same course of deformations 

is also in the Fig. 4 where there are deformations in the direction A for different dimensions of anchoring 

plates. Values in section A and section B are averaged. When anchoring the pre-stressing force with plate 

0.150 × 0.150 m the stress is probably transferred more locally and the course of deformations is different. 

Possible inaccuracies could be caused also with uneven mortar joint under the anchoring plate. Analogous 

measurements were done also for pre-stressing in B direction and pre-stressing in both directions and the 

course of the deformations is similar. The deformations could grasp only the surface stress/strain 
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conditions. Critical is distribution of pre-stressing in the whole cross-section. Tension-metrical 

measurements are planned in the newly bricked masonry corner.    

 

 

Figure 3. Deformations for pre-stressing 100 kN in the direction A, vertical load 0.125 MPa, anchoring plates 0.3 × 0.3 m   

 

 

 

Figure 4. Average deformations for pre-stressing 100 kN in the direction A, vertical load 0.125 MPa 

 

 

 

2. Masonry numerical modeling 

 

2.1. BASIC WAYS OF MODELING  

  

Complicated numerical modeling of masonry as anisotropic and heterogeneous material is connected with 

the main following factors:  

 Different material properties of basic components (brick/mortar) 
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 Different dimensions of basic components (dimension of brick/dimension of mortar joint) 

 Narrow dimension of mortar joint 

 Geometrical arrangement of bricks 

 Different structural response for different load action direction  

 Interaction between components 

 Quality of manufacturing 

 Environmental influence  

 

Investigation into masonry structures and into its mathematical modeling has brought number of 

different approaches, (Materna, Brozovsky, 2007). According to (Lourenco, 1996) there are three basic 

strategies, Fig. 5:  

 Detailed micromodel – bricks and mortar are assumed as two different materials, with their real 

dimensions and real geometrical arrangement in the structure.  

 Simplified micromodel – brick and surrounding mortar joints is assumed as one block. Material 

properties of bricks and mortar have to be simplified. 

 Macromodel – masonry is assumed as homogenous material. It is necessary to determine the most 

fitting anisotropic material properties.   

 

2.2.  DETERMINATION OF HETEROGENEOUS MATERIAL PROPERTIES 

  

Detailed micromodel, with its modeling of particular masonry components and geometrical arrangement, 

could be precise and accurate, but also very laboring and demanding the powerful computer. Modeling the 

whole structure in this way is inconceivable. Micromodel is useful for modeling of structural details or local 

action. Micromodel could be used for determination of heterogeneous material characteristics for 

macromodel, (Cajka, Kalocová, 2007). Part of the masonry wall micromodel is exposed to deformation load 

in different direction, Fig. 6, and from the result structural response Fx modulus of elasticity and shear 

modulus are determined (2). Input parameters for illustrative example and settled material heterogeneous 

parameters are listed in the Table 1.  
 

mortarbrick
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interfaceblock
homogeneous

material

(a) (b) (c)

 
Figure 5. Basic way of masonry modeling  
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Table I. Input and output parameters for illustrative example 

 
Material 

Modulus  

of Elasticity [GPa] 

Shear modulus 

 [GPa] 

Poissons’ ratio 

 [-] 

Input 
Bricks 290/140/65 

 
15.00  0.15 

Mortar 10MPa 10.00  0.2 

Output 

Masonry x direction 13.96 3.65 0.202 

Masonry y direction 14.00 5.56 0.198 

Masonry z direction 13.84 4.30 0.197 

  

 

 
 

Figure 6. Masonry wall micromodel exposed to deformation load in x direction 

 

2.3.  MODELING OF TESTED MASONRY CORNER 

  

Before the testing started the micromodel and macromodel of post tensioned masonry corner was prepared 

in ANsys computer program, Fig. 7. Elements Solid 45 are used for bricks, mortar, anchoring plates and 

also in macromodel. Pre-stressing is incorporated with the element Link8.  

Micromodel and macromodel of masonry corner is made assuming the same conditions as in 

experiment, i.e. bricks 209/140/65 and lime cement mortar 10 MPa, vertical load 0.250 MPa and pre-

stressing force 100 kN. In the Fig. 8 there are deformations in the section in location of upper pre-stressing 

bar. In macromodel the deformations (and consequently stress) are spread to larger area. In micromodel the 

deformation is concentrated in anchoring area and especially bricks and mortar adjacent to anchoring plate 

are affected. Deformation (and consequently stress) in micromodel corresponds with practical experiences 

with masonry post-tensioning. In case of masonry resistance is exhausted usually only bricks and mortar in 

anchoring area are affected while the farther components are not concerned.   

 Currently the mathematical model of masonry corner is improved so that it better fits the real structure. 

Presently it is possible to state that the settled deformations correspond to measured values approximately.  
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Figure 7. Macromodel and micromodel of post-tensioned masonry corner   

 

 

Together with improving the mathematical model walling of new masonry corner is prepared again with 

clay bricks and general purpose mortar with lower strength.  

 

 

  
 Figure 8. Macromodel and micromodel – deformation in section in place of upper pre-stressing bar   

 

 

 

3. Conclusion  

 

In the paper authors introduce the experimental testing of masonry corner exposed to tri-axial load and 

partial measured deformations. Masonry as heterogeneous and anisotropic material requires specific way of 

mathematical FEM modeling. Micromodel and macromodel of tested masonry corner is introduced. 

Ongoing experiments and following FEM modeling should contribute to better understanding of masonry 

strength characteristics and thus improve the structural reliability of masonry in case of post-tensioning.  
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Abstract: In the calculation of structural reliability often variation of material characteristics and action 

effect is considered. The accuracy of reliability assessment depends on how precisely it is possible to grasp 

statistical concepts of material characteristics and action effect. In this paper author would like to discuss 

the fact that concerning foundation structures the highest variation in reliability assessment is not caused 

with material characteristics or load effect but in the model of soil-structure interaction itself. Above 

mentioned problem is demonstrated in the example of strip foundation / foundation slab. 
 

Keywords: foundation structures, interaction models, FEM, elastic half space 

 

 

 

1. Introduction 

 

In buildings, the foundation structures are required to transfer all load components from the upper 

construction onto subsoil. Typically, attention is paid to the transfer of the vertical load components which 

is applied in the direction of Earth’s attraction. The interaction between various types of environment has 

been discussed for several years. In order to define the state of stress more precisely, in particular that of 

foundation structures, it is essential to define, on one hand, how rigidity of the foundation structure 

influences the settling process and, on the other hand, how rigidity or elasticity of subsoil influences 

internal forces within constructions. First works about this topic include those written by Gorbunov-

Posadov, Winkler and Pasternak (Cajka, 2008). 

Application of numerical methods in practice started upon launch of computers. A general variational 

method for analysis of building constructions – Finite Element Method (FEM) – has been developed in 

detail by now. Several scientists were dealing with a surface model, the best known being a multi-parameter 

model of subsoil processed by (Kolář and Němec, 1989). Authors dealing with the state of stress in subsoil 

caused by vertical and horizontal forces include (Poulos and Davis, 1974). The other theory of soil–

structure interaction and subsoil–foundation contact tasks were investigated (Abdel Rahman and Edil, 1991; 

Qian and Zhang, 1993; Reitinger and Svejda, 1998; Provenzano, 2003; Katzenbach, Schmitt and Turek, 

2005; Cajka, 2003, 2005; Cajka and Manasek, 2005; Souli and Shahrour, 2012).  

 

 

 

2. Foundation slab with stiff walls 

 

Pregnancy of various models and stiffness of foundation in the foundation–subsoil interaction system was 

solved by the authors software in the example below taken from (Reitinger and Svejda, 1998). The software 
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MKPINTER (Cajka, 2010) is based on FEM with thick slab theory (Mindlin, 1951), numerical integration 

(Davis and Rabinowitz, 1956) and nonlinear elastic half-space modified by means of the structural strength 

of the soil (Cajka, 2003, 2005, 2008). 

Let us assume a foundation slab on subsoil. The slab is reinforced longitudinally with stiff walls. The 

subsoil is modelled by means of 3D FEM as a linearly elastic half-space. But non-linearity is not taken into 

account and the structural strength is not modified.  

Dimensions and loading data are evident from Fig. 1 which was taken from (Reitinger and Svejda, 

1998). But there is a correction in the Poisson’s ratio for concrete and clayey subsoil which were evidently 

confused with each other. Results of the published solution are in Fig. 2. 

The published example (Reitinger and Svejda, 1998) deals, for purposes of comparison, with an 

interaction task where a slab is located on a half-space and on Winkler’s subsoil. The modulus of subsoil, 

k = 1250 kN·m
-3

, was chosen in such a way so that subsidence in the defined A point could be same for the 

both models. 

 
Figure 1. Foundation slab with longitudinal walls 
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Figure 2. Internal forces in the transversal direction obtained by solution of a slab in a subsoil model with 3D elements and in a 

Winkler’s subsoil model according to 1 
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Figure 3. Deformation of the slab and settlement of subsoil vs. structural strength of the soil in subsoil of a contact element – 

without iterations 
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Figure 4. Contact stress vs. structural strength of the soil in subsoil and depth of the deformation zone if a contact element is used – 

without iterations 
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Figure 5. Contact stress vs. structural strength of the soil in subsoil and depth of the deformation zone if a contact element is used – 

9th iteration 
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The same example can be used for an iteration task consisting in a slab on an elastic half-space which is 

modified by means of the structural strength of the soil pursuant to ČSN 73 1001, CSN EN 1997-1 and 

CSN EN 1992-1-1. 

A typical representative of the mentioned parameters of the subsoil is clayey soil, F4 class, with solid 

consistence. The reference value of the modulus of plasticity is Edef = 4 – 6 MPa. Poisson’s ratio is  = 0.35, 

volumetric weight is  = 18,5 kN·m
-3

 and the coefficient of structural strength of the soil in subsoil is 

m = 0.2. The calculation was also carried out for other coefficients − m = 0.1; 0.3; 0.4 and 0.5 − which 

model various rigidities of the subsoil. The coefficient which approaches zero for m = 0.01 and 0.001 model 

the subsoil of a standard linear elastic half-space. 

If the deformation and state of stress in soil environment are modelled by means of 3D finite elements 

and if a sufficiently big domain is chosen, the results should be same as those calculated from explicitly 

derived relations.  

The solution to a 3D task of a linear elastic half-space is among few tasks which have been derived 

from general equations of the theory of elasticity and fulfil all conditions applicable to solutions in a closed 

shape.  

Thus, the Finite Element Methods as well as the approximate numerical method should have, or at least 

should converge to, same results for the task if the 3D element should be regarded as a correctly derived 

element. If the domain of the 3D subsoil (or 3D subsoil, in case of a planar task) is made smaller the results 

are different for 3D FEM elements because the domain and, in particular, the depth of the domain are 

chosen by estimates. This situation indicates well presence of non-compressible subsoil (such as rock) 

which corresponds to the specified zero deformations on the lower edge of the area. In other cases, the 

scope of the domain should be determined by calculations. 
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Figure 6. Transversal moment vs. structural strength of the soil in subsoil and depth of the deformation zone if a contact element is 

used  
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Results of the FEM interaction method are clear from Fig. 3 to Fig. 6 where development of the subsoil 

settlement and deflection of the slab is plotted for calculations without iteration (0
th
 iteration step). The 

figures also show development of the contact stress for the initial (0
th 

iteration) iteration and for the last 

iteration step (9
th
 iteration) and development of bending moment in a slab for various rigidities of the 

subsoil. The used contact element (Cajka, 2003, 2005, 2008) satisfies non-linear deformation properties of 

subsoil pursuant to ČSN 73 1001 and European Standards CSN EN 1997-1 and CSN EN 1992-1-1. 

Solution results achieved with the structural strength coefficient being close to zero (m = 0.01 through 

m = 0.001) correspond to a big deformation zone. The solution with non-real settlement and moments 

converges towards results of iteration of a slab on a linear elastic half-space (without influence of 

structural strength of the soil) and, in turn, towards the solution achieved if FEM 3D elements are used in 

line with (Reitinger and Svejda, 1998).  

 

 

 

3. Convergence towards the exact solution 

 

As it follows from general formulation of FEM, theory of integral computations and accuracy of numerical 

integrations (Davis and Rabinowitz, 1956), two key factors affect the convergences towards the 

theoretically exact solution of the stress and deformation in the foundation- subsoil model (Cajka, 2008): 

 division of the construction into finite elements, the applied slab theory and the degree of the 

approximation polynomial of the element (the convergence of the slab), 

 approximation accuracy of development of the subsoil settlement and stress which is influenced by the 

number of Gaussian integration points. The number of the Gaussian integration points determines the 

degree of a polynomial which approximates development of stress in a linearly elastic half-space (the 

convergence of subsoil). 

The convergence of a slab element towards the exact solution has been verified for a freely supported 

slab without any subsoil. An even continuous load and a single load in the centre of the slab were 

considered. It follows from the comparison of the results with the exact solution from the literature that the 

solution converges in accordance with the FEM theory. 

Accuracy of the numerical integration in calculations of the stress and settlement of the half-space was 

tested in reference examples which were confronted to data available in the literature. Comparison 

calculations indicate that an acceptable technical accuracy is reached when 6 integration points are used. 

Because development of the contact stress influences deformation of both the slab and subsoil, it is 

clear that the division of the construction into finite elements affects directly description of the contact 

stress development in the subsoil. The more finite elements are used, the more accurate is the contact stress. 

In each iteration step, it is possible to check vertical balance as a difference in the sum of the load and 

the resulting force (the integral) of the contact stress. The more iteration steps are used, the lesser is the 

difference. 

The fineness of the FEM network division influences also calculations of the stress and settlement of 

the half-space because the network divides the domain of the loaded half-space which is being integrated 

into partial sub-domains where the individual increases in stress caused by the elements should be added 

up. The more elements are available, the less integration points are needed for the same accuracy (Cajka, 

2008). From the mathematical point of view, this finding results also from the characteristics of the 

composite integration formulae in integration of partial intervals and FEM convergence. New possibilities 
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of FEM solution and decreasing the time for solvers and integration procedures offer the methods of 

parallel programming (Konečný, Brožovský and Křivý, 2010). 
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Abstract: In this paper a simplified reliability model is developed on the basis of knowledge, from field 

data, of the dominating failure modes and mechanisms of high voltage transformer. Field data failures 

distribution indicates a dominance of failure modes pertaining to winding-tank oil insulation and terminal 

connections. 

The transformer system can be regarded as a combination of three fundamental parts: winding inter-turn 

insulation, tank oil insulation and the terminals, which are respectively physical and electrical in nature. On 

this basis, the transformer system reliability block diagram is modelled in a series configuration comprising 

the above mentioned parts. The individual reliability functions developed for each part will yield together to 

the overall transformer system reliability. 
 

Keywords: Transformer, failure rate, mechanism, reliability.  

 

 

 

1. Introduction 

 

Power transformers are critical elements in power systems. The reliability of power grids depends on the 

condition of high-voltage transformers that are expensive and time-consuming to be repaired or replaced by 

new one. Transformer failures can cause costly disruptions and sometimes involve oil spills, fires, and  

equipment damage. Therefore, there is a great need to maximize the availability and safety of this machine 

and hence its reliability. 

Reliability is a very important performance parameter of transformer but its modeling remains a very 

complex problem. However, in the light of field data, dominant failure modes of some transformer system 

parts can be used to develop a simple but credible reliability model.  

 

 

 

2. Transformer Failure Mechanisms 

 

Better understanding of transformer failure mechanisms and risk factors has helped development efforts to 

improve condition assessment and life extension. The causes of transformer failure can generally be 

classified accordingto the failure distribution statistics given in (Hattangadi, 1999) as follows: 
 

− Failure of inter-turns insulation in the main windings, 

− Oil insulation failure between the winding and the tank, 

− Defect in internal terminals (Bushing). 
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2.1.  WINDINGS INSULATION FAILURE MECHANISM 

 

The winding insulation is always subjected to the combined thermal, electrical, mechanical and 

environmental stresses during the transformer operation.  
 

− Thermal stress. After a certain time, the insulation will start to lose its characteristic due to the normal 

thermal aging process. But, the occurrence of premature failures, which are predominant, are a direct 

result of an over-current caused generally by an overload and over-voltage. 

− Electrical stresses. Most of electrical failures are caused by a combination of over-voltage spikes and 

normal deterioration. This fast over-voltage can be caused by switching, lightning, and surges to 

propagate through the machine which leads to a fast breakdown. 

− Electromechanical stresses and contamination. The level of electromechanical factors (vibrations, 

expansion.) and environmental contamination are other stresses that can have effect on the dielectric 

strength of the winding wire insulation.  

The failure mechanisms sequence of the winding insulation is summarized in Fig. 1. 

 

 

Figure 1. Failure mechanism sequence of the electrical windings insulation. 

 

2.2.  OIL INSULATION FAILURE MECHANISM 

 

Oil in power transformers serves as a cooling medium as well as an insulation. Like the winding insulation, 

the oil insulation is always subjected to the thermal, electrical and environmental stresses. The factors that 

has greatly influence on the aging process of oil insulation are: moisture, acid formation and contaminant, 

over-temperature, and the addition of the air (oxygen) (Aquilino, 1983) and (Minhas, 1999) as shown in 

Fig. 2. The transformer oil is oxidized under the influence of excessive oxygen and temperature, 

particularly in the presence of small metallic particles which act as catalysts, resulting in an increase in acid 

amount.The failure mechanisms sequence of oil is illustrated in the Fig. 2. 
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2.3.  TERMINALS FAILURE MECHANISM 

 

Degradation of connector quality occurs at the separate or permanent interfaces due to loss in contact area 

by several mechanisms including fretting corrosion, wear and loss in contact force. 

 

Figure 2. Failure mechanisms sequence of the oil insulation. 

 

The field data experience indicates that common problem of terminal connection follows failure 

mechanisms with cumulative effects such fretting corrosion (Bloch and Geitner, 1999) and (Braunovic, 

Konchits, and Myshkin 2006). In this latter, motion-induced corrosion, driving forces include vibrations, 

mechanical and thermal shock, and thermal expansion mismatch due to temperature cycling and the number 

of fretting cycles. Loss of asperity contact surface, due to the generated corrosion film or contamination, 

can result in contact interface (constriction) resistance increases that are sufficient to lead to connector 

failures. This gradual degradation is accelerated under the effects of environmental influences such as 

humidity, temperature, bias voltage leading after time duration to much consequential damages such as, 

overheat and possible fracture and arcing and contamination as illustrated in Fig. 3. 

 

 

 

3. Power Transformer Reliability Model 

 

The instantaneous failure rate experienced by power transformers is not constant but increases with time. 

The model is dictated by three failure modes: winding insulation, oil insulation and terminals. 

The transformer system can be considered as combined electrical and mechanical parts where it may be 

assumed that the transformer fails when any of its parts fails such that its reliability bloc-diagram is 

modeled in series configuration, as shown in Fig. 4, which can be expressed mathematically as follows: 
 

RT = Rt . Rw . Ro .     (1) 
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Figure 3. Failure mechanism of terminal connection. 

 

3.1.  WINDING INSULATION RELIABILITY MODEL 

 

Since the insulation element can be represented by capacitance of high dielectric strength in parallel with a 

high value resistance its reliability is modeled in exponential form where the failure rate is constant. This 

failure rate is expressed as base failure rate times series of multiplicative stress factors related failure 

mechanisms discussed in section 2 with the following general form (Standard, MIL-HDBK-217 F): 
 

p = b . Q . E . T . S ,     (2) 
 

where b = base failure rate, Q = quality adjustment factor, E = environment adjustment factor, 

T = temperature adjustment factor, S = electrical stress adjustment factor. Assuming that the MTBF of 

class A insulation is 105h then the base failure rate is given by: 
 

b = 1/MTBF = 1/100000 = 10 F/106 h .     (3) 

 

3.1.1.  Thermalacceleration stress factor 

The temperature acceleration factor is given by the Arrhenius model (MIL-HDBK-217 F):  
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where constant BT is determined using the half life rule for each 10°C rise of the winding insulation 

temperature (Standard, MIL-HDBK-217 F) as: 
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The activation energy of the insulation is deduced as follows: 
 

Ea = BT . KB (eV) ,      (6) 
 

where KB = Boltzman constant (eV/K). 

 

3.1.2.  Electrical acceleration stress factor s 

When a transformer is new the dielectric strength of the winding insulation system is very high. For a 

typical 33 kV transformer, it is assumed that the maximum initial dielectric strength is over 600 kV to 

ground while the dielectric strength breakdown is greater than or equal to 120 kV.  The fast over-voltage 

stress will accelerate the degradation process of the insulation strength and hence this will lead rapidly to a 

breakdown. According to the degradation mode of the dielectric strength whose voltage dependence is 

modelled with the following hyperbolic equation (Lanham, 2002): 
 

 
2

600 1 / 20sV t         (7) 

 

Whose graphical representation is shown in Fig. 5. 
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Figure 5. Dielectric strength degradation of the winding insulation. 

 

While, the time for given voltage may be determined from: 
 

 
2

20 1 / 600st V         (8) 
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The time to failure (breakdown) is evaluated as follows: 
 

tf = 19.34 – t      (9) 
 

Hence, the degradation acceleration factor of the dielectric strength is evaluated as follows: 
 

S = tf1/tf2      (10) 
 

Table I. Acceleration voltage stress factor 

Parameters Vs (kV) t (s) tf (s) S = tf1/tf2 

Values 600 0 19.34 1 

 500 11.05 9.29 2.4 

 

 

3.1.3.  The quality and environment stress factors 

Assuming that class F insulation of this transformer has a best quality factor (Q = 1) and that the 

environment includes dust, dirt, corrosion and humidity is classed as GF according to (Standard, 

MILHDBK ), whose accelerating stress factor is corresponding to E = 2 . 

 

3.1.4.  The overall winding insulation failure rate 

In the case of the following conditions such as 5°C temperature rise and the dielectric strength of the 

insulation reaching 500 kV, the –correction factors are given in the table II. 

 
Table II. -correction factors 

Parameters b Q E T s p 

Values 10 1 2 1.4 2.4 67.2 

 

 

The overall failure rate is calculated as: 
 

p = b . Q . E . T . S = 59.40 F/10
6 
h .    (11) 

 

Hence, the reliability expression of the windings insulation is given as follows: 
 

67.2( ) t

wR t e .      (12) 
 

This is represented graphically in Fig. 6.   

 

 
 
 
116

 
 
 
 
 

 
 
 
5th International Conference on Reliable Engineering Computing (REC 2012)



Large Power Transformer Reliability Modelling 

 

0 1 2 3 4 5 6 7 8

x 10
4

0

0.2

0.4

0.6

0.8

1

Time(h)

R
e
lia

b
ili

ty
 R

w

 
 

Figure 6. Reliability curve of the winding insulation. 

 

3.2.  OIL INSULATION RELIABILITY MODEL 

 

As in the case of winding insulation, the part failure rate of the oil insulation is expressed as base failure 

rate times series of multiplicative stress factors related failure mechanisms given with the following general 

form: 
 

p = b . Q . E . T . S .     (13) 
 

If the life duration of the used oil specimen at 60°C is equal to 249,526 h, then the base failure rate is 

b = 1/MTBF = 1/249,526 h = 4.007 F/10
6
 h. 

 

3.2.1.  Temperature acceleration factor 

The critical factor which determines the aging is the temperature of the transformer oil. The durability of 

the transformer is reduced by a period proportional to the duration of the overload and exponentially 

proportional to the excess of oil temperature above 90° C (Hattangadi, 1999). For every 10°C rise in the oil 

temperature above 90°, the age of the transformer is reduced by a half. Using equation (3) and (4), T is 

calculated for 5° C rise and is given further in table III. 

 

3.2.2.  Dielectric strength 

According to the degradation mode of the dielectric strength similar to that of the winding insulation with 

the following assumed data: 
 

 Maximum (initial) dielectric strength: 400 kV; 

 Dielectric strength breakdown: 100kV, 

 Life duration: 30 years. 
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Its degradation mode is modeled with the following hyperbolic equation (Lanham, 2002): 
 

 
2

30/1400 tVs 
      (14) 

 

Whose graphical representation is shown in Fig. 7. 
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Figure 7. Dielectric strength degradation of the oil insulation. 

 

Hence, the degradation acceleration factor of the dielectric strength is evaluated as S = 2.51. 

 

3.2.3.  Quality and environment stress factors 

Assuming that class of the oil insulation of this transformer has a best quality factor (Q = 1) and that the 

environment is similar to that of the winding (E = 2). 

 

3.2.4.  Overall oil insulation failure rate 

In the case of the following conditions such as 5°C temperature rise and the dielectric strength of the 

insulation has reached 300kV. The -correction factors are given in the table III. 

 
Table III -correction factors 

Parameters b Q E T s p 

Values 4.07 1 3 1.4 2.51 42.16 

 

 

The overall failure rate is calculated as: 
 

p = b . Q . E . T . S = 42.16 F/10
6
 h .   (15)  

 

Hence, the reliability expression of the oil insulation is given as follows: 
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42.16( ) t

oR t e       (16) 
 

This is represented graphically in Fig. 8.   
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Figure 8. Reliability curve of the oil insulation. 

 

3.3.  TERMINALS RELIABILITY MODEL 

 

Reliability modeling of connectors requires knowledge of the relationship between degradation mechanisms 

and connector performance parameters such as contact resistance. Fretting is known to be a major cause of 

contact deterioration and failure, particularly in nickel plated contacts (Braunovic, Konchits, and Myshkin, 

2006). 

During fretting corrosion, the contact resistance generally increases slowly as function of time.  

Assuming that the contact resistance Re is simulated to n equal resistances, of value R, in parallel 

configuration then the equivalent resistance will be: 
 

Re = R/n      (18) 
 

The fretting corrosion expansion is equivalent to loss of one or several paralleled resistance R and 

hence leading to an increase in the equivalent contact resistance Re. 

The direct measurement of dynamic constriction resistance of terminal remains difficult and unsafe in 

HV substation. For this, Non-contact and distant temperature measurement based on infrared technique is 

used for ensuring the safety.  

According to heat transfer theory, the total thermal power losses in a resistive connector are mainly due 

to conduction and radiation processes in a given environment. It is expressed as follows: 
 

Plos = Pcond + Prad = (K . As/L) (T – Ta) + σ . ε . A .(T4 – Ta4)  (19) 
 

where K = thermal conductivity of copper (= 401) 

L = length (thickness) of the portion of wire 

As = area of section of the wire 

T = temperature of the connector 
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Ta = ambient temperature 

σ = Stephan–Boltzmann constant (= 5.67. 10
-8
 W.m

-2
.K

-4
) 

ε = emission coefficient or emissivity 

Ac = area of the connector or exchange 

In the other side, according to Joule effect the rate of heatdissipation in a resistiveconductor (such as the 

connector) is proportional to the square of the current through it and to its resistance as expressed below: 
 

Pj = R . I
2
 

 

Assuming that the rate of dissipated electrical energy is equal to the sum of the rates of the conductive and 

radiated thermal energies, then, the ohmic resistance of the terminal connector, through which flows an ac 

current of 100A rms value, can be deduced as follows: 
 

R = Pj / I
2
 = PLoss / I

2
     (20) 

 

The handheld pyrometers enables temperature precision point measurement once the hot spot or area of 

interest is identified by means of a two dimensional thermal imager. 

Connector temperature measurements were performed on nickel plated copper alloy contacts sockets of 

100A rated transformer of cement industry manufactured by ENEL at a given fretting cycle and load. For each 

rise in temperature T, due to an increase in contact resistance R, time durations are censored and ranked in 

table IV. 
 

Table IV. Life duration of terminal connectors resistance (Swingler, 2002) 
Measured T variation 

(°C) 

Contact resistance 

(µΩ) 

Time duration 

(h) 

Fi 

5 39.5 4530 10 

5 80.9 6080 20 

10 124.3 7800 30 

10 217.3 9020 40 

15 373.2 11070 50 

15 550.1 12500 60 

25 851 14100 70 

20 1200 15120 80 

>20 10000 17060 90 

 

 

Where, Fi = Repartition function. 

The value of resistance change is varying from tens of micro-ohms to ohms, and even open circuit 

(Halliday & Resnick, 2011). However, when the contact resistance increases sufficiently to raise the local 

temperature, a self-accelerating deterioration resulting from the interaction of thermal, chemical, mechanical 

and electrical processes will be triggered, and the contact resistance will rise abruptly as shown in Fig. 8.  

The cumulative effect of fretting corrosion is modeled according the Weibull distribution (Swingler and 

McBride 2002) where the cumulative probability function of failure is given as follows: 
 

( ) 1

t

F t e






 
 
   .     (19) 
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Where β is a shape parameter of the distribution and η is a scale parameter (life characteristic of contact 

interface). 

 
 

Figure 8.Constriction resistance change as function of time. 

 

Assuming that starting point  = 0, the Weibull scale and shape factor were evaluated using Allen Plait Chart 

as η = 120000; β = 2.3 that is characterizing the cumulative effect such as corrosion. And hence the reliability 

will be expressed as follows: 
 

2.3

12000( )

t

tR t e

 
 
       (20) 

 

This is represented graphically as shown in Fig. 9. 
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Figure 9. Reliability curve of the oil insulation. 

3.4.  OVERALL RELIABILITY OF THE TRANSFORMER  

 

According to equation (1) the overall reliability of the large power transformer is obtained: 
 

2.3

67.2 42.16 12000( )

t

t t

TR t e e e

 
            (21) 

 

The corresponding graphical representation is given in Figs. 10 and 11. 

 

 

 

4. Conclusion 

 

In this study, it is shown that both winding and oil insulation reliabilities, because of their electro-chemical 

nature, are adequately represented by an exponential form function, while the Weibull law is well suited to 

the cumulative effect of fretting corrosion at the terminals. 

The obtained overall reliability of the transformer essentially follows an exponential form function for a 

limited time interval, but with a relatively much higher constant failure rate, than that of the winding and oil 

insulations as shown in Fig. 11, because of the ‘precipitating’ effect of corrosion in terminal reliability 

slope. Hence, it may be concluded that the remaining life of large transformer is decided by insulation to a 

great extent and the life of the terminal connection system. 
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a - Separated reliabilities  
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b - Combined reliability 

 

Figure 10.  The overall reliability of the Power transformer: a - Separated reliabilities, b -Combined reliability 
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Figure 11. Graphical comparison of the overall reliability of the transformer with an exponential form reliability of constant failure 

rate (≈ 170 F/106 h) 
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On the effect of material spatial randomness
in lattice simulation of concrete fracture

Jan Eliáš and Miroslav Vořechovský
Institute of Structural Mechanics, Faculty of Civil Engineering, Brno University of Technology,
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Abstract. The paper presents stochastic discrete simulations of concrete fracturing. The spatial material
randomness of local material properties is introduced into a discrete lattice-particle model via an autocor-
related random field generated by the Karhunen–Loève expansion method. The stochastic discrete model is
employed to simulate failure of three-point-bent beams with and without a central notch notch. The effect
of spatial randomness on the peak load and energy dissipation is studied.

Keywords: lattice model, concrete, fracture, stochastic simulations, material randomness, fracture energy,
flexural failure

1. Introduction

It has been widely recognized that mechanical properties of materials exhibit a spatial variability. The sem-
inal theory of (Weibull, 1939) offered simple and powerful tool to determine the probabilistic distribution
of structural strength. However, applicability of the Weibull theory is limited to brittle structures with no
redistribution prior to the peak load. The Weibull theory lacks any length scale and rupture of infinitely
small volume directly causes failure of the whole structure. The absence of any characteristic length scale
also results in spurious infinite strength of infinitely small structures (Vořechovský, 2010). Moreover, the
Weibull theory assumes that strength of every material point is independent of its surroundings. However,
many structures are made of quasibrittle materials like concrete, ceramics, rocks or ice. These structures
have the ability to partially redistribute released stresses and thus their failure is triggered by rupture of
some representative volume of finite size. Also the Weibull assumption of independence stands out against
the natural expectation that the local strength fluctuate rather continuously inside a structure.

The advantage of Weibull theory comes from the fact that the mechanics of failure does not interact with
the stochastic model – only elastic stress field is needed. Extension of the Weibull theory for finite internal
material length scale requires knowledge of changes in the stress field during the redistribution prior to the
peak load. The redistribution can be mimicked by the nonlocal Weibull theory of (Bažant and Xi, 1991)
and (Bažant and Novák, 2000), where probability of failure of material point depends not only on its local
stress but also on stress in its surroundings. Therefore, local stress is replaced by nonlocal stress obtained by
nonlocal averaging of the (local) elastic stress field (Bažant and Jirásek, 2002). The nonlocal Weibull theory
agrees for the large sizes with the local one. For intermediate structural sizes, it predicts higher strengths
than the local Weibull theory thanks to possible stress redistribution. Unfortunately, in the in the case of very
small structures, the theory is not applicable because the approximation or stress redistribution by nonlocal

 

5th International Conference on Reliable Engineering Computing (REC 2012) 
Edited by M. Vořechovský, V. Sadílek, S. Seitl, V. Veselý, R. L. Muhanna and R. L. Mullen 
Copyright © 2012 BUT FCE, Institute of Structural Mechanics 
ISBN 978-80-214-4507-9. Published by Ing. Vladislav Pokorný − LITERA

 
 
 
 
 

 
 
 
125
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averaging is too simplistic. Though the nonlocal averaging helps to introduce the material internal length, it
is not able to correctly reflect possible spatial correlations of local material properties.

A laborious option of structural strength estimation is represented by stochastic failure simulations that
include proper mechanics of stress redistribution. Such a stochastic analysis can be performed using the
finite element method with a sophisticated material constitutive law (Vořechovský, 2007; Vořechovský and
Sadı́lek, 2008). Failure of highly heterogeneous materials can also be advantageously modeled via discrete
models. These models can be deterministic: (Grassl and Rempling, 2008; Van Mier and Van Vliet, 2003;
Bolander and Saito, 1998) or stochastic: (Grassl and Bažant, 2009; Alava et al., 2006). In this study, we adopt
the lattice particle-model developed by G. Cusatis (Cusatis and Cedolin, 2007) for modeling of concrete
fracturing. Spatial material fluctuations are introduced by modeling the material properties as realizations of
a random field.

The following Section 2 briefly describes the deterministic mechanical (lattice) model and Section 3
elucidates how the spatial randomness is incorporated into the model. The model is then used for numer-
ical simulations of failure of notched and unnotched three-point bent beams. The results are presented in
Sections 4 (notched beams) and 5 (unnotched beams).

2. Deterministic model

Modeling of the initiation and propagation of cracks in quasibrittle materials exhibiting strain softening has
been studied for several decades. Although this is a difficult task complicated by the distributed damage
dissipating energy within a fracture process zone (FPZ) of non-negligible size, realistic results have been
achieved by several different approaches; see e.g. (Bažant and Planas, 1998). The present study is based
on the cohesive crack model (Barenblatt, 1962; Hillerborg et al., 1976; Bažant and Planas, 1998) called
sometimes the fictitious crack model. It relies on an assumption that the cohesive stress transmitted across
the crack is released gradually as a decreasing function of the crack opening, called the cohesive softening
curve. Its main characteristic is the total fracture energy, GF – a material constant representing the area
under the softening curve.

In heterogeneous materials, the dissipation of energy takes place within numerous meso-level cracks
inside the FPZ. Direct modeling of such distributed cracking calls for representation of the material meso-
level structure. Models capable to efficiently incorporate the concrete meso-structure should be used. For
this purpose, the present analysis will be based on the discrete lattice-particle developed by (Cusatis and
Cedolin, 2007), which is an extension of (Cusatis et al., 2003; Cusatis et al., 2006).

The material is represented by a discrete three-dimensional assembly of rigid cells. The cells are created
by tessellation according to pseudo-random locations and radii of computer generated aggregates/particles.
Every cell contains one aggregate (Fig. 1a,b). The cells are interconnected by set of three nonlinear springs
(normal - n and two tangential - t1, t2) placed at the interfaces between the cells, representing the mineral
aggregates in concrete and its surroundings. On the level of rigid cell connection, the cohesive crack model is
used to represent cracking in the matrix between the adjacent grains. The inter-particle fracturing is assumed
to be of damage-mechanics type and is modeled using a single damage variable ω applied to all three
directions i = n, t1 and t2. Forces Fi in the springs can thus be evaluated from their extensions ∆ui by

Fi = (1− ω)ki∆ui (1)

 

 
 
 
126

 
 
 
 
 

 
 
 
5th International Conference on Reliable Engineering Computing (REC 2012)



Lattice modeling of concrete fracture including the effect of material spatial randomness

S

D

aD

a) b) c)

s

Figure 1. a) One cell of the lattice-particle model and b) its section revealing the aggregate. c) Geometry of the beams simulated in
three-point-bending.

where ki is elastic spring stiffness. The damage parameter ω depends on ∆ui and on the previous loading
history of each connection. For a detailed description of the connection constitutive law or other model
features, see (Cusatis and Cedolin, 2007). The confinement effect (present in the full version of the model)
is neglected here as it was estimated that confinement does not play any important role in the studied type
of experiment.

Beams of depths D = 300 mm, span-depth ratio S/D = 2.4 and thickness t = 0.04 m, were mod-
eled. The maximal aggregate diameter was 9.5 mm. The minimal grain diameter was selected as 3 mm.
Aggregates’ diameters within the chosen range were generated using the Fuller curve. The parameters of
the connection constitutive law, which were mostly taken similar to those in (Cusatis and Cedolin, 2007),
were: matrix elastic modulus Ec = 30 GPa; aggregate elastic modulus Ea = 90 GPa; meso-level ten-
sile strength σt = 2.7 MPa; meso-level tensile fracture energy Gt = 30 N/m; meso-level shear strength
σs = 3σt = 8.1 MPa; meso-level shear fracture energy Gs = 480 N/m; meso-level compressive strength
σc = 42.3 MPa; Kc = 7.8 GPa; α = 0.25; β = 1; µ = 0.2; nc = 2.

To save computer time, the lattice-particle model covers only the region in which cracking was expected.
Surrounding regions of the beams were assumed to remain linear elastic and were therefore modeled by
standard 8-node isoparametric finite elements. The elastic constants for these elements were identified
by fitting a displacement field with homogeneous strain to displacements of particle system subjected to
low-level uniaxial compression. The macroscopic Young’s modulus and Poisson ratio were found to equal
Ē = 34.7 GPa and ν̄ = 0.19. The finite element mesh was connected to the system of particles by intro-
ducing interface nodes treated as auxiliary zero-diameter particles (Eliáš and Bažant, 2011). These auxiliary
particles have their translational degrees of freedom prescribed by shape (or interpolation) functions of the
nearest finite element. The rotations of the auxiliary particles were unconstrained.

3. Stochastic model

In the described discrete model, we assign material properties of each inter-particle connection according
to a stationary autocorrelated random field. The value of the c-th realization of the discretized field at
spatial coordinate x will be denoted Hc(x). For a given coordinate x0, H(x0) is a random variable H of
cumulative distribution function (cdf) FH(h). Since we work with stationary random fields, the cdf FH(h) is
identical for any positionx0. Recent studies by Bažant and co-workers (Bažant and Pang, 2007; Bažant et al.,
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2009) showed that, when H represents strength of a quassibrittle material, FH(h) can be approximated by
a Gaussian distribution onto which a power-law tail is grafted from the left at a probability about 10−4–10−3.

FH(h) =


rf

(
1− e−〈h/s1〉

m
)

0 ≤ h ≤ hgr (2a)

FH(hgr) +
rf

δG
√

2π

∫ h

hgr

e−(h−µG)2/2δ2Gdh h > hgr (2b)

where 〈x〉 = max(x, 0), s1 = s0r
1/m
f ,m is the Weibull modulus (shape parameter) and s0 is scale parameter

of the Weibull tail, µG and δG are the mean value and the standard deviation of the Gaussian distribution that
provides the Gaussian core. The Weibull-Gauss juncture at point at hgr requires that that (dFH/dh)|h+gr =

(dFH/dh)|h−gr . rf is a scaling parameter normalizing the distribution to satisfy FH(∞) = 1. The distribution
has in total 4 independent parameters.

The spatial fluctuation of the field is characterized through an autocorrelation function. It determines the
spatial dependence pattern between the random variables at any pair of nodes. The correlation coefficient
ρij between two field variables at coordinates xi and xj can be assumed to obey the squared exponential
function:

ρij = exp

[
−
(
‖xi − xj‖

d

)2
]

(3)

It brings a new parameter d called the autocorrelation length.
To digitally simulate the stationary random field described by the random variable cdf FH and corre-

lation length d in the discrete model, we need to generate N realizations of the discretized random field
H0(x), H1(x), . . . , HN−1(x) at the facet centers of the model. This is achieved using the the Karhunen–
Loève expansion based on the spectral decomposition of covariance matrix C, where Cij = ρij . This
procedure decompose the correlated Gaussian variables Ĥ(xi) into independent standard Gaussian vari-
ables ξk that are easy to generate. c−th realization of the Gaussian random field Ĥ

c
(x) is then obtained

using K standard Gaussian random variables by the following expression

Ĥ
c
(x) =

K∑
k=1

√
λkξ

c
kψk(x) (4)

where λ and ψ are the eigenvalues and eigenvectors of the covariance matrixC. The value K is the number
of eigenmodes/variables considered. In practice, it suffices to employ only a reduced number of eigenmodes
K � order ofC. In particular, K can be selected such that

∑K
k=1 λk corresponds to about 99% of the trace

of the covariance matrix C (Vořechovský, 2008). The vectors of independent standard Gaussian variables
ξ are generated by Latin Hypercube Sampling using the mean value of each subinterval. The spurious
correlation of the variables is then minimized by reordering their K realizations (Vořechovský and Novák,
2009).

A non-Gaussian random field can be generated by isoprobabilistic transformation of the underlying
Gaussian field as

Hc(x) = F−1H (Φ(Ĥ
c
(x))) (5)
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Figure 2. Left: one realization of the autocorrelated random field H on a grid of spacing d/3 for d = 80 mm (top) and d = 40 mm
(bottom). Right: realization of the field H at the element centers of the lattice-particle model.

Such a transformation, however, distorts the correlation structure of the field. Thus, when generating Gaus-
sian field Ĥ , the correlation coefficients must be modified (Vořechovský, 2008). This is here performed
using the approximate method of (HongShuang et al., 2008).

The realizations of the random field need to be evaluated for every shared facet (inter-particle bond)
of the discrete mechanical model (at its center). This can be computationally extremely demanding for a
large number of facets (large covariance matrix) and a short correlation length d (many eigenvalues needed,
largeK). We therefore adopted the expansion optimal linear estimation method - EOLE (Li and Kiureghian,
1993), which can significantly reduce the time of random field generation. Instead of the facet centers, the
random field is initially generated on a regular grid of nodes with spacing d/3 (see Fig. 2). The values of the
random field at the facets are then obtain from expression

Ĥ
c
(x) =

K∑
k=1

ξck√
λk
ψTkCxg (6)

where λ and ψ are now eigenvalues and eigenvectors of the covariance matrix of the grid nodes, and Cxg

is a covariance matrix between facet center at coordinates x and the grid nodes. After the Gaussian random
field values at facet centers are obtained by EOLE (Eq. 6), they need to be transformed to the non-Gaussian
space by Eq. 5.
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Figure 3. Load-deflection curves for simulations of TPB beams with notch.

Besides the significant time savings, another advantage of using EOLE is that one can simply use the
same field realization for several different granular positions. By keeping the c-th realization of decomposed
variables ξc unchanged, the field realization can be adapted for any configuration of the facets in the discrete
model.

Structural strength of a quasibrittle material is typically governed by two important material properties,
namely the material strength and fracture energy. Realistic fracture models should therefore incorporate
random spatial variability of at least these two variables. It is reasonable to consider the material strength
fully correlated with the fracture energy (Grassl and Bažant, 2009). Furthermore, in the proposed lattice
model, we also include the shear strength fs and mode-II fracture energy Gs, which are again assumed to
fully be correlated to the tensile strength ft and mode-I fracture energy Gt, respectively. Assuming identical
coefficient of variation (cov), we can use the same realizations of the random field to generate values
of material strengths and fracture energies. For X substituted by any of the four mentioned mechanical
properties, we can write

X(x) = X̄H(x) (7)

where X̄ stands for mean value of the particular property. The mean value of the (field) random variable H
has to equal 1.

In this study, the following parameters of the Weibull-Gauss grafted distribution (Eq. 2a) were used:
m = 24; s1 = 0.486 MPa; hgr = 0.364 MPa; δG = 0.25. These values provide overall mean value µH=1;
standard deviation δH ≈0.25 and grafting probability FH(hgr) ≈ 10−4. Two correlation lengths d were
considered: a shorter length d4 = 40 mm (according to (Grassl and Bažant, 2009)) and a longer length
d8 = 80 mm (according to (Vořechovský, 2007)). The computation is performed with N = 24 realizations
of the random field for each correlation length.
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4. Simulations of bending of notched beams

The first set of beams (depth D = 300 mm, span S = 2.4D, thickness t = 40 mm) loaded in three-
point-bending were modeled with a central notch up to 1/6 of its depth. Ten deterministic simulations were
computed. These simulations exhibit a certain scatter because of the pseudo-random granular positions
differing for each realization. For both correlation lengths 40 and 80 mm, 24 simulations with spatial material
randomness were performed. All the simulations were terminated when the magnitude of the loading force
dropped to 1/3 of the maximal reached load Fmax. To ensure numerical stability in the presence of soften-
ing, the simulations were controlled by prescribing an increase of the crack mouth opening displacement
(CMOD) in every step.

The notch present in the model induces a stress concentration at the notch tip. Therefore, high stresses
occur only in a small area above the notch tip. Therefore, a crack initiates and propagates always from the
notch tip. In stochastic calculations with rather large correlation length, local strength fluctuations within
the region of high-stresses diminishes because of the imposed spatial correlation. Thus, the peak load Fmax

depends mostly on a single value of the random field realization at the notch tip location. In other words, a
random field with correlation length greater than the length/width of FPZ can be, in the vicinity of the crack
tip, viewed as a random constant – random field becomes a random variable at that region.

The obtained load-deflection curves are shown in Fig. 3. The figure also shows the maximal loads Fmax

in its upper left corner. The effect of the spatial strength fluctuations on the mean value of maximum load is
negligible. The mean value of Fmax is, for the deterministic calculation, µd = 11.3 kN and, for stochastic
simulations with d = 40 and 80 mm µ4 = µ8 = 11.0 kN. However, the standard deviations of the peak load
are significantly influenced by the material randomness. The standard deviation of deterministic calculations
(given solely by random aggregate position) is δd = 0.4 kN. Significant increase in the standard deviation
is observed for both correlation lengths: δ4 = 1.5 kN (d = 40 mm) and δ8 = 1.8 kN (d = 80 mm). Since
the maximal load of the beam is given by local meso-level strength of a small area above the notch tip, we
believe that the fluctuation rate does not influence the standard deviation (unless it is so small that material
parameters vary significantly inside the FPZ).

For several selected realizations, the computed damage patterns (damage parameter ω from Eq. 1) at the
peak load and at the termination of the simulations are showed in Fig. 4 together with the corresponding
random field realization. Even though one can notice that the crack is slightly attracted (repelled) by areas
of low (high) strength, the macrocrack trajectory is similar to the deterministic case (dictated by the singular
stress field).

In order to compare energy dissipation in the beams, we need to determine simulation stages where the
same portion of the ligament has already been damaged. Therefore, we select a stage when equivalent crack
lengths (according to LEFM) are equal. Thus, all the models should have at that (reference) stage the same
(reference) compliance, chosen as 1/45 mm/kN (Fig. 3). The depth of specimen was divided into horizontal
stripes of depth s (Fig. 1c). All the energy dissipated at inter-particle contacts within a specific stripe was
summed into variable Gd. One can normalize that energy by ligament area as gd = Gd/st. The mean values
and standard deviations of gd are plotted in Fig. 5 for every stripe at the peak load and at the reference
compliance stages. The figure confirms that the mean energy dissipation in notched tests does not change
when the spatial material randomness is applied. Similarly to the peak force behavior, standard deviations
of dissipated energy increase when randomness is present.
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co
rr

el
at

io
n 

le
ng

th
 d

 =
 8

0 
m

m
co

rr
el

at
io

n 
le

ng
th

 d
 =

 4
0 

m
m

de
te

rm
in

is
tic

 

random field value H(x)

H(x)
0.5 1.8

damage
0 11/21/4 3/41.0 1.5

damage    at F damage    at 1/3 Fmax max

Figure 4. Realizations of random field H (left) and corresponding damage patterns developed in bent notched beams at the peak
force (middle) and after the load dropped to 1/3 of its maximum (right).

5. Simulations of bending of unnotched beams

The second simulation set focused on bending of unnotched beams where cracks initiate from a smooth bot-
tom surface. Ten deterministic simulations and N = 24 simulations with random field for each correlation
length were performed. To control the simulation, one needs to find some monotonically increasing variable,
here again the CMOD was used. For unnotched beams with spatially fluctuating meso-level strength, the
location of the macrocrack and thus the position of the crack mouth is not known in advance. Therefore,
several short overlapping intervals were monitored simultaneously and the controlling CMOD was chosen
to be the maximum one over them. Note, that other possibility of controlling variable might be the total
energy dissipation in the specimen (Gutiérrez, 2004).
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1/45 mm/kN in dependence on the vertical position in the beam.
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Figure 6. Points of crack initiation of unnotched beams for various degrees of randomness.

The variations in position of the crack mouth of the macrocrack are documented in Fig. 6. The Figure
demonstrates the fundamental difference between notched and unnotched simulations. When no notch is
present, the high-level stress region is much larger, located along the bottom central part of the specimen.
Material strength and fracture energy fluctuate within the region and allow the macrocrack to “choose a weak
spot” to initiate from. The higher is the distance form the midspan, the lower tensile stress appears. In the
process of crack(s) formation, the stress field with a certain ability of redistribution increases towards the
barrier (randomly varying strength and energy). The crack would start far from the midspan only when the
material strength (and energy) of all points closer to the midspan is higher than in the surrounding. It is thus
expectable (and confirmed by Fig. 6) that short correlation length, resulting in fluctuations that generate the
weak spots more frequently, shrinks the zone where the macrocrack initiates. Indeed, the initiation zone for
correlation length d = 80 mm is wider than for d = 40 mm.

Load deflection curves obtained from all the performed simulations are plotted in Fig. 7. The upper left
corner shows the mean values and standard deviations of the peak load Fmax. The more fluctuating is the
local strength, the weaker spot is statistically present and thus the lower is the mean value: µd = 22.4 kN
(deterministic), µ8 = 17.0 kN (d = 80 mm), µ4 = 16.2 kN (d = 40 mm). The standard deviation of
the maximal force is low for the deterministic set, where δd = 0.6 kN (covd=2.7%). For the correlation
length 80 mm, it increases rapidly to δ8 = 3.5 kN (cov8=21%). When the fluctuation rate increases more
(d = 40 mm), the standard deviation of Fmax decreases back to δ4 = 2.1 kN (cov4=13%). This trend simply
comes from the fact that the standard deviation of the local strength in the weakest spot inside some fixed
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Figure 7. Load-deflection curves for simulations of TPB beams without notch.

region decreases with decreasing correlation length. Theoretically, the maximal standard deviation of Fmax

should be obtained for d ≈ ∞ (a situation when the random field can be represented by a random variable
– a random constant over the specimen volume).

Fig. 8 presents several selected realizations of the random field H and the computed damage patterns.
One can see that the damage patterns differ for different levels of randomness. In the deterministic case, the
damaged region at the peak load stage spans continuously the whole bottom area and the damage intensity
directly depends on the distance from the midspan. For a random local strength and local fracture energy,
the damage regions are more localized around low random field values. There is usually one such region for
correlation length d = 40 mm and several low strength regions for d = 80 mm.

To compare the energy dissipation, we again choose some reference compliance that marks stages with
the same LEFM crack length. The reference compliance now equals to 1/100 mm/kN (Fig. 7). Contrary to
results from notched simulations, summation of total energy dissipated in stripes (per unit ligament area)
is dependent on material randomness. In Fig. 9, deterministic calculations show higher values of dissipated
energy gd both for the peak force stage and for the stage at the reference compliance. This is caused by
two factors: i) the localized macrocrack propagates in stochastic simulations through areas of lower meso-
level strength and meso-level fracture energy, thus less energy is dissipated in total; ii) Distributed pre-peak
cracking outside the macrocrack occurs mostly for deterministic simulation and thus it increases its total
energy dissipation. Note that from about the middle of the specimens depth upwards, the energy dissipation
of deterministic and stochastic simulations again match each other. This is because the crack at that depth
cannot choose the weak region as it has already localized and the stress field forces the crack to grow from
the current crack tip; and no pre-peak distributed cracking takes place there.

Finally, we focus on a deeper analysis of the energy dissipation along the bottom surface. In the bottom
boundary stripe of width 2dmax = 19 mm, the dissipated energies (per unit ligament area) inside and
outside the macrocrack were evaluated for stages at the peak load and at the reference compliance. These
values are plotted in Fig. 10 separately for each simulation. The results document that distributed cracking
outside macrocrack in the most bottom layer after the peak is reached is close to zero. The amount of energy
dissipated outside a macrocrack is much higher for the deterministic simulations than for those with random
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Figure 8. Realizations of random field H (left) and corresponding damage patterns developed in bent beams without notch at the
peak force (middle) and after the load dropped to 1/3 of its maximum (right).

fields. Some of the simulations for d = 80 mm reached the value of the deterministic model, which can be
explained by an absence of a locally weak spot and subsequent extensive pre-peak distributed cracking (see
Fig. 8, third row). The energy dissipated inside the macrocrack at the reference compliance is clearly higher
in the deterministic case than in the stochastic one. This is due to the positive correlation of local meso-level
energy and meso-level strength at the inter-particle bonds. Since the macrocrack propagates through locally
weaker areas, it also dissipates less energy there. Aspects related to correlation between the local tensile
strength and fracture energy have been discussed by (Vořechovský and Novák, 2004).
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simulation.

6. Conclusions

We analyzed the influence of material spatial randomness on the peak load and the energy dissipation
using a discrete lattice-particle model that reflects the concrete meso-scopic structure, i.e. the aggregate
composition. The spatial material randomness was introduced by simultaneous scaling of the local meso-
level strength and fracture energy of inter-particle bonds by realizations of autocorrelated random field. Two
basic cases of three-point-bent beams were investigated: i) beams with a notch and ii) beams without a notch
(the modulus of rupture test). Numerical results generally confirm theoretical expectations.

It has been found that:
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− for the simulation with a sufficiently deep notch, the crack is forced to start at the notch tip. Therefore,
the mean value of the maximal load for notched beam simulations does not change when material spa-
tial randomness applies. However, the standard deviation of the maximal load increases when strength
randomness is introduced. Also, the energy dissipation in deterministic and random media exhibit the
same mean but an increasing standard deviation for the random cases.

− In the case of unnotched beams, the macrocrack initiates in a locally weaker spot.When a shorter
correlation length of material properties is applied, the weaker is statistically the initiation spot and
therefore the mean of the maximal load is lower. Standard deviations of the maximal load increase
when randomness applied, however the shorter correlation lengths lead to a decrease of the standard
deviation.

− Energy dissipated in unnotched beams is dependent on the randomness of the material. Two effects
responsible for the dependency were identified. i) Change of the dissipated energy due to correlation
of the local meso-level fracture energy and low meso-level strength of inter-particle bonds through
which the macrocrack propagates. Depending on the sign of the energy-strength cross-correlation, this
effect may increase or decrease the dissipated energy. For the current settings of the model, the lower
is the local meso-level strength, the lower is also the local fracture energy and the lower is the energy
dissipated inside the macrocrack. ii) The pre-peak distributed cracking has a tendency to localize only
in weaker areas and thus the material dissipated less energy outside the macrocrack when random field
is applied.
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Vořechovský, M. Interplay of size effects in concrete specimens under tension studied via computational stochastic fracture
mechanics. International Journal of Solids and Structures, 44:2715–2731, 2007.
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Abstract: Inverse problems in science and engineering aim at estimating model parameters of a physical system 

using observations of the model’s response. Variational least square type approaches are typically adopted, solving the 

forward model, and then comparing the resulting modeled data with the actual measured data. The data 

mismatch is minimized and the process is iterated until the best match is achieved. However, data 

measurements are associated with uncertainties, and deterministic inverse algorithms hardly provide the 

associated error estimates for the model parameters. In this work, an interval-based iterative solution is 

presented to predict bounds on such errors, using optimization and the containment-stopping criterion. 
 

Keywords: Inverse, Interval, FEM 

 

 

 

1. Introduction 

 

Inverse problems in science and engineering aim at estimating model parameters of a physical system from 

available observations (data) of his response or output (see Tarantola 1987). A classical example is that of 

wave tomography in geophysics for a full seismic waveform inversion (see, for example, Fichtner 2010), or 

the optical tomography for the recognition of cancer in breast tissue via fluorescence (see, for example, 

Eppstein et al. 2003). In both cases, a forward model is given to predict the (seismic or light) wave 

propagation through a heterogeneous medium (soil subsurface or human tissue). The forward model is 

solved only if the (elastic or optical) properties of the medium are known in advance. These, however, are 

exactly what are not known and what one wants to predict. This leads to a formulation of an inverse 

problem if measurements of wave amplitudes and phases at given points on the accessible boundaries of 

medium are available. Using these data, an appropriate ‘inverse’ algorithm can be formulated to estimate 

maps of the properties of the medium, from which regions of high/low stiffness can be localized, or malign 

tissue detected. Variational least square type approaches are typically adopted by making an initial guess 

(either random or educated) for the unknown variables, solving the forward model, and then comparing the 

resulting modeled data with the actual measured data. The initial guess is then corrected by minimizing the 

data mismatch to yield a better match. The process is iterated until the best match is achieved. 

A deep look into the mathematics used to model the wave propagation through a medium and the 

associated physical phenomena, such as scattering and absorption, will reveal an underlying mathematical 

structure, characterized by Helmholtz wave equations. These, as other partial differential equations 

encountered in engineering and sciences are typically solved by finite-element methods (FEM) on an 

unstructured mesh to adequately model the geometry of the medium, and to increase discretization density 

where appropriate. The inverse algorithm highly depends upon the forward model. If FEM is used the 

domain is discretized into elements and the number of unknowns depends on the mesh size and on the 

element type. Typically, the number of unknowns to be estimated exceeds the number of boundary 
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measurements available and that will result in an ill-posed problem. Ill-posedness is treated by 

regularization procedures (Tikhonov & Arsenin 1977), by adding appropriate additional constraints that 

yield well-posed inverse algorithms. Robustness is typically achieved by a course-to-fine regularization that 

exploits arc-length or surface-area minimizers.  

Clearly, data measurements are affected by errors, whose nature depends upon both controllable and 

uncontrollable factors, such as, for example, the precision of the adopted instrumentation or the 

environmental conditions during the measurement campaign, respectively. Deterministic inverse algorithms 

hardly provide error bounds on the parameter estimates given uncertainties in the data. Indeed, this would 

require a combinatory approach that explores all the possible combinations of data within the given bounds, 

and this is computationally unfeasible even for small-to-medium scale problems. On the other hand, a 

probabilistic approach to solve the inverse problem, as in Kalman Filter estimation (Kalman 1960, see also 

Brown and Hwang 1992), allows identifying the propagation of uncertainties and it also provides errors on 

the parameter estimates. However, such approaches have their own limitations since they require a prior 

assumption on the nature of uncertainties, i.e. data errors are usually assumed as Gaussian. It is desirable to 

have inverse algorithms that do not rely on the type of uncertainties. 

This work addresses this issue, by proposing an interval-based iterative solution for inverse problems 

that not only minimize the overestimation in the target quantities, but also exploits the same overestimation 

to track propagation of uncertainties of the target estimates. The paper is structured as follows. First, to 

illustrate the proposed theoretical approach, we present a one-dimensional (1-D) inverse problem that is 

estimating the Young’s modulus of an elastic bar from known measurements of displacements due to 

traction/compression. The inverse algorithm is then introduced by combining an ‘optimize-then-discretize’ 

strategy with interval FEM in order to minimize the mismatch functional between modeled and actual data. 

Examples are finally presented and discussed. 

 

 

 

2. Formulation of inverse problem in elastostatics 

 

2.1.  DETERMINISTIC FORMULATION 

 

Consider an elastic bar of length L subject to distributed tensional forces f(x). The differential equation 
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define the ‘continuous’ forward model that allows to predict the displacements u(x) given the parameter 

)()()( xAxEx  , where E(x) is the Young’s Modulus and A(x) is the cross-sectional area, both assumed as 

spatially varying. When   is unknown, it can be estimated if measurements j
u~ of u are available at N 

points jxx  , j = 1, ...N on the bar surface. To solve for   we consider the following functional 
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here, the first term in the right-hand side is the square of the mismatch between data and the unknown 

theoretical displacements u (modelled data) at the locations xj in accord to the forward model (1). The 

second term introduces the Lagrange multiplier )(xw  to enforce the ‘strong’ constraint (1), and the third 

integral is a standard course-to-fine regularization term to control the smoothness/roughness of  , and to 

guarantee the well-posedness of the inverse problem (   is the regularization parameter). 

 To find the optimal   that minimizes (2), we introduce an imaginary time that rules the 

evolution/convergence of an initial guess for   toward the minimal solution of (2). Thus, u, w  and   also 

depend upon the fictitious t, and we wish to find the rate dtd /   at which   should change in time so 

that F always decreases, i.e. 0F . The time derivative of F follows after several integrations by parts and 

some algebra as (see appendix A)  
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where we have set )(
jj

xuu  . Since the multiplier w is arbitrary, it can be properly chosen to further 

simplify (3). Indeed, if we impose the following boundary value problem 
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with boundary conditions as  
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then (3) reduces to the minimal form 
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We are still free to choose the time rate of   so that F is always decreasing. To do so, 0F is always 

satisfied at any t if we choose 
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 This yields the evolution equation of the unknown parameter  so that at steady state, i.e. 



t, F is 

minimized. Observe that (6) depends upon the field u, which satisfies (1), and the associated adjoint or 

multiplier w , given by the boundary value problem (4). If we approximate the time derivative of  as  

1i i

t

 
  


  

and follow the FEM-based ‘discrete’ version of the ‘continuous’ equations (1-4-6), a deterministic inverse 

algorithm can be formulated as 

 

 
 
 
5th International Conference on Reliable Engineering Computing (REC 2012)

 
 
 
 
 

 
 
 
141



 Francesco Fedele and Rafi L. Muhanna 

 















.2

)~()(

)(

21 iiiii

iii

ii

tDtDwDu

uuwK

PuK









 (7) 

here, i
α  is the (m × 1) vector at iteration i that lists the individual values of   parameters within each of the 

m elements, i
u  is a (n × 1) vector of the nodal displacements, and )K(α

i  is the assembled FEM stiffness 

matrix, which depends upon i
α . Further, P (n × 1) is the vector of nodal forces, u~ (n × 1) is the data vector 

of measured displacements interpolated at the nodes, i
Du (m × 1) and i

Dw (m × 1) are the vector of element 

strains, and the vector of first derivative of wi, respectively. i
αD

2 (m × 1) is an approximation of the second 

space derivative of )(x . The Hadamard product )(
jj

baba   is the element-by-element product. We point 

out that (7) can also be obtained via a ‘discretize-then-optimize’ strategy. To do so, one first discretizes the 

forward model (1) and then optimizes the ‘discrete’ version of the functional (2) with respect to the vector 

α . 

The free parameter t can be chosen to control the smallness of the correction iii
αααΔα 

1  

during the iterations, where b  is the norm of a vector b. Typically, one starts with an initial guess for  , 

say 0
 , and iterates Eq. (7) until convergence is achieved, viz. when the relative error i

α/Δα is smaller 

than a prescribed threshold  .  

In the following, we present an interval formulation of Eq. (7) that will provide bounds on the 

uncertainties of the estimates for α . 
 

 

 

3. Interval FEM Formulation 
 

One of the main features of interval arithmetic is its capability of providing guaranteed results. However, it 

has the disadvantage of overestimation if variables have multiple occurrences in the same expression. For 

example, if x is an interval, the function f(x) = x – x is not equal to zero but to an interval that contains zero. 

Such dependencies lead to meaningless results, and have discouraged some researchers of pursuing further 

developments of FEM techniques using interval representations. 

Only recently, Interval Finite Element Methods (IFEM) have been developed to handle the analysis of 

systems for uncertain parameters described as intervals. Since the early development of IFEM during the 

mid-1990s of the last century (Koyluoglu et al., 1995; Muhanna and Mullen, 1995; Nakagiri and 

Yoshikawa, 1996; Rao and Sawyer, 1995; Rao and Berke, 1997; Rao and Chen 1998) researchers have 

focused, among other issues, on two major problems: the first is how to obtain solutions with reasonable 

bounds on the system response that make sense from a practical point of view, or in other words, with the 

least possible overestimation of their bounding intervals; the second is how to obtain reasonable bounds on 

the derived quantities that are functions of the system response. 

The most successful approaches for overestimation reduction are those that relate the dependency of 

interval quantities to the physics of the problem being considered (for details see Muhanna and Mullen, 

1995; Muhanna and Mullen, 2001; Zhang, 2005). A brief description of IFEM formulation is presented 

below, but a detailed explanation of the method can be found in Rama Rao et al., 2011. The two major 

issues resolved by this formulation are: 
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1. Reducing of overestimation in the bounds on the system response due to the coupling and 

transformation in the conventional FEM formulation as well as due to the nature of used interval linear 

solvers (Muhanna and Mullen, 2001). 

2. Obtaining the secondary variables (derived) such as forces, stresses, and strains of the conventional 

displacement FEM along with the primary variables (displacements) and with the same accuracy of the 

primary ones. 
 

3.1.  DISCRETE STRUCTURAL MODELS 
 

The FEM variational formulation for a static discrete structural model is given by minimizing the total 

potential energy functional 

 
1
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T T
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which yields 
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where , Kc, U, and P are total potential energy, stiffness matrix, displacement vector, and load vector 

respectively. For structural problems this formulation includes both direct and indirect approaches. For the 

direct approach, the strain ε is selected as a secondary variable of interest, where a constraint can be 

introduced as C2 U = ε. For the indirect approach, constraints are introduced on displacements of the form 

C1U = V in such a way that Lagrange multipliers will be equal to the internal forces. C1 and C2 are matrices 

of orders m  n and k  n, respectively, and m is the number of displacements’ constraints, k is the number 

of strains, and n is the number of displacements’ degrees of freedom. We note that V is a constant and ε is a 

function of U. We amend the right-hand side of Eq. (8) to obtain 
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where 1 and 2 are vectors of Lagrange multipliers with the dimensions m and k, respectively. Invoking the 

stationarity of 
*
, that is 

*
 = 0, we obtain 
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The solution of Eq. (10) will provide the values of dependent variable U and the derived ones 1, 2, 

and ε at the same time and with the same accuracy. The present interval formulation is an extension of the 

Element-By-Element (EBE) finite element technique developed by Muhanna and Mullen (2001). 

The main sources of overestimation in IFEM are the multiple occurrences of the same interval variable 

(dependency problem), the width of interval quantities, the problem size, and the problem complexity, in 

addition to the nature of the used interval solver of the interval linear system of equations.  

The current formulation is modifying the displacements’ constraints used in the previous EBE 

formulation to yield the element forces as Lagrange Multipliers directly and the system strains. All interval 
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quantities will be introduced in non-italic boldface font. Following the procedures given in Rama Rao et al. 

(2011) we obtain the interval linear system PKU  , or explicitly,  
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here, Kc is a (k  k) interval matrix, which contains the individual elements’ local stiffness and zeros 

corresponding to the free nodes’ degrees of freedom, where k is the sum of number of elements and free 

nodes. 

The accuracy of the system solution depends mainly on the structure of Eq. (11) and on the nature of 

the used solver. The associated solution provides the enclosures of the values of dependent variables which 

are the interval displacements U, interval element forces 1, the multiplier 2, and the elements’ interval 

strains. An iterative solver is discussed in the next section. 

 

3.2.  INTERVAL SOLVERS AND ITERATIVE ENCLOSURE 

 

Any solver for interval linear system of equations can be used to solve for ui and wi in Eq. (7), however, 

the best known method for obtaining very sharp enclosures of interval linear system of equations that have 

the structure introduced in Eq. (11) and with large uncertainty is the iterative method developed in the work 

of Neumaier and Pownuk (2007). The current formulation results in the interval linear system of equations 

given in (11) which can be transformed to have the general form: 

 buD F a AB K  )(  (12) 

where D is diagonal. Furthermore, defining 

 
1)(:  ABDKC
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where D0 is chosen to ensure invertability (often D0 is selected as the midpoint of D), the solution u can be 

written as: 

 dbu )()()( CBCFCa   (14) 

To obtain a solution with tight interval enclosure we define two auxiliary interval quantities, 
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which, given an initial estimate for u, we iterate as follows: 
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until the enclosures converge, from which the desired solution u can be straightforwardly obtained. 

Observe that not only are the interval displacements U obtained but also the derived quantities 1, 2, 

and ε with the same accuracy. The next section will discuss the use of this formulation in the solution of the 

inverse problem Eq. (2) under interval uncertainties. 
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4. Interval Inverse Problem 
 

The interval solution of the inverse problem of Eq. (2) is based on the notion that the measurements (data) 

are given as intervals. In this work we are introducing an initial attempt to provide such a solution using 

interval finite element. From a closer look at the deterministic solution presented in Eq. (7), it can be seen 

that the iterative update of the sought parameters is given by: iiiii
tDtDwDu 

21
2


 , where the 

terms Dui and Dwi are the first derivative of ui and wi respectively. A naive interval FEM formulation will 

result in an enormous overestimation of the solution enclosure and with additional excessive 

overestimations in derived quantities such as stresses and strains. In our case, the solution is the 

displacement and the derived quantity is the strain. The IFEM formulation described in the previous section 

provides an exact solution for the interval loads and the tightest possible enclosure when both load and 

stiffness being intervals. Moreover, the formulation provides the stresses (λ1) and strains (ε) as part of Eq. 

(11) solution and of course with the same accuracy as that of the displacements. Furthermore, we speculate 

that the course-to-fine regularizer can be neglected, viz. set 0
1
 , because one can exploit the natural 

relaxation induced by intervals, which allows to seek for a ‘thick vector’ AEα  , a vector with thickened 

(relaxed) values that can span the range naturally imposed by the uncertainty of the data. This is similar to 

the Tikhonov regularization that imposes vector solutions with small norm. 

 In summary, the solution of the inverse problem of Eq. (2) as interval is accomplished by implementing 

the following steps: 

1. Solve for ui and Dui using Eq. (11) as Ui = K
-1

Pi, where the interval vector Ui contains ui and Dui. 

2. Solve for Dwi using Eq. (11) in the form )~(
1

uuKW 


iii
, where the interval vector Wi contains wi and 

Dwi. Instead of computing )~( uu 
i as a conventional interval operation, the subtraction is done on 

bounds due to inherited dependency of i
u  upon u~ , since uu ~

i  when convergence is attained (see 

Eq. 7). In particular, ],~,~[~ uuuuuu 
iii

where u  and u are the lower and upper bounds of u, 

respectively. 

3. Compute the updated interval value of αi+1 as  

 
tDD

iiii
wuαα 

1  (17) 

with )/min(
iii

DDct wuα  , and 0 . The optimal choice of the constant c is problem dependent, 

and in our case we set c = 0.005.  

4. The iterations are stopped when the estimated displacements ui contain the data u~  (containment-

stopping criterion), or in other words when uu ~
i .  

 

4.1.  EXAMPLE 

 

For an illustrative example, we are using a 5 m long bar, pinned at one end and simply supported at the 

other as shown in Fig. (1). The bar has a constant cross sectional area A = 0.005 m
2
 and is subjected to an 

axial force of 1000 kN applied at C. The bar is modelled using 25 finite elements each has a different 

modulus of elasticity. The values: 100, 105,110,115,120, 120, 115, 110, 105, 100, 105,110, 115, 120, 130, 

140, 150, 140, 130, 125, 120, 115, 105, 100, and 90 GPa are the assumed moduli of elasticity of elements 1 

through 25, respectively. 
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Figure 1. Truss bar. 

 

 The problem to be solved is that to predict the values of elasticity moduli for each element given that 

the displacements at the 26 nodes are known intervals (measurements with interval uncertainty). As an 

initial guess for the Young’s modulus we set E(x) = 60 GPa. 

 

4.2.  DETERMINISTIC SOLUTION 

 

First, the algorithm in Eq. (7) has been tested for the case where the measured data are assumed to be 

deterministic. The solution converged to the measured data and the moduli were predicted correctly (results 

are not reported). Hereafter, we will apply the interval-based formulation of the algorithm.  

 

 
 

Figure 2. Premature solution of the Interval Inverse Problem. (top) Exact Young’s modulus E (dash) and upper and lower bounds 

(solid) of the interval estimate E = α/A, where A is the cross-sectional area; (bottom) Given interval data u~  (dash) and associated u 

displacements. Note that estimates contain data.  

 

4.3.  SOLUTION FOR UNCERTAIN MEASUREMENTS 

 

For the uncertain case, a 5% interval uncertainty is considered in the measurements. Fig. 2 shows the 

obtained interval solution and the associated containment of the measurements, i.e. the estimated u 
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displacements contain the measured u~ data. However, a pre-mature prediction of the elasticity moduli 

occurred. This phenomenon is due to the overestimation in the solution (the measurements are contained 

before the final solution is attained). Work is in progress to improve overestimation reduction of Eq. (17) by 

simultaneously solving for u and w (see Eq. 7) in an interval block-matrix form similar to that of Eq. (11). 

 A simpler alternative strategy has been adopted to avoid a significant overestimation and to obtain the 

correct solution. We first proceed with the solution in a deterministic form until the ii
ααα 

1
  update 

becomes insignificant after several iterations (usually of the order of hundreds). At this stage the update for 

α is switched to a full interval form using the interval algorithm based on Eq. (17). Fig. 3 shows the 

resulting mature solution, where both the measurements and the estimated unknown Young’s moduli are 

contained. 

 

 
 

Figure. 3. Mature solution of the Interval Inverse Problem. (top) Exact Young’s modulus E (dash) and upper and lower bounds 

(solid) of the interval estimate E = α/A, where A is the cross-sectional area; (bottom) Given interval data u~  (dash) and associated u 

displacements. Note that estimates contain data.  
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5. Conclusion 

 
An initial formulation for interval inverse problems is introduced. Uncertainty in the measurements is considered in an 

interval form. The containment stopping criterion is used which is intrinsic for interval arithmetic. Overestimation 

control and reduction play crucial role in achieving correct solutions. Results show a great potential for further 

developments. 
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 Interval Solution for Inverse Problems under uncertainty 

 

Appendix A 

 

In Eq. (2), we set )(
jj

xuu  and integrate by parts once to obtain  
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Since u, w  and   are assumed time dependent, the time derivative of F follows from (A1) as 
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Here, applying integration by parts once to terms A, B and C yield (for simplicity, we set 0 at the boundaries) 
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 (A3) 

Note that the underlined term vanishes because of (1a). Further, taking the time derivative of the boundary conditions 

(1b) for u yields  
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and (A3) simplifies to 
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Eq. (3) follows from (A5) after re-writing the mismatch term as 
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where )(
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xx  is the Dirac function centered at .
j
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A Particle Swarm Optimization Approach for Training Artificial
Neural Networkswith Uncertain Data
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Abstract. Artificial neural networks are powerful tools to learn functional relationships between data. They
are widely used in engineering applications. Recurrent neural networks for fuzzy data have been introduced
to map uncertain structural processes with deterministic or uncertain network parameters. Based on swarm
intelligence, a new training strategy for neural networks is presented in this paper. Accounting for uncer-
tainty in measurements, particle swarm optimization (PSO) approaches using interval and fuzzy numbers are
developed. Applications are focused on the description of time-dependent material behavior with recurrent
neural networks for uncertain data within interval and fuzzy finite element analyses. Network training with
PSO allows to create special network structures with dependent parameters in order to consider physical
boundary conditions of investigated materials.

Keywords: particle swarm optimization; neural network; uncertainty; interval numbers; fuzzy numbers,
constitutive material description, finite element method

1. Introduction

Reliability assessment of structures requires knowledge of its behavior under environmental influences.
Information on the structural behavior may be obtained by structural monitoring. Existing structures can be
investigated by in situ monitoring whereas material tests can be performed to investigate new materials. As a
result of experimental investigations, data series for measured structural actions and responses are available.
Measured results are more or less characterized by data uncertainty due to varying boundary conditions,
inaccuracies in measurements, and / or incomplete sets of observations. Interval or fuzzy numbers can
be used to represent imprecise parameters, see e.g. (Möller and Beer, 2008). Time-dependent structural
parameters are quantified as interval or fuzzy processes.

Functional relationships between uncertain data are required to describe the observed physical phe-
nomena. Commonly, constitutive models are used for stress-strain relationships. Their parameters must be
identified by an inverse analysis. If no closed-form expression can be obtained, optimization approaches can
be applied to determine the unknown parameters of a predefined model.

An alternative approach to get functional relationships between uncertain data is the application of arti-
ficial intelligence. Artificial neural networks are widely used in engineering. Fields of applications in civil
engineering are presented, e.g. in (Adeli, 2001). Often, multilayer perceptrons with feed forward architecture
are utilized to learn functional relationships in deterministic data. For this purpose, several training strategies
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are available (Haykin, 1999). In (Graf et al., 2011), neural network approaches for structural analysis with
uncertain data are discussed. For time-dependent phenomena, recurrent neural networks can be applied.
These advanced network architectures enable the consideration of the whole history for the computation
of current states, see e.g. (Oeser and Freitag, 2009). Recurrent neural networks for fuzzy data (Freitag
et al., 2011a) have been developed to identify deterministic dependencies (Graf et al., 2010) or uncertain
dependencies (Freitag et al., 2011c) in fuzzy processes. In (Freitag et al., 2010a), a backpropagation training
algorithm for recurrent neural networks with trainable fuzzy network parameters has been introduced. It is
a gradient based approach using the derivatives of fuzzy activation functions. In general, interval arithmetic
(Moore, 1979) orα-level optimization (M̈oller et al., 2000) can be used to compute the signals of recurrent
neural networks for fuzzy data, see (Freitag, 2010). In this paper, a new training strategy for recurrent neural
networks is introduced considering both ways of computation. It is based on swarm intelligence (Kennedy
et al., 2001).

Particle swarm optimization (PSO) (Kennedy and Eberhart, 1995) is an optimization concept motivated
by social behavior of group individuals. It is a random search strategy and requires multiple evaluations of
an objective function. After random initialization, each individual (denoted as particle) share its information
with other particles in the swarm in order to define its new position in the space of search variables. In (Eber-
hart and Shi, 2001), developments and applications of PSO are discussed. Applications in civil engineering
are presented e.g. in (Perez and Behdinan, 2007) and (Li et al., 2007). The approaches in these works can
be used for optimization tasks with constraints.

One of the first applications of PSO was the training of artificial neural networks, see e.g. (Kennedy and
Eberhart, 1995). Algorithms for feed forward neural networks are presented e.g. in (Mendes et al., 2002)
and (Kuok et al., 2010). A hybrid training strategy, combining backpropagation and PSO for training of
feed forward neural networks, is shown in (Zhang et al., 2007). Accounting for uncertain training data,
PSO approaches using interval and fuzzy numbers are developed in this paper. They can be applied to
feed forward and recurrent neural networks. The advantage of PSO for recurrent neural networks is that all
network parameters can be modified during training. Additionally, special network structures with dependent
parameters can be created. This is helpful to consider physical boundary conditions, if neural networks are
used as constitutive models.

Recurrent neural networks for interval or fuzzy data are used to describe uncertain stress-strain-time
dependencies. A finite element formulation for neural network based material descriptions is shown. Neural
networks can be applied as constitutive models within interval finite element methods (Muhanna et al.,
2007), (Rao et al., 2011), fuzzy finite element methods (Möller et al., 2000), (Moens and Vandepitte, 2005)
or fuzzy stochastic finite element methods (Graf et al., 2011), (Sickert et al., 2011). Examples are presented
to show the applicability of the new approach.

2. Uncertain data

2.1. INTERVALS AND FUZZY NUMBERS

Uncertain data can be represented as intervals or fuzzy numbers. An interval

x̄ = [lx, rx] (1)
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is defined by its leftlx and rightrx bounds. A bar̄ is used to indicate intervals. It is also common to define
an interval by its midpoint

mx = lx + rx

2
(2)

and itswidth

wx = rx − lx . (3)

If midpoints and widths are used, the left and right interval bounds are obtained by

lx = mx − wx

2
(4)

and

rx = mx + wx

2
, (5)

respectively.
Fuzzy numbers̃x are uncertain sets gradually assessed by membership functionsµ(x). The tilde ˜ is

used to indicate fuzziness. The functional values ofµ(x) are defined in[0, 1]. For each realisationx, its
level of membership to the setx̃ is between0 and1. Considering convex fuzzy numbers, an interval

sx̄ = [slx, srx] (6)

is obtained for each levels of membershipαs = µ (slx) = µ (srx). A set ofs = 1, . . . , S cuts (α-cuts)
can be used to approximate the membership function of a fuzzy numberx̃ by piecewise linear functions, see
Figure 1. The interval bounds of eachα-cut are given by

slx = min [x ∈ R | µ(x) ≥ αs] (7)

and

srx = max [x ∈ R | µ(x) ≥ αs] , (8)

respectively. A fuzzy number can be represented by itsα-cuts as a discrete set of the corresponding interval
bounds. The fuzzy number

x̃ = 〈1lx, . . . , Slx, Srx, . . . , 1rx〉 (9)

contains all left and right interval bounds as a sorted sequence. In general, theα-cutS (with µ(x) = 1) can
be an interval or a deterministic number. If it is a deterministic number, i.e.Slx = Srx = Sx, the number
of elements in Eq. (9) is an odd number. At least three elements are required to define a fuzzy number. In
this case, the fuzzy numberx̃ = 〈1lx, 2x, 1rx〉 has a membership function with triangular shape. With four
elements̃x = 〈1lx, 2lx, 2rx, 1rx〉, a membership function with trapezoidal shape is created. Theα-cut
representation of fuzzy numbers is common in engineering. It allows to handle fuzzy numbers similar to
intervals in numerical simulations, i.e. interval operations can be performed for eachα-cut.

2.2. INTERVAL AND FUZZY PROCESSES

Interval and fuzzy processes can be represented by series of interval or fuzzy numbers. The interval process

x̄(τ) =
{

[1]x̄, . . . , [n]x̄, . . . , [N ]x̄
}

(10)
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Figure 1. Fuzzy number represented by itsα-cuts.

hasdiscrete functional values (intervals[n]x̄) for each time point[n]τ . The time steps are equidistant, i.e.
∆τ = [n]τ − [n−1]τ ∀ n = 2, . . . , N . Eq. (10) can also be formulated for fuzzy processes

x̃(τ) =
{

[1]x̃, . . . , [n]x̃, . . . , [N ]x̃
}

. (11)

2.3. FUNCTIONAL RELATIONSHIPS BETWEEN INTERVAL OR FUZZY PROCESSES

Mappings can be created to describe functional relationships between interval or fuzzy processes. Here,
three types of mapping are regarded (exemplified for fuzzy processes – a formulation for interval processes
is straightforward):

− Type 1 mapping
x̃(τ) 7→ z̃(τ) (12)

The vector of fuzzy processes̃x(τ) is mapped onto the vector of fuzzy processesz̃(τ) with determin-
istic mapping parameters.

− Type 2 mapping
x(τ) ˜7→ z̃(τ) (13)

The vector of deterministic processesx(τ) is mapped onto the vector of fuzzy processesz̃(τ) with
fuzzy mapping parameters.

− Type 3 mapping
x̃(τ) ˜7→ z̃(τ) (14)

The vector of fuzzy processes̃x(τ) is mapped onto the vector of fuzzy processesz̃(τ) with fuzzy
mapping parameters.

The Type 3 mapping is the general case. Type 1 and Type 2 mappings can be treated as special cases
of the Type 3 mapping. The vectorx̃(τ) containj = 1, . . . , J fuzzy components̃xj(τ), which are related
to thek = 1, . . . , K fuzzy components̃zk(τ) of vector z̃(τ). With respect to the representation of fuzzy
processes in Eq. (11), the fuzzy number[n]z̃k of time step[n] can depend on allj = 1, . . . , J fuzzy numbers
[r]x̃j of prior and current time steps[r] = [1], . . . , [n].
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Mathematical formulations are required to describe the mappings. These formulations contain unknown
parameters which have to be identified by an inverse analysis. For Type 2 and Type 3 mappings, these
parameters are fuzzy numbers or intervals. An optimization task can be formulated to identify deterministic,
interval or fuzzy parameters.

2.4. OPTIMIZATION TASK

The objective of an inverse analysis is to identify unknown deterministic, interval or fuzzy parameters.
Forward analyses with deterministic processesx(τ), interval processes̄x(τ) or fuzzy processes̃x(τ) and
predefined sets of parameters lead to interval processesz̄∗(τ) or fuzzy processes̃z∗(τ). An optimization
task can be performed to minimize the difference between computed results (z̄∗(τ) or z̃∗(τ)) and available
data (̄z(τ) or z̃(τ)). The difference between computed and collected interval data is obtained by

Eh =
1

N

1

K

N
∑

n=1

[

K
∑

k=1

{

(

[n]
l
zk −

[n]
l
z∗k

)2
+
(

[n]
r
zk −

[n]
r
z∗k

)2
}

]

, (15)

whereas

Eh =
1

N

1

K

1

S

N
∑

n=1

[

K
∑

k=1

{

S
∑

s=1

[

(

[n]
sl

zk −
[n]
sl

z∗k

)2
+
(

[n]
sr

zk −
[n]
sr

z∗k

)2
]

}]

(16)

is used to evaluate the distance between computed and collected fuzzy data. If different patternsh =
1, . . . , H are available for parameter identification, the averaged error can be computed by

Eav =
1

H

H
∑

h=1

[

Eh
]

. (17)

The scalingwith the number of patternsH, the number of time stepsN , the number of componentsK, and
the number ofα-cutsS in the above Eqs. (15) to (17) is done due to practical reasons. It is easier to compare
and evaluate errors with different selected and available numbers ofH, N , K, andS.

Deterministic, interval or fuzzy parameters can be identified using Eq. (17) as objective function to be
minimized. The optimization task can be solved by application of swarm intelligence.

3. Particle swarm optimization

Particle swarm optimization is a random search strategy motivated by social behavior of group individuals.
Individuals of the group (swarm) are denoted as particles. Each particle is represented by a vector including
all unknown parameters of the objective function – the space of search variables. First, the parameters of
all particlesi = 1, . . . , I of the swarm are randomly initialized. Then, the objective function is evaluated
for each particle. The new position of each particle, i.e. a new set of parameters, is defined by its own
search history, information of other particles, and random influences. Different ways of sharing information
between particles in the swarm can be chosen, see e.g. (Fontan et al., 2011). Here, a fully connected topology
is selected, i.e. each particle shares its information with all other particles in the swarm. This procedure is
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applied tomultiple runs(r) = (1), . . . , (R) until a predefined number of runsR is reached or the functional
value of the objective function (Eq. (17)) is less than a predefined error value.

3.1. DETERMINISTIC PARAMETERS

Particle swarm optimization with deterministic particles can be used for parameter identification in case of
Type 1 mapping (Eq. (12)). Each particlei is represented by a vectorai, which hasq = 1, . . . , Q components
ai

q. The number of componentsQ is equal to the number of search variables, i.e. the dimension of the search
space.

In each run(r), the objective function (Eq. (17)) is evaluated for each particle. The position of the best
particle in the swarm, i.e. the set of parameters with the least value of the objective function in all runs, is
stored as vectorg (global best). Additionally, the best positions of each particlei are stored as vectorspi

(individual best).
Each componentq of particlei is updated by

(r+1)ai
q = (r)ai

q + (r)∆ai
q , (18)

with
(r)∆ai

q = c3 ·
(r−1)∆ai

q + c1 · d ·
(

pi
q −

(r)ai
q

)

+ c2 · e ·
(

gq −
(r)ai

q

)

(19)

for the next run(r + 1). In Eq. (19),d ande are realizations of independent uniformly distributed random
variables in[0, 1]. For each particlei and each componentq, different samples ofd ande are chosen. The
constantsc1, c2, andc3 are introduced to control the search behavior of the swarm. They are used to allow
the selection of different weights for historical, individual best, and global best influences. It is common to
restrict(r)∆ai

q to

∆minaq ≤ (r)∆ai
q ≤ ∆maxaq , (20)

where∆minaq and∆maxaq can be defined with respect to the assumed width of theq-th component, i.e. the
q-th dimension of the search space, see e.g. (Eberhart and Shi, 2001).

The following conditions are defined for the first run(r) = (1):

− random initialization of all particles(1)ai in the search space

− initial position is equal to individual best

− after evaluation of the objective function for all particles, best initial position is equal to global best

− prior incremental update is zero ((0)∆ai
q = 0)

3.2. INTERVAL PARAMETERS

If interval parameters are required to map deterministic processesx(τ) or interval processes̄x(τ) onto
interval processes̄z(τ) (Type 2 and Type 3 mappings), an extension of the presented well known PSO
algorithm is necessary. Particlesāi, global best̄g, and individual best̄pi of each particle are defined as
interval numbers according to Section 2.
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The update
(r+1)āi

q = (r)āi
q + (r)∆āi

q (21)

is done by interval arithmetic, see e.g. (Moore, 1979). For the left bound

(r)
l
∆ai

q =
(r)
m∆ai

q −

(r)
w ∆ai

q

2
(22)

and theright bound

(r)
r ∆ai

q =
(r)
m∆ai

q +

(r)
w ∆ai

q

2
(23)

of (r)∆āi
q, the midpoint and width representation of intervals is used, compare Eqs. (2) to (5). The incre-

mental update of the midpoint is computed by

(r)
m∆ai

q = c3 ·
(r−1)

m∆ai
q + c1 · d ·

(

mpi
q −

(r)
mai

q

)

+ c2 · e ·
(

mgq −
(r)
mai

q

)

. (24)

The width of interval(r)∆āi
q is obtained by

(r)
w ∆ai

q =







(r)
w ∆âi

q, if (r)
w ∆âi

q ≥ 0

0, if (r)
w ∆âi

q < 0 ,
(25)

with
(r)
w ∆âi

q = c3 ·
(r−1)

w∆ai
q + c1 · d ·

(

wpi
q −

(r)
w ai

q

)

+ c2 · e ·
(

wgq −
(r)
w ai

q

)

. (26)

It should be noted, that different realizations (dande) of independent uniformly distributed random variables
are used in Eqs. (24) and (26).

3.3. FUZZY PARAMETERS

For Type 2 and Type 3 mappings of deterministic processesx(τ) or fuzzy processes̃x(τ) onto fuzzy
processes̃z(τ), fuzzy parameters are required. PSO can be extended to fuzzy particles, i.e. particlesãi,
global best̃g, and individual best̃pi of each particle are fuzzy numbers, see Section 2.

Fuzzy arithmetic operations are performed (interval arithmetic for eachα-cut) to get the updated particle
position

(r+1)ãi
q = (r)ãi

q + (r)∆ãi
q . (27)

For (r)∆ãi
q, the left and right bounds of eachα-cuts are given by

(r)
sl ∆ai

q = (r)
sm ∆ai

q −

(r)
sw∆ai

q

2
(28)

and

(r)
sr∆ai

q = (r)
sm ∆ai

q +

(r)
sw∆ai

q

2
, (29)
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respectively. Forα-cuts = 1, the incremental update of the midpoint

(r)
1m ∆ai

q = c3 ·
(r−1)

1m ∆ai
q + c1 · d ·

(

1mpi
q −

(r)
1m ai

q

)

+ c2 · e ·
(

mgq −
(r)

1m ai
q

)

(30)

is computed similar to the interval approach in Section 3.2, compare Eq. (24). The same holds for the width
of the interval(r)1∆āi

q, i.e.

(r)
1w∆ai

q =







(r)
1w∆âi

q, if (r)
1w∆âi

q ≥ 0

0, if (r)
1w∆âi

q < 0 ,
(31)

with
(r)
1w∆âi

q = c3 ·
(r−1)

1w ∆ai
q + c1 · d ·

(

1wpi
q −

(r)
1wai

q

)

+ c2 · e ·
(

1wgq −
(r)
1wai

q

)

. (32)

For all otherα-cuts (s >1), three cases are distinguished for the incremental update of the midpoint

(r)
sm ∆ai

q =



















(r)
sm ∆âi

q, if (r)
s−1l ∆ai

q ≤
(r)

sm ∆âi
q ≤

(r)
s−1r∆ai

q

(r)
s−1l ∆ai

q, if (r)
s−1l ∆ai

q >
(r)

sm ∆âi
q

(r)
s−1r∆ai

q, if (r)
s−1r∆ai

q <
(r)

sm ∆âi
q ,

(33)

with
(r)

sm ∆âi
q = c3 ·

(r−1)
sm ∆ai

q + c1 · d ·
(

smpi
q −

(r)
sm ai

q

)

+ c2 · e ·
(

smgq −
(r)

sm ai
q

)

(34)

and for the incremental update of the width

(r)
sw∆ai

q =



















(r)
sw∆âi

q, if 0 ≤
(r)
sw∆âi

q ≤
(r)
sw∆maxâ

i
q

(r)
sw∆maxâ

i
q, if (r)

sw∆âi
q >

(r)
sw∆maxâ

i
q

0, if (r)
sw∆âi

q < 0 ,

(35)

with
(r)
sw∆âi

q = c3 ·
(r−1)

sw ∆ai
q + c1 · d ·

(

swpi
q −

(r)
swai

q

)

+ c2 · e ·
(

swgq −
(r)
swai

q

)

(36)

and
(r)
sw∆maxâ

i
q = 2 · min

[(

(r)
sm ∆ai

q −
(r)

s−1l ∆ai
q

)

,
(

(r)
s−1r∆ai

q −
(r)

sm ∆ai
q

)]

. (37)

Different realizationsd ande of independent uniformly distributed random variables are used for eachα-cut.
If α-cuts = S is restricted to give deterministic numbers, only midpoints are updated forα-cutS.

4. Artificial neural networks for interval and fuzzy data

Artificial neural network concepts can be applied to map deterministic processesx(τ), interval processes
x̄(τ) or fuzzy processes̃x(τ) onto interval processes̄z(τ) or fuzzy processes̃z(τ). Two ways of computation
are possible to process interval or fuzzy data with neural networks:
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1. interval arithmetic (for eachα-cut)

2. optimization (α-level optimization)

Interval arithmetic approaches for deterministic network parameters are presented in (Graf et al., 2010).
Extensions for a priori defined and trainable interval or fuzzy network parameters are published in (Freitag
et al., 2011c) and (Freitag et al., 2011a), respectively. Algorithms for signal computation withα-level op-
timization can be found in (Freitag, 2010) and (Freitag et al., 2011b). In the following, the neural network
approaches are formulated for fuzzy data and Type 3 mapping, see Eq. (14). However, they can also be
applied to interval data or Type 1 and Type 2 mappings, which is straightforward.

4.1. FEED FORWARD NEURAL NETWORKS

If the fuzzy number[n]z̃k of time step[n] depends on thej = 1, . . . , J current fuzzy numbers[n]x̃j only,
feed forward networks can be used as mathematical formulation of the mappings introduced in Section 2.3.
Neural networks with feed forward architecture consist of(M) layers, i.e. an input layer,(M − 2) hidden
layers and an output layer. The number of input and output neurons is given by the number of components
J and K, respectively. The number of hidden layers and neurons has to be defined with respect to the
complexity of the formulation. In general, fully connected networks are considered, i.e. each neuron in
layer(m) has synaptic connections to all neurons in the following layer(m + 1), see Figure 2. For specific
applications, special network structures may be created, see Section 5.

1 m M2

[ ]n

J
x
~

[ ]n

1x
~

[ ]n

K
z
~

[ ]n

1z
~

neuron i

Figure 2. Feed forward neural network.

In eachtime step[n], the fuzzy components[n]x̃j (e.g. structural actions) may be transformed to dimen-
sionless fuzzy network input signals, e.g.

[n]x̃
(1)
j =

[n]x̃j

xsc
j

. (38)

The dimensionlessnetwork output signals[n]x̃
(M)
k may be scaled to fuzzy components (e.g. structural

responses)
[n]z̃k = [n]x̃

(M)
k · zsc

k . (39)

For each componentj andk, the scaling parametersxsc
j andzsc

k can be defined as the maximum absolute
value of its possible positive and / or negative values.
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The signalsof feed forward neural networks are computed layer by layer. In the hidden and output
neurons, fuzzy output signals

[n]x̃
(m)
i = ϕ̃

(m)
i

(

H
∑

h=1

[

[n]x̃
(m−1)
h · w̃

(m)
ih

]

+ b̃
(m)
i

)

(40)

are computed by means of a fuzzy activation functionϕ̃
(m)
i (.). These fuzzy output signals are transfered

by synaptic connections to the neurons of the next layer. The argument of the fuzzy activation function of
neuroni in layer (m) contains all fuzzy output signals[n]x̃

(m−1)
h of the previous layer(m − 1) multiplied

by the fuzzy weights̃w(m)
ih and a fuzzy bias valuẽb(m)

i . Various types of monotonic and differentiable fuzzy
activation functions can be used, see e.g. (Freitag, 2010).

The fuzzy weights, fuzzy bias values and perhaps parameters of the fuzzy activation function are un-
known fuzzy network parameters. The PSO approaches presented in Section 3 can be used for parameter
identification. It is proposed to initialize the particle components representing fuzzy weights and fuzzy bias
values randomly, e.g. in[−1, 1]. In general, the values of these fuzzy parameters are not restricted in the
search space. The search space can be restricted with respect to selected particle components representing
the fuzzy factors of the fuzzy activation functions.

4.2. RECURRENT NEURAL NETWORKS

More general is the assumption, that allj = 1, . . . , J fuzzy numbers[r]x̃j of prior and current time steps
[r] = [1], . . . , [n] have influences to the current fuzzy number[n]z̃k of time step[n]. In this case, recurrent
neural networks are suitable to formulate the mappings according to Section 2.3.

In addition to feed forward networks, context neurons are used to consider the whole history for the
computation of the current fuzzy number[n]z̃k of time step[n]. All hidden and output neurons are connected
to their context neurons, see Figure 3.

In each context neuron, the fuzzy output signal is transfered to the fuzzy context signal

[n]ỹ
(m)
i = [n]x̃

(m)
i + [n−1]ỹ

(m)
i · λ̃

(m)
i . (41)

The influence of the previous fuzzy context signal[n−1]ỹ
(m)
i is considered by the fuzzy feedback factorλ̃

(m)
i .

Fuzzy feedback factors̃λ(m)
i are additional fuzzy network parameters defined in the interval[0, 1].

Each context neuron sends weighted fuzzy signals with a time delay of one time step to all hidden or
output neurons in its layer. Hence, Eq. (40) must be extended to

[n]x̃
(m)
i = ϕ̃

(m)
i





H
∑

h=1

[

[n]x̃
(m−1)
h · w̃

(m)
ih

]

+
I
∑

q=1

[

[n−1]ỹ(m)
q · c̃

(m)
iq

]

+ b̃
(m)
i



 (42)

in order to consider the fuzzy context signals[n−1]ỹ
(m)
q multiplied by the fuzzy context weights̃c(m)

iq . It
should be noted, that a feed forward neural network is obtained as a special case of the discussed recurrent
neural network, if all fuzzy context weights are set to zero.

The fuzzy context weights̃c(m)
iq and fuzzy feedback factors̃λ(m)

i are additional unknown fuzzy network
parameters, which can be identified by the introduced PSO approaches, see Section 3. The search space
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Figure 3. Recurrent neural network.

must berestricted to[0, 1] for the particle components, which represent fuzzy feedback factorsλ̃
(m)
i . If an

updated interval bound is less than zero or greater than one, it is set to zero or to one, respectively. The
search space is not restricted for fuzzy context weightsc̃

(m)
iq . They can be initialized randomly in[−1, 1].

5. Application for time-dependent material behavior

The presented neural network approaches can be applied to describe uncertain material behavior. Uncertain
nonlinear stress-strain dependencies can be identified with feed forward neural networks for elastic ma-
terial behavior. For nonlinear stress-strain-time dependencies (viscous material behavior), recurrent neural
networks can be utilized. Anα-level optimization is applied to compute the network outputs.

Fuzzy strain processes can be mapped onto fuzzy stress processes or vice versa. Here, an approach for
strain to stress mapping is presented. In this case, the fuzzy processesx̃(τ) represent fuzzy strain processes
ε̃(τ) and the fuzzy processesz̃(τ) correspond to fuzzy stress processesσ̃(τ). The strain and stress vectors
include all components, which are required for strain and stress tensors (J= K = 6 for 3D, J = K = 3
for 2D andJ = K = 1 for 1D material models). The fuzzy network parameters can be identified by results
of experimental investigations.

5.1. TANGENTIAL STIFFNESS

Applications of neural network based constitutive models within the finite element method require the
tangential stiffness matrix of the material description[n]C̃ in order to get the tangential system stiffness
matrix. The components of the uncertain tangential stiffness matrix

[n]C̃kj =
∂[n]∆σ̃k

∂[n]∆ε̃j

(43)
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are determinedin linearized form by the partial derivatives of the incremental fuzzy stress components

[n]∆σ̃k = [n]σ̃k − [n−1]σ̃k (44)

with respect to the incremental fuzzy strain components

[n]∆ε̃j = [n]ε̃j −
[n−1]ε̃j . (45)

The incremental fuzzy stresses

[n]∆σ̃k =
(

[n]x̃
(M)
k − [n−1]x̃

(M)
k

)

· zsc
k (46)

contain the fuzzy output signals of the neural network[n]x̃
(M)
k (time step[n]) and [n−1]x̃

(M)
k (time step

[n − 1]). The chain rule is applied two times in Eq. (43), which leads to

∂[n]∆σ̃k

∂[n]∆ε̃j

=
∂
(

[n]σ̃k − [n−1]σ̃k

)

∂[n]∆ε̃j

=
∂[n]σ̃k

∂[n]∆ε̃j

=
∂[n]σ̃k

∂[n]x̃
(M)
k

·
∂[n]x̃

(M)
k

∂[n]x̃
(1)
j

·
∂[n]x̃

(1)
j

∂[n]∆ε̃j

. (47)

The partialderivatives of the fuzzy stress components with respect to the fuzzy output signals in Eq. (47)
are obtained by

∂[n]σ̃k

∂[n]x̃
(M)
k

=
∂
(

[n]x̃
(M)
k · zsc

k

)

∂[n]x̃
(M)
k

= zsc
k . (48)

The partialderivatives of the fuzzy input signals with respect to the incremental fuzzy strain components

∂[n]x̃
(1)
j

∂[n]∆ε̃j

=
∂

(

[n]ε̃j

xsc
j

)

∂[n]∆ε̃j

=
1

xsc
j

·
∂
(

[n]∆ε̃j + [n−1]ε̃j

)

∂[n]∆ε̃j

=
1

xsc
j

(49)

in Eq. (47) are evaluated using Eq. (38) (with[n]x̃j = [n]ε̃j) and (45). Eqs. (48) and (49) are substituted in
Eq. (47) and hence, the components of the tangential stiffness matrix are obtained by

[n]C̃kj =
zsc
k

xsc
j

·
∂[n]x̃

(M)
k

∂[n]x̃
(1)
j

. (50)

The partial derivatives of the network output signals[n]x̃
(M)
k with respect to the network input signals

[n]x̃
(1)
j are evaluated using multiple applications of the chain rule. An efficient algorithm to compute these

partial derivatives is presented in (Freitag et al., 2011b).
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5.2. SPECIAL NETWORK STRUCTURES

Physical boundary conditions of investigated materials can be considered by creating special network struc-
tures. The tangential stiffness matrix should be symmetric for materials with isotropic properties. This
condition ([n]C̃kj = [n]C̃jk) can be fulfilled by

∂[n]x̃
(M)
k

∂[n]x̃
(1)
j

=
∂[n]x̃

(M)
j

∂[n]x̃
(1)
k

, (51)

if xsc
j = xsc

k andzsc
k = zsc

j , see Eq. (50). Symmetric partial derivatives of the network output signals[n]x̃
(M)
k

with respect to the network input signals[n]x̃
(1)
j can be guaranteed for networks with three layers and linear

activation functions (with the same slope parameter) in the output layer. In Figure 4, the symmetry of the
synaptic connections is exemplified. The symmetry condition for deterministic, interval or fuzzy weights

w̃
(2)
ij = w̃

(3)
ji (52)

is also valid for recurrent neural networks and arbitrary numbers of neurons in the three layers.

[ ]n
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~

[ ]n

1z
~

Figure 4. Neural network with symmetric derivatives.

Some stressand strain components are decoupled for isotropic or orthotropic behavior, i.e. the stress
component[n]σ̃k only depends on its corresponding strain component[n]ε̃k. This can be achieved by partially
connected neural networks, see Figure 5. Selected weights and context weights are set to zero, which is
equivalent to cut synaptic connections in a fully connected feed forward or recurrent neural network.

A simple feed forward network with two layers (no hidden layers) and linear activation functions (identity
function) is equivalent to Hooke’s law for linear elastic material. In Figure 6, the neural network representa-
tion of linear elastic material is demonstrated for the 3D case. The deterministic, interval or fuzzy weights
arew̃11 = w̃22 = w̃33 = c̃1, w̃44 = w̃55 = w̃66 = c̃2, w̃12 = w̃13 = w̃23 = w̃21 = w̃31 = w̃32 = c̃3 for
isotropic material behavior, see Eq. (53).

C̃ =



















c̃1 c̃3 c̃3 0 0 0
c̃3 c̃1 c̃3 0 0 0
c̃3 c̃3 c̃1 0 0 0
0 0 0 c̃2 0 0
0 0 0 0 c̃2 0
0 0 0 0 0 c̃2



















(53)
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Figure 5. Partially connected neural network with symmetric derivatives.
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Figure 6. Feed forward neural network for linear elastic material behavior.

6. Examples

6.1. VERIFICATION WITH 1D FRACTIONAL RHEOLOGICAL MODEL

The presented recurrent neural network approach is applied to identify and to predict uncertain stress-strain-
time dependencies of the fuzzy fractional Newton element. The differential equation

σ̃(τ) = p̃
dr̃

dτ r̃
ε̃(τ) (54)

of this rheological element, see e.g. (Oeser and Freitag, 2009), contains a fractional derivative of strainε̃(τ)
with respect to timeτ . In this example,̃p is defined as deterministic parameterp̃ = p = 101 000 (MPa sr).
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The operator̃r represents the order of the derivative. It is a fuzzy number between zero (linear elastic spring)
and one (dashpot). Here, it is defined as a fuzzy number with triangular shaper̃ = 〈0.13, 0.14, 0.15〉).

The fractional differential equation (54) is solved by the Laplace transform. The strain boundary condi-
tion ε̃(τ) = ε̃∗ is used to obtain the relaxation function of the fuzzy fractional Newton element. Convolution
of the relaxation function and time step discretization of the fuzzy strain process (equidistant time steps∆τ )
lead to

[n]σ̃ =
n
∑

i=1

{

p · [i]∆ε̃

Γ(2 − r̃) · ∆τ r̃

[

(n + 1 − i)(1−r̃) − (n − i)(1−r̃)
]

}

. (55)

It can be seen, that the stress in time step[n] dependents on the current strain and the whole strain history.
Eq. (55) is utilized to verify the presented recurrent neural network approach. Training and validation
patterns are computed by solving Eq. (55) within a fuzzy analysis (FA) (α-level optimization (M̈oller et
al., 2000)). The time step length∆τ = 100 s is chosen. Threeα-cuts (α1 = 0, α2 = 0.5 andα3 = 1)
are evaluated. The same fuzzy stress and fuzzy strain processes as presented in (Freitag et al., 2010b) are
utilized, see Figures 7 to 10.
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Figure 7. Fuzzy strain processes for network training.

The five fuzzy strain processes and the corresponding five fuzzy stress processes plotted in Figures 7
and 8 are used to train a recurrent neural network for Type 3 mapping (ε̃(τ) ˜7→ σ̃(τ)). Nonlinear activation
functions in the form of the area hyperbolic sine (arsinh) are used in the hidden neurons and a linear
activation function is used in the output neuron. The signals of the recurrent neural network are computed by
interval arithmetic operations for eachα-cut. The developed PSO approach for fuzzy numbers is applied to
identify the fuzzy network parameters. The number of particles is selected asI = 20. The control parameters
(c1 = c2 = 1.494 andc3 = 0.729) are defined according to (Eberhart and Shi, 2001). The training results
of the recurrent neural network (RNN) are shown in Figure 8.

The five additional fuzzy strain processes in Figure 9 are used to validate the identified uncertain stress-
strain-time dependency. The recurrent neural network predictions show a very good agreement with the
desired responses obtained by a fuzzy analysis using Eq. (55), see Figure 10.
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Figure 8. Fuzzy stress processes for network training.
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Figure 9. Fuzzy strain processes for network validation.

The samequality is achieved in comparison with the results in (Freitag et al., 2010b), where a backprop-
agation training algorithm has been applied. But here, a recurrent neural network with three hidden neurons
and four context neurons (1− 3 − 1 architecture) was sufficient for PSO training, whereas three hidden
layers with13 hidden and14 context neurons in total (1− 5 − 5 − 3 − 1 architecture) were required for
backpropagation training.
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Figure 10. Fuzzy stressprocesses for network validation.

6.2. VERIFICATION WITH 3D MATERIAL MODEL

The proposed strategy for symmetric and decoupled stiffness is verified by a 3D linear elastic material
model. Here, results for the mapping of deterministic strain processes onto deterministic stress processes
are presented (special case of Type 1 mapping). The modulus of elasticityE = 210 000 MPa and Poisson’s
ratioν = 0.2 lead to the deterministic tangential stiffness matrix

C =



















233333 58333 58333 0 0 0
58333 233333 58333 0 0 0
58333 58333 233333 0 0 0

0 0 0 87500 0 0
0 0 0 0 87500 0
0 0 0 0 0 87500



















MPa . (56)

Deterministic stress and strain processes (two patterns withN = 1000 time steps each) are used to train and
validate a recurrent neural network with one hidden layer comprising6 neurons (6− 6 − 6 architecture).
Linear activation functions are used in the output neurons and nonlinear activation functions in the form of
the area hyperbolic sine are used in the hidden neurons. The network has12 context neurons to consider
possible history dependencies in the data series. However, the time-independent mapping of the strain vector
[n]ε onto the stress vector[n]σ should be learned by the recurrent neural network.

The discussed PSO approach is applied to identify the deterministic network parameters. The same
number of particles (I= 20) and values for the constantsc1 = c2 = 1.494 andc3 = 0.729 are used as in
the previous example. The symmetry condition of Eq. (52) is used to get a symmetric tangential stiffness
matrix, which is not possible by applying backpropagation training algorithms, see (Freitag et al., 2011b).

 

 
 
 
5th International Conference on Reliable Engineering Computing (REC 2012)

 
 
 
 
 

 
 
 
167



Steffen Freitag, Rafi L. Muhanna and Wolfgang Graf

The trainingpattern has been presented105 times to the network to identify the linearity and the time-
independence between the strain and stress processes. As a result, the tangential stiffness matrix of the
training pattern (Tr)

CTr =



















232826 58225 58191 0 0 0
58225 232769 58211 0 0 0
58191 58211 232743 0 0 0

0 0 0 87373 0 0
0 0 0 0 87372 0
0 0 0 0 0 87369



















MPa (57)

is obtained, which contains the mean values of the partial derivatives of the stress components with respect
to the strain components considering all1000 time steps.

The network prediction has been verified with a second pattern comprisingN = 1000 time steps, too.
The mean values of the partial derivatives of the stress components with respect to the strain components of
the validation pattern (V) are summarized as

CV =



















232911 58247 58210 0 0 0
58247 232856 58232 0 0 0
58210 58232 232824 0 0 0

0 0 0 87385 0 0
0 0 0 0 87381 0
0 0 0 0 0 87364



















MPa . (58)

The error is less than0.25% for all components of the tangential stiffness matrix computed with the training
and the validation patterns. In future works, symmetric network structures will also be applied to describe
uncertain stress-strain-time dependencies.

7. Conclusion

In this paper, a new training strategy for artificial neural networks is presented. It is based on swarm
intelligence. PSO approaches for interval and fuzzy numbers are developed accounting for uncertainty in
measurements. These approaches have the flexibility of modifying all parameters during training of recurrent
neural networks. Additionally, special network structures can be created, which is important for using neural
networks as constitutive models. An application for time-dependent material behavior is presented. Results
of verifications with a fuzzy fractional Newton element and a 3D linear elastic material model show high
approximation quality of the developed neural network approaches. The new approaches can be applied to
measured interval and fuzzy data. Recurrent neural networks for uncertain data can be utilized as constitutive
models within interval, fuzzy, and fuzzy stochastic finite element analyses.
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Abstract: An efficient yield optimization technique for the microwave circuits is introduced. Generally, in 

the classical design and optimization problem, we look for one single point, in the designable parameter 

space which satisfies the design specifications. This solution is impractical from the manufacturing point of 

view since there are manufacturing tolerances and uncertainties (i.e., statistical fluctuations of the circuit 

designable parameters about their nominal values).These fluctuations may reduce parametric yield which is 

the percentage of the circuits in the manufacturing processes satisfying the design specifications. In this 

paper, reducing the undesirable effects of these statistical fluctuations is achieved. 

Yield optimization of microwave circuits is obstructed by the high expense of electromagnetic 

simulations required in the yield estimation process in addition to the absence of any gradient information. 

In this paper, Space Mapping (SM) surrogates using the generalized space mapping (GSM) technology is 

integrated with a derivative-free trust region optimization method (NEWUOA: new unconstrained 

optimization algorithm). Moreover, a variance reduction technique is used in the sampling process. 

Implementing VRT reduces the number of samples required to estimate acceptable yield values. In this 

paper the Latin Hypercube sampling (LHS) is employed in the sampling process. The technique exploits a 

SM-developed surrogate using minimax optimizer in the yield maximization process. Our novel approach is 

illustrated by practical examples showing its efficiency. 
 

Keywords: CAD; yield optimization; EM simulation; NEWUOA; space mapping; statistical analysis. 

 

 

 

1. Introduction 

 

Yield optimization is of a great interest for the microwave CAD society. Yield optimization is a design 

problem which looks for nominal values of circuit parameters that minimizes the undesirable effects on 

circuit performance. Statistical yield optimization depends on performing multitude of circuit simulations. 

Yet using the full–wave EM simulator in the design centering process, in the traditional way, incorporates 

high computational effort which may be prohibitive.  

In general, circuit parameters are subject to known but unavoidable statistical fluctuations inherent to 

the manufacturing process used, due to environmental effects during operations, or due to manufacturing 

tolerances and uncertainties. Generally, the traditional microwave circuit optimization trend is to find a 

minimax design of the circuit. However, in the design space the location of the minimax point may be 

closer to the boundaries of the feasible region (a region in the design space where the design specifications 

are satisfied). This may cause the circuit performance to violate the design specifications. Yield 

optimization problem seeks for nominal values of circuit parameters which minimizes the undesirable 
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effects of these statistical fluctuations. Namely, it seeks for the design center which maximizes the 

probability of satisfying the design specification.  

In manufacturing, the probability of satisfying the design specification by an outcome is called the 

parametric yield which can be approximated by the percentage of the manufactured circuits satisfying the 

design specifications (Bandler et. al., 1993 and 2002). The process seeking the nominal values of 

designable parameters that maximize the parametric yield is usually known as yield maximization or design 

centering.  

Yield optimization approaches can be classified as statistical and geometrical. Geometrical approaches 

approximate the feasible region using a convex body, e.g., a hyperellipsoid. Then the center of this body is 

considered as the design center. One of the popular methods used for yield optimization is the ellipsoidal 

technique (Abdel-Malek et. al., 2006). These approaches have fast convergence for convex and small 

dimensional problems. Statistical approaches, on the other hand, optimize the yield function in a 

straightforward way, regardless the size of the problem or its convexity (Hassan et. al., 2006 and 2011). 

Hybrid methods, combining both approaches, may also be used for solving such problems. 

The statistical yield optimization process has some permanent special difficulties. One of these 

difficulties is the cost of finding a yield value for a given nominal design parameters. Yield values are 

estimated through a statistical analysis algorithm, e.g., Monte Carlo analysis. EM simulations required for 

the generated samples represent an obstacle in applying a traditional optimization process. Another 

difficulty in statistical yield optimization is the need for a derivative-free optimizer due to the absence of 

any exact or approximate gradient information about the yield. Any method can be used to approximate the 

gradient of the yield highly increases the computational overhead.  

The new proposed approach integrates three strategies to overcome these difficulties. First, a variance 

reduction technique (VRT) is used in the sampling process (McKay et. al., 1979). Implementing VRT 

reduces the number of samples required to estimate acceptable yield values. In this paper the Latin 

Hypercube sampling (LHS) (Stein, 1987) is employed in the sampling process. Second, a derivative free 

trust region method is utilized in the optimization process. The general framework of these methods is to 

iteratively build and update a smooth model to locally approximate the expensive yield function in a trust 

region around the current solution (Hassan et. al., 2006). Then the model is optimized over the trust region. 

In this paper, NEWUOA algorithm developed by Powell (Powell, 2006 and 2007) which employs quadratic 

models to approximate objective function is used.  Third, the space mapping (SM) technique (Bandler et al., 

2004; Koziel et. al., 2006; Cheng et. al., 2010) is used to reduce the simulation computational effort. SM 

utilizes fast physically-based coarse models to replace the time-consuming, computationally-expensive full-

wave fine models so that a great reduction in computations and simulations can be achieved. In our 

proposed approach, we employ the generalized space mapping (GSM) (Koziel et. al., 2006) to construct a 

space-mapped surrogate model, based on the fast coarse model, matching the fine model response with high 

accuracy. Therefore, in our proposed approach presented in this paper, we integrate NEWUOA algorithm 

(Powell, 2006) with the GSM technique (Koziel et. al., 2006) in addition to LHS technique (McKay et. al., 

1979) to get our yield maximization technique for microwave circuits. The technique makes use of a 

surrogate, a SM-based, developed by any other circuit optimizer, e.g., minimax optimizer, in the yield 

maximization process. This technique may be of great benefits to whom interested in modeling and 

constructing surrogates. Practical examples to demonstrate the new approach are included. 
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2. The New Approach for Yield Optimization 

 

2.1. INTRODUCTION 

 

The desired performance of a microwave circuit is described by some performance specifications set by the 

designer. These specifications or constraints define a region in the designable parameter space known as the 

feasible region, which can be defined as 
 

                                           (1) 

 

where        is the vector of the design parameters,   :         is the fine model response vector, n 

is the number of design parameters, m is the number of constraints,    is the i-th performance function, and 

   is corresponding specification bound. Every    F  is considered as an acceptable microwave circuit. In 

general, circuit parameters are subject to known but unavoidable statistical fluctuations. These arise, for 

example, during manufacturing or due models uncertainties. To simulate these statistical fluctuations circuit 

parameters are assumed to be random variables with a joint probability density function p( ,  0), where 

 0      is the vector of nominal parameter values. Therefore, the yield Y can be defined as the probability 

of satisfying the design specifications (Hassan et. al., 2006) 
 

               

  

     (2) 

 

Hence, the yield optimization problem is formulated as: 
 

   
  

        (3) 

 

The yield integral in Eq. (2) cannot be exactly evaluated as the feasible region F is not explicitly 

defined. Instead, the yield values at a nominal vector    can be estimated by generating a set of samples in 

the parameter space using the pdf of design parameters. Let     j =1, 2,…, K be the generated samples 

around the nominal parameter vector   . For each sample, an acceptance index      
     , defined by 

 

    
         

                           

                    
   

(4) 

 

where F , defined by Eq. (1), is evaluated. If K is sufficiently large, the yield function at the nominal 

parameter value    can be estimated as 
 

        
 

 
       

 

   

     (5) 

 

Hence, the yield value at a nominal vector    can be estimated by generating a set of samples in the 

parameter space using the pdf of design parameters. The circuit is simulated for each sampling point. The 

percentage of acceptable circuits gives an estimate of the yield value at    (Bandler et. al., 2002). 
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In our new approach, the yield function in Eq. (2) will be optimized using the NEWUOA algorithm. 

Also, a lot of the computational efforts with the high-fidelity “fine” model EM simulations can be alleviated 

by creating an accurate, efficient and simpler SM surrogate model instead of the fine one. Here, the GSM 

(Koziel et. al., 2006) is employed where the feasible region can be approximated by 
 

                                        (6) 

 

where    :         is the GSM surrogate model response vector. In the proposed technique, a well-

constructed SM surrogate will be used by the NEWUOA algorithm to optimize the yield.  

 

2.2. GENERALIZED SPACE MAPPING (GSM) SURROGATE (Koziel et. al., 2006) 

 

The GSM-based surrogate model is constructed, using a computationally fast coarse mode with input and 

output mappings, in the form 
 

  
               

                      
   (7) 

 

where   
   is the current optimal parameter vector,           is a diagonal matrix,            is the 

coarse model response vector,          ,          , and          is given by  
 

           
            

    
       (8) 

 

where             is the fine model response vector, and           is given by 
 

           
            

    
           (9) 

 

where               and               are the Jacobian matrices of the fine and coarse model 

responses w.r.t. the corresponding points, respectively. The mapping parameters          are obtained by 

the parameter extraction (PE) optimization process given by 
 

                 
     

              (10) 

 

where    represents the response deviation residual of the surrogate from the fine model and is given by   
 

                     
             

       

 

   

 

          
              

         

 

   

 

(11) 
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where the coefficients            are chosen according to the nature of the design problem. Hence, the 

surrogate model is updated by the new mapping parameters obtained from Eq. (11), then the new surrogate 

model obtained is optimized according to the design specification required to Eq. (7), and so, the process 

will be terminated when the final design reached the user-predefined accuracy. 

 

2.3. NEWUOA ALGORITHM (Powell, 2006) 
 

Assume that   
     is the surrogate model obtained in the (i − 1)th SM iteration with a design center 

(nominal parameter vector)   
 . The estimated yield value, Y, is submitted to the optimizer by a subroutine 

that employs LHS technique. The computationally expensive yield function is locally approximated around 

a current iterate   
  by a much cheaper quadratic model M(x) in the form 

 

                 
   

 

 
       

  
 
         

    
(12) 

 

where             and the symmetric matrix          are the unknown parameters of M(x). These 

parameters are determined by interpolating the yield at m = 2n + 1 points using the interpolating conditions 
 

                                 (13) 

 

where    are the interpolation points. The freedom in M is taken up by minimizing the Frobenius norm of 

the change in the Hessian matrix H, i.e.,                . Let t is the index of the interpolation point 

which provides the best yield value such that:                       .  

The model in Eq. (12) is then maximized, instead of the yield function, over a current trust region. Once 

M has been identified, a step s has to be added to     by solving the following trust region sub-problem 
 

   
 

                                  (14) 

 

where   is the current trust region radius. This radius    is revised based on the agreement between the 

model and the actual function at the new point         measured by the 
 

 

Thus, the trust region radius   has a lower bound   in the interval [ fin,  ini]. The parameter   is utilized 

to maintain enough distance between the interpolation points (Powell, 2006), where  ini and  fin are user-

defined initial and final radii respectively. The value of Δ is revised nearly at each iteration. Let Δold and 

Δnew be the old and the new values of Δ. The choice of Δnew depends on the ratio in Eq. (15), and the 

Euclidean length of the step s.  

The algorithm is terminated when the trust region radius reaches the lower bound  fin that fixes the final 

accuracy required in the parameters (Powell, 2007).  

 

 

    
              

             
  (15) 
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2.4. VARIANCE REDUCTION TECHNIQUE (VRT) 

 

The main objective in space filling methods is to spread the sample data points as evenly as possible around 

the interior design space. This is in contrast to classical methods where samples are focused at the center 

and the extreme limits of design space. These methods are model independent, i.e., they assume no 

information is available about the functional behavior of the “true” model. Space filling methods include 

Monte Carlo sampling design, Latin hypercube sampling design and Orthogonal Array design. 

 

2.4.1. Monte Carlo Sampling (MCS) design 

The basic Monte Carlo sampling design was developed in (Metropolis and Ulam, 1949). This method 

simply selects the samples by generating pseudo random numbers within the range interval of each design 

variable. Figure 1.a) shows an example of the basic Monte Carlo sampling design for two design variables. 

The main drawback of the basic Monte Carlo sampling design is that the generated samples may leave large 

regions of the design space not explored.  

 

2.4.2. Latin Hypercube Sampling (LHS) design 

This design provides a more accurate estimate of the mean value of function than the Monte Carlo method 

(Giunta et. al., 2003). The LHS involves dividing the design pace into equiprobable sub-regions. Then N 

samples are selected such that all sub-regions are sampled. Figure 1.b) shows an example of LHS sampling 

for two design variables with four samples. Latin Hypercube method requires a fewer number of runs to 

achieve the same level of confidence than the number required for the Monte Carlo approach because the 

entire probability range will be explored. 

An advantage of LHS design is that there is no restriction on the total number of samples. This makes 

the LHS design suitable for constructing models for computationally expensive function evaluations with 

small number of samples. 

 

 
       a)                                                                                          b) 

 
Figure 1. a) Basic Monte Carlo sampling and  b) Latin Hypercube sampling in two dimensions 
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3. Methodology 

 

A novel technique is being proposed here to solve the yield maximization problem. The technique is based 

on the availability of a pre-constructed surrogate, e.g., utilizing the SM technology along with a minimax 

optimizer. Then, the design center optimal solution can be obtained by employing NEWUOA algorithm 

with the pre-constructed surrogate. This technique is favorable for the microwave designers who are using 

SW packages to model and optimize the microwave circuit.  

In our technique, we assume the pre-constructed surrogate is obtained by employing the GSM 

technology in addition to a minimax optimizer. This surrogate may suffer from locality (Bakr et. al., 2000 

and 2001; Bandler et. al., 2004). However, any well-constructed surrogate can be efficiently utilized with 

NEWUOA algorithm in the yield optimization process. 

 

 

 

4. Algorithm 

 

Step 1) Set k = 0,  ini,  fin, xinitial to NEWUOA, G (a given covariance matrix),    (SM termination criterion) 

and   (a yield termination criterion). 

Step 2) Evaluate the yield Y of the fine model at xinitial using LHS technique with the G matrix. 

Step 3) For the same initial point xinitial, apply parameter extraction (PE) to get A, B, c, d, E using the least 

square method utilizing Eq.(8)–(11) and construct the surrogate    
      given by Eq. (7). Set k = 1. 

Step 4) Apply minimax optimization to the surrogate in Step 3) until getting a better point    . 

Step 5) Reconstruct the surrogate   
       at the point   , by PE, then use minimax optimizer to obtain 

    . 

Step 6) If            , go to Step7), else set k = k + 1 and go to Step5) 

Step 7) Apply NEWUOA to the surrogate in Step 5) until getting a better point   
   with yield value      

  . 

Step 8) Estimate the yield of the fine model at the final point obtained   
  using LHS, then stop the 

algorithm. 

 

 

 

5. Examples 

 

5.1. TWO-SECTION CAPACITIVELY LOADED TRANSMISSION LINE IMPEDANCE TRANSFORMER 

 

We consider the two-section transmission line impedance transformer (Bakr et. al., 2000). It is a two-

dimensional problem, where the feasible region is constrained by the magnitude of the reflection 

coefficients       at 11 frequency points {0.5, 0.6 ,…, 1.5 GHz} and defined by 

                       0.5    0.5 GHz        1.5 GHz  
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a) 

 

 
 

b) 

 

Figure 2. The fine a) and coarse b) models for capacitively loaded impedance transformer. 

 

The coarse model is an ideal two-section transmission line (TL), where the fine model is a capacitively 

loaded TL with capacitors C = 10 pF as shown in figure 2. Design parameters are the characteristic 

impedances x = [Z1   Z2]
T while the normalized lengths L1 and L2, w.r.t. the quarter-wave length at the 

center frequency 1GHz, are kept fixed at [L1  L2]
T = [0.9333  0.8001]T.  The proposed technique is applied, 

starting from [1.7  4.36]T ohm, which is an infeasible point w.r.t. the fine model parameter space. The yield 

values are estimated via Latin Hypercube sampling method with 200 sample points assuming normally 

distributed parameters. The results are shown in Table I for the independent parameters case.  

 
                     Table I. Results for the two-section TL transformer with normally distributed independent  parameters  

Parameter Spreads Initial Yield Final Yield 

       surrogate                fine surrogate fine 

(0.2,0.4)   11.5%  10.5% 47.5% 47.0% 

(0.2,0.4)/2 2% 1.5% 85.5% 85.0% 

(0.2,0.4)/3 0% 0.5% 97% 96.5% 

 

 

5.2. SEVEN-SECTION CAPACITIVELY LOADED TRANSMISSION LINE IMPEDANCE TRANSFORMER 

 

The seven-section transmission line (TL) capacitively loaded impedance transformer example is described 

in (Bakr et. al., 2001; Bandler et. al., 2004). We consider a “coarse” model as an ideal seven-section TL, 

where the “fine” model is a capacitively-loaded TL with capacitors 1 8 0.025 pFC C     , see figure3. 

Design parameters are  1 2 3 4 5 6 7 =       
T

f L L L L L L Lx , which are the normalized lengths w.r.t. the quarter-

wave length qL  at the center frequency 4.35 GHz. Design specifications are 

                        0.0     1GHz         . GHz   with 68 points per frequency sweep. 

 

RL=10 

L1 L2 

Zin C1 C2 C3 

 

RL=10 
Zin 

L1 L2 

Z1 Z2 
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Z in   R L =100    C 3   C 2   

L 1   

C 5   C 4   C 7   C 6   C 8   C 1   

L 2   L 3   L 4   L 5   L 6   L 7   

 
a) 

 

   

Z in   R L =100    

L 1   L 2   L 3   L 4   L 5   L 6   L 7   

 
b) 

Figure 3. Seven-section capacitively-loaded impedance transformer: a) fine model, b) coarse model. 

 

An initial infeasible point [0.892 0.993 0.989 0.981 0.996 0.99 0.891]T  is considered. The yield values 

are estimated via LHS method with 200 sample points assuming normally distributed parameters. The 

results assuming correlated parameters with covariance matrices G and G/9 (Abdel-Malek et. al., 2006) are 

shown in Table II, where 

 

G= 

 
 
 
 
 
 
 
                                                                    
                                                                       
                                                                    
                                                                          
                                                                          
                                                                        
                                                                                 

 
 
 
 
 
 

 

 

 
                      Table II. Results for the seven-section TL transformer with normally distributed correlated parameters 

Covariance matrix 

Initial Yield Final Yield 

       surrogate                fine surrogate fine 

G 4% 3.4% 47.2% 20.4% 

G/9 0% 0.2% 100% 99.2% 

 

 

5.3. SIX-SECTION H-PLANE WAVEGUIDE FILTER 

 

We apply our technique to the six-section H-plane waveguide filter (Matthaei et. al., 1964). A waveguide 

with a width 3.485 cm is used. The propagation mode is TE10 with a cutoff frequency of 4.3 GHz. The six-

waveguide sections are separated by seven H-plane septa (as shown in figure 4) which have a finite 

thickness of 0.6223 mm. The design parameters x are the three waveguide-section lengths L1, L2 and L3 and 

the septa widths W1, W2, W3 and W4. The feasible region is constrained by the magnitude of the reflection 
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coefficients       at 44 frequency points {5.2, 5.3,…, 9.5 GHz}. These magnitudes have to satisfy the upper 

and lower design specifications given by 
 

 
11

11

11

( , ) 0.85  5.2 GHz

( ) ( , ) 0.16 5.4 GHz  9.0 GHz

( , ) 0.5 9.5 GHz
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An empirical coarse model with lumped inductances and dispersive transmission line sections is 

utilized. The formulas due to Marcuvitz (Marcuvitz, 1951), for the inductive susceptances corresponding to 

the H-plane septa, are simplified. The model is implemented and simulated in the Matlab environment. The 

simulation of the fine model is performed using High Frequency Structure Simulator (HFSS). We take  

[L1 L2 L3 W1 W2 W3 W4]
T = [16.1614  16.1899  16.6975  13.3376  12.0823  11.7456  11.5212]T mm as a 

starting point. The yield values are estimated via LHS method with 200 sample points. The initial and final 

yield results assuming independent parameters at the surrogate and fine model are shown in Table III. 
 

 
a) 

 

Y0 2B1B 3B 4B 3B 2B 1B Y0

1 12 2 3  3

 
b) 

 

Figure 4. The six-section H-plane waveguide filter: a) the 3D view. b) the equivalent empirical circuit model. 

 
                           Table III. Results for the six-section H-plane waveguide filter assuming independent parameters  

Parameter  Spreads* 
Initial Yield                 Final Yield 

surrogate          fine       surrogate         fine 

3/2 26.2%   27%       90% 90% 

      23.5%   26%  99.5% 99% 

* = [0.3814  0.3833  0.3988  0.3163  0.2925  0.2794  0.2758]*10-4 m.  
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6. Conclusion 

 

In this paper, a new efficient statistical technique for yield maximization is introduced. The technique is 

successfully applied to different microwave circuits, and all the considered circuit examples show 

significant increases in the yield values. The proposed techniques combine a non-derivative trust region 

optimization algorithm, NEWUOA, with surrogates constructed by the SM technique in addition to LHS. 

This integration dramatically reduces the number of fine model simulations required in the design centering 

process. Hence, the consumed time and effort are also decreased.  
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Abstract. We study the tolerance-based approach to possibilistic nonlinear regression models with interval
data. We provide a method for determination of interval regression parameters of the model for the crisp
input – interval output case and for the interval input – interval output case. We define two classes of
nonlinear regression models for which efficient algorithms exist. We illustrate the theory by examples.
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1. Introduction

Nonlinear regression is a fundamental tool in data analysis. In this text we address the tolerance approach
to possibilistic nonlinear regression, which is a natural generalization of the same concept used in linear re-
gression (Hladı́k and Černý, 2010; Hladı́k and Černý, 2011). Possibilistic interval regression was pioneered
by (Tanaka, Uejima and Asai, 1987; Tanaka, 1987) in the field of linear regression, and later extended to
nonlinear regression (Hao, 2009; Hwang, Hong and Seok, 2006; Jen, Chuang and Su, 2003; Lingras and
Butz, 2011; Xu, Luo, Xu and Zhang, 2009), mostly by means of support vector machine. Possibilistic re-
gression was successfully applied in economic forecasting (Lin, Hung and Wu, 2011), system identification
(Kaneyoshi, Tanaka, Kamei and Furuta, 1990), speech learning systems (Liu, 2009), or analytic hierarchy
process (Entani and Inuiguchi, 2010), among others.

In this text we propose a very general framework for classification of nonlinear regression models which
allows us to construct algorithms for computing their possibilistic interval regression parameters. This is
useful in particular in case when data to be modeled are of interval nature.

The paper is organized as follows. First we review the notion of possibilistic regression, used in linear
regression, and provide a formulation suitable for nonlinear regression models with both crisp input and
crisp output data. Then we continue to models involving interval data; in particular, we distinguish crisp
input – interval output models and interval input – interval output models. In Section 1.1 we review some
examples of nonlinear regression functions widely used applications and in Section 2 we provide a certain
general classification framework for nonlinear regression functions. Finally, in Section 3, we state the main
problem and design the tolerance-based procedure for computation of interval regression parameters for the
classes of functions defined in Section 2.
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In this text, a regression function is simply a continuous function

f(x, θ) = f(x1, . . . , xm; θ1, . . . , θp),

where x1, . . . , xm are data variables and θ1, . . . , θp are parameters.
Given a dataset of n observations of the form

(yi;xi∗) = (yi;xi1, . . . , xim), i = 1, . . . , n,

the possibilistic regression seeks for interval parameters

[θ, θ] = [θ1, θ1], . . . , [θp, θp] (1)

such that
∀i ∈ {1, . . . , n} ∃θ ∈ [θ, θ] s.t. f(xi∗, θ) = yi.

If the condition is satisfied for a given i, we say that i-th observation is covered. (Outside data analysis, the
problem is sometimes referred to simply as “covering problem” or “envelopment problem”.)

Of course, the problem of “finding the interval parameters (1)” must be stated more precisely. Usually
we want the find the intervals as narrow as possible such that all observations are covered. But that is a
multi-criteria optimization problem. The tolerance approach is a natural (but not the only possible) method
of conversion of the multi-criteria problem to a single-criterion problem. Details of the approach will be
discussed in Section 3. As shown in (Hladı́k and Černý, 2011) (where possibilistic linear regression is
studied), the approach has several interesting theoretical properties.

Before we turn into theory, we review some examples of nonlinear regression functions useful in various
fields of science and engineering.

1.1. EXAMPLES OF USEFUL NONLINEAR REGRESSION FUNCTIONS

We sketch only a few examples; more on applications of nonlinear models can be found in (Ratkowski,
1988; Seber and Wild, 2003).

Example. Nonlinear regression functions are often solutions to differential equations describing pro-
cesses in physics, chemistry or biology. An interesting example is the class of growth curves describing the
growth of populations. The Richard’s Growth Equation ((Seber and Wild, 2003), p. 332) has a solution

f(x; θ1, θ2, θ3, θ4) = θ1 · (1 + (θ4 − 1)e−θ2(x−θ3))1/(1−θ4),

which is known as the Richard’s Curve. This model has interesting special cases: setting θ4 = 2 we get the
logistic curve

f(x; θ1, θ2, θ3) =
θ1

1 + e−θ2(x−θ3)
, (2)

the limit case θ4 → 1 yields the Gompertz Curve

f(x; θ1, θ2, θ3) = θ1 · e−e−θ2(x−θ3) (3)

and the special case with θ4 = 0 is the model of growth with exponential slow-down

f(x; θ1, θ2, θ3) = θ1 · (1− e−θ2(x−θ3)). (4)
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Example. The submodel of the Logistic Model (2)

f(x; θ2, θ3) =
1

1 + e−θ2(x−θ3)
, [θ1 ≡ 1] (5)

(and similarly with other growth models) is often used when y is interpreted as the probability of an event,
where the probability grows with x. For example, we can consider x = pressure and y = probability that the
device or material under investigation will be damaged by the pressure. Another example: y can measure
the response of a patient to the quantity of drug x.

Example. Another interesting example is the problem of estimation of the degree of polynomial:

f(x; θ1, θ2, θ3) = θ1 + θ2x+ θ3x
θ4 . (6)

Example. Berry’s Model (Berry, 1967) describes the crop yield as a function of density of planting (or,
equivalently, the area available to each plant). Let x1 be the distance between plants in a row and x2 the
distance between rows of plants. Berry used a model of the form

f(x; θ1, θ2, θ3, θ4) =

(
θ1 + θ2

(
1

x1
+

1

x2

)
+

θ3
x1x2

)−θ4

. (7)

Example. In physics, the simple oscillation model is important:

y = θ1e
−θ2x cos(θ3x). (8)

Example. An important class of nonlinear models is the class of models involving a structural change.
The basic example is continuous connection of two lines:

f(x; θ1, θ2, θ3, θ4) =

{
θ1 + θ2x for x ≤ θ4,
θ1 + θ4(θ2 − θ3) + θ3x for x > θ4. (9)

1.2. NOTATION

Let A∗ denote the closure of a set A ⊆ Rn. Given an interval a ⊆ R ∪ {±∞}, the numbers a and a denote
its lower and upper boundary points, respectively, and ac and a∆ denote its center and radius, respectively.
That is, a∗ = [a, a] = [ac − a∆, ac + a∆]. Given a function f and a set A, the symbol f(A) denotes the
image of A under f . In particular, f(a) stands for the image of an interval a.

2. Classes of Nonlinear Regression Models

In order to solve interval nonlinear regression problems, we have to know how to compute image of a
function over intervals. Formally, we consider a class of functions equipped by algorithms for determining
their images.

Definition 1. Let
(f1, f

L
1 , f

U
1 ), . . . , (fK , fL

K , fU
K) (10)

be a set of triples, where for all k = 1, . . . ,K:
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− fk : R → R is a continuous function,

− fL
k (x, x) is an algorithm computing fk([x, x])

∗,

− fU
k (x, x) is an algorithm computing fk([x, x])∗.

(a) The set (10) is called basis.

(b) The smallest class of functions (of any number of variables)

• containing constants and the identity function,

• containing the functions f1, . . . , fk and +,−,×,÷ and

• being closed under composition and restriction of domain

is called functional universum and is denoted as U .

Determining the image of a function is a fundamental problem of interval analysis (Moore, Kearfott and
Cloud, 2009) and by far not trivial. Indeed, only for certain functions we can do it efficiently.

ARITHMETIC EXPRESSIONS

Interval arithmetic is defined naturally as an image of values over interval domains (Moore, Kearfott and
Cloud, 2009). Let a and b be real intervals. Then

a+ b = [a+ b, a+ b],

a− b = [a− b, a− b],

a · b = [min(ab, ab, ab, ab),max(ab, ab, ab, ab)],

a÷ b = [min(a÷ b, a÷ b, a÷ b, a÷ b),max(a÷ b, a÷ b, a÷ b, a÷ b)].

Given an aritmetic expression E for a function f , we can evaluate E by using interval arithmetic. As long
as each interval parameter appears at most once in E , then the result equals the image of f . Otherwise, we
obtain only an enclosure (a superset) of the image. For example, consider the function

f(x, y) = xy − 2x

with x ∈ [1, 2] and y ∈ [3, 4]. Evaluating by interval arithemtic leads to the enclosure

f(x,y) ⊆ [1, 2][3, 4]− 2[1, 2] = [−3, 6].

However, f can be expressed in other ways. In the form

f(x, y) = x(y − 2)

each parameter appears just once, so the interval evaluation is exact, i.e.

f(x,y) = [1, 2]([3, 4]− 2) = [1, 4].
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BASIC FUNCTIONS

For some basic function, computing their images over intervals is a simple task. For instance, exp(x) =
[exp(x), exp(x)] as the exponential is increasing. Similarly for the functions log, arctan, . . . Some non-
monotone functions are tractable, too, e.g. sin, cos, xn, . . . Polynomials, however, are hard to evaluate
exactly in general.

MONOTONICITY

The assumption that each interval parameter should appear at most once in a given expression is restrictive.
Moreover, f may be expressed by other basic functions and operations than +,−,×,÷. A strong tool in such
a case is to utilize monotonicity. If f(x) = f(x1, . . . , xm) is monotone with respect to the kth parameter xk,
then we are able to get rid of one interval domain. Provided f(x) is non-decreasing at xk, f(x) is attained at
xk, and f(x) is attained at xk. Similarly for the non-increasing case. In this way, the problem of determining
f(x) is reduced to the problem of determining f(x) and f(x) with smaller number of intervals. Hopefully,
the sub-problems are of the previous types so that we can calculate the exact values.

For example, let

f(x, y) =
x2 + 6− y

y2

with x ∈ [−1, 2] and y ∈ [1, 2]. The function is decreasing with respect to y on the interval domains, so in
order to compute the lower limit f(x,y) we fix y = y, and calculate

f(x, y) =
x2 + 5− y

y2
=

[−1, 2]2 + 6− 2

22
= [1, 2].

Analogously, to compute the upper limit f(x,y) we fix y = y, and calculate

f(x, y) =
x2 + 6− y

y2
=

[−1, 2]2 + 6− 1

12
= [5, 9].

Putting together, we conclude f(x,y) = [1, 9].

2.1. CLASS OF SUITABLE FUNCTIONS

From the above considerations it is clear that for a well-defined class of function we can determine their
images over intervals effectively. For the purpose of interval nonlinear regression, we define the following
classes.

Definition 2. We define the classes of functions A and B as follows. Let

f(x, θ) = f(x1, . . . , xm; θ1, . . . , θp) ∈ U .

The function f(x, θ) belongs to the class A if the function can be analytically expressed such that
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− the expression consists of operations +,−,×,÷ and basic functions that are easy to evaluate over
intervals, and

− f is monotone with respect to the parameters θ1, . . . , θp that appear more than once in the expression.

The function f(x, θ) belongs to the class B if the function can be analytically expressed such that

− the expression consists of operations +,−,×,÷ and basic functions that are easy to evaluate over
intervals, and

− f is monotone with respect to θ1, . . . , θp, x1, . . . , xm that appear more than once in the expression.

We say that the function f is of type A and B, respectively.

The significance of the Definition will be clarified in Section 3.1. If a nonlinear regression model is of
type A, then there is an efficient method for the tolerance-based possibilistic regression in the crisp input –
interval output model. Observe that the crisp input – crisp output model is a special case, hence we also get
an algorithmic method for this case as well. If a nonlinear regression model is of type B, then there is an
efficient method for the tolerance-based possibilistic regression in the interval input – interval output model.

2.2. EXAMPLES

Whenever we find out that a particular nonlinear regression function belongs to some of the classes A,B,
we know that the nonlinear tolerance approach can be applied to it.

Consider the basis (10) containing exp and ln. In both cases, the corresponding algorithms fL and fU

are trivial.
Example. The growth curves (2), (3) and (4) are B-functions.
Example. The regression function (6) can be written in the form

y = θ1 + θ2x+ θ3e
θ4 lnx,

and hence it is an A-type function. If we admit the logarithmic transformation of data x′ := lnx, we arrive
at the form

y = θ1 + θ2e
x′
+ θ3e

θ4x′
,

and in this form it is an A-type function even if we do not have ln in the basis. But note that in general, the
results of the tolerance-based approach procedure of estimation of interval regression parameters is invariant
neither under reparametrization of the model nor under data transformations.

Example. This example shows that a suitable reparametrization of a nonlinear regression function might
improve its classification. The Logistic Function is often written in the form

f(x; θ2, θ3) =
eθ2(x−θ3)

1 + eθ2(x−θ3)
,

where both the variable x and the parameters θ2, θ3 occur twice, and hence in this form it is not an A-type
function; but its equivalent form (5) is an B-type function.

Example. Berry’s Model (7) is an A-function.
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Example. The model (9) is an A-type function e. g. under the restriction θ1θ3 ≥ 0.

3. The possibilistic interval nonlinear regression

3.1. SETTING THE PROBLEM

Here, we formulate the interval regression problem. Tha aim is to find interval domains for parameters such
that all observations are covered by some realization of intervals:

Find the minimal interval domains for parameters θ = (θ1, . . . ,θp) such that for every i = 1, . . . , n
one has

yi ⊆ f(xi∗,θ). (11)

This formulation covers also problems with crisp input or crisp output as special cases. The minimality
means that there is no other interval vector θ′ $ θ satisfying (11). Nevertheless, there may exist other
interval vector, or typically many of them, that is also minimal with respect to inclusion. So there are many
degrees of freedom which minimal solution to consider. To obtain good interval parameters, the following
properties should be more or less satisfied:

− The radii of interval parameters, θ∆1 , . . . , θ∆p are balanced. It is undesirable when some interval is very
narrow, or even crisp, while another is very wide.

− The interval parameters follow the so called central tendency. That is, their centers more or less fit the
data with respect to traditional goodness-of-fit measures.

− The method is not much sensitive to outliers.

In order to fulfill these requirements for interval linear regression models, the authors proposed in (Hladı́k
and Černý, 2010; Hladı́k and Černý, 2011) a two level method. In the first step, we calculate crisp estimation
θc = (θc1, . . . , θ

c
p) to the nonlinear regression model. In the second step, we minimally extend the parameters

to intervals such that they cover all observations. This basic idea is usable for nonlinear regression as well;
we do it in the next section.

3.2. METHODOLOGY

As indicated in the previous section, we calculate interval parameters θ = (θ1, . . . ,θp) in two steps:

(a) Compute the centers θc = (θc1, . . . , θ
c
p);

(b) Compute the radii θ∆ = (θ∆1 , . . . , θ∆p ).

Centers are determined by any traditional method for nonlinear regression. In case of interval input or output,
we take the centers of the intervals. Thus, we have a standard nonlinear regression model with crisp data and
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can apply any method to compute θc. This makes our approach flexible, since it doesn’t rely on one concrete
algorithm. Next, the property on central tendency is fulfilled, too.

In the second step, we calculate the radii θ∆. In order that the resulting interval parameters are balanced
with respect to their radii, we introduce tolerance rates as a non-negative vector c∆ = (c∆1 , . . . , c

∆
p ). The

radii of interval parameters are then considered in the form θ∆ = δc∆, or

(θ∆1 , . . . , θ∆p ) = (δc∆1 , . . . , δc
∆
p ),

where δ > 0 is the unknown tolerance quotient. The aim is to determine the minimal tolerance quotient
such that the corresponding interval parameters cover all observations. A tolerance quotient satisfying the
coverage condition is called feasible.

The tolerance rates are usually set up as c∆ = |θc| or c∆ = (1, . . . , 1). The former corresponds to
relative perturbations, while the latter force all interval parameters to have the same width. If the kth interval
parameter is desired to be crisp, so it suffices to put c∆k = 0.

Now, all we need is to compute the minimal feasible tolerance quotient δ > 0. We employ the bisec-
tion method. Denote θδ := [θc − δc∆, θc + δc∆] the form of the resulting interval parameters. The basic
algorithmic scheme is as follows:

1. Put δ = 1 and loop the following command for a given number of iterations.

2. If yi ⊆ f(xi∗,θ
δ) for every i = 1, . . . , n, then decrease δ. Otherwise, increase δ.

Denote by δ∗ the return value of δ. Notice that provided the amount of decrease and increase of δ is
halved, the iterations converge exponentially fast to the optimum. Thus, for practical purposes, 5 to 15
iterations are usually enough to provide us with a sufficiently accurate approximation. For a model of type
A or B, the evaluation of the image f(xi∗,θ

δ) is fast, therefore, the overall time complexity of the algorithm
is mild.

If the last iteration was the decrease of δ, we increase δ∗ correspondingly in order to obtain a feasible
δ∗. However, it may still happen that δ∗ is not feasible. We indicate it easily be observing that δ was never
decreased in the run of the algorithm. This situation happens rarely, but cannot be excluded. For example,
consider the Gompertz Curve of the form

f(x, θ1) = e−ex−θ1
.

It is easily seen that for any θ1, f((−∞,∞), θ1) = (0, 1). If our dataset contains, say, a point (x = 0, y = 1),
that point cannot be covered, which implies that the algorithm tends to increase δ up to infinity. In general,
from the algorithmic point of view, the problem whether a given point can be covered (with a possibly
huge value of δ), is undecidable; hence we cannot do anything else than terminating the algorithm when the
value of δ exceeds limits in which the value δ has reasonable interpretation for the regression model under
consideration.

3.3. PROPERTIES OF THE MODEL

Here we only sketch some properties of the model, which have been investigated in (Hladı́k and Černý,
2011) in the case of linear regression models.
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− The method is flexible by utilizing any traditional method for the parameteric centers.

− If the input model is of type A or B, then the optimal tolerance quotient, and thus the minimal interval
parameters, are computed efficiently with a given precision.

− The interval parameters have balanced widths, proportional to the apriori given rates.

− Outliers can be handled.

Concerning outliers, they can be managed in many ways, depending on the purposes of decision maker.
For instance, the method is easily adapted to the model, in which only a fraction, say 90%, of observations
should be covered. Another possibility is to calculate the tolerance quotient δ∗ such that the corresponding
interval parameters cover e.g. 80% observations, and then consider as outliers all observations that are not
covered by the tolerance quotient 1.1δ∗.

3.4. EXAMPLES

Example 1. Assume that we measure reliability of a material (y) as a function of time (x) for which the
material is exposed to unfavorable conditions (such as unfavourable temperature or pressure). Of course
it can be expected that the longer the exposition is, the higher level of disruption. Assume that the level
of disruption is measured on a discrete scale 0, . . . , 10, where 0 means “no damage”, 1 means “very mild
damage”, . . . , and 10 means “totally damaged”. Assume further that the values of y are determined by
experts (say, by visual inspection of constructions where the material has been used). Due to a certain
subjectivity of experts, it is appropriate to consider the grade y ∈ {1, . . . , 9} as an interval, say of the form

[y, y] = [y − 0.5, y + 0.5] (12)

We model the dependence of y on x using the Gompertz curve

y = 10e−e−θ1(x−θ2)
, (13)

where θ1 measures slope of the curve (that is, the speed of worsening of the condition of the material) and
θ2 measures the shift of the curve. The shift measures whether the process of wearing of the material starts
earlier or later.

Assume that we have data from Table I. Using nonlinear least squares on the data (x1, y1), . . . , (x30, y30),
we fit

θ̂1 = 0.795, θ̂2 = 4.887. (14)

This curve describes “average” behavior of the material with respect to x.
Now we would like to extend the estimated crisp values θc1 = θ̂1 and θc2 = θ̂2 to interval values covering

all observations, taking into account the fact that it is more appropriate to handle an observation y as an
interval (12) rather than a fixed value.

We observe that the points y ∈ {0, 10} can never be covered with the Gompertz curve. We take the
following step. We divide data into three categories:

− A: material is unaffected by the unfavorable conditions;
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− B: phase of wearing;

− C: phase of total weariness.

We assume that the phase B starts when the first mild defect is encountered (i.e. the first time with y ≥ 1)
and that the phase C starts when the first total damage is encountered (i.e. first time with y = 10). The
division of data is also shown in Table I.

The main purpose of the Gompertz curve is modeling the dynamics of the wearing process, which
corresponds to the phase B. Hence it makes sense to take into account only B-data and apply the tolerance
method to them. (Observe that the data point (x24, [y24, y24]), being a C-point, need not be covered.)

As a first example, we set c∆ = ( 0.7954.887 ) (i.e., relative tolerances). We arrive at the value

δ∗ = 0.183.

Hence we conclude that it suffices to perturb the values θ̂1, θ̂2 by no more that 18.3% in order all intervals be
covered. We can roughly say that “the truth” is covered by the intervals [(1−0.183)·0.795, (1+0.183)·0.795]
and [(1 − 0.183) · 4.887, (1 + 0.183) · 4.887] for θ1 and θ2, respectively. The resulting data enclosure is
plotted in Figure 1 with a dotted line. We can also say that the “pessimistic scenario” for the speed of
weariness (measured by θ1) is (1 + 0.183) · 0.795 = 0.94 and that the “pessimistic scenario” for the shift is
(1− 0.183) · 4.887 = 3.99.

As a second example, we set c∆ = ( 11 ) (i.e., absolute tolerances). We arrive at the value

δ∗ = 0.360.

Now the data are covered by the intervals [0.795− 0.36, 0.795+ 0.36] and [4.887− 0.36, 4.887+ 0.36] for
θ1 and θ2, respectively. The resulting data enclosure is plotted in Figure 1 with a dashed-dotted line.

As a third example, we set c∆ = ( 0
4.887 ). This models the situation that the speed of worsening is kept

constant and we can perturb only the shift θ2 to cover the data. (Hence we seek for an interval for θ2 only.)
We arrive at the value

δ∗ = 0.254.

Now the data are covered by the interval [(1 − 0.36) · 4.887, (1 + 0.36) · 4.887] for θ2. The resulting data
enclosure is plotted in Figure 1 with a dashed line. Now we can say: if we know that the speed of wearing is
θ1 = 0.795, then the pessimistic scenario for θ2 is (1− 0.36) · 4.887 = 3.13.

Example 2. In Example 1 we used the fact that the Gompertz function (13) is A-type function. Using
the fact that it is also the B-type function, we can extend the example to the case where x-data are of interval
nature. This corresponds to the situation that we do not know exactly the times in which the measurements
were made. Again we use the data from Table I and for each of the observations we assume that its x-value
is an interval

[xi − 1
2 , xi +

1
2 ].

We set the values (θc1, θ
c
2) = (θ̂1, θ̂2) from (14). Using the tolerance method for covering the B-phase data,

we arrive at the results

− c∆ = ( 0.7954.887 ): δ
∗ = 0.250,

− c∆ = ( 11 ): δ
∗ = 0.61,
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Figure 1. Data from Table I, the crisp model (13) with θ̂1 = 0.795 and θ̂2 = 4.887 and the enclosures with c∆ = (0.79, 4.887)T

(relative tolerances, dotted), c∆ = (1, 1)T (absolute tolerances, dashed-dotted) and c∆ = (0, 4.887)T (only perturbation of θ2
allowed, dashed).

Table I. Source data for the Example.

phase i xi yi y
i

yi phase i xi yi y
i

yi

A 1 1.0 0 — — B 16 6.3 8 7.5 8.5
A 2 1.5 0 — — B 17 7.0 8 7.5 8.5
A 3 1.7 0 — — B 18 7.1 8 7.5 8.5
A 4 2.8 0 — — B 19 7.7 9 8.5 9.5
A 5 3.5 0 — — B 20 7.7 8 7.5 8.5
B 6 3.6 1 0.5 1.5 B 21 7.7 9 8.5 9.5
B 7 4.2 2 1.5 2.5 B 22 7.9 9 8.5 9.5
B 8 4.2 1 0.5 1.5 C 23 8.0 10 — —
B 9 4.5 3 2.5 3.5 C 24 8.6 9 8.5 9.5
B 10 5.7 5 4.5 5.5 C 25 8.9 10 — —
B 11 5.8 6 5.5 6.5 C 26 9.0 10 — —
B 12 5.9 6 5.5 6.5 C 27 9.1 10 — —
B 13 6.0 7 6.5 7.5 C 28 9.5 10 — —
B 14 6.1 8 7.5 8.5 C 29 9.9 10 — —
B 15 6.1 6 5.5 6.5 C 30 10.0 10 — —
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Figure 2. Data from Table I with interval-valued xi’s in the form xi = [xi − 1
2
, xi +

1
2
], the crisp model (13) with θ̂1 = 0.795

and θ̂2 = 4.887 and the enclosures with c∆ = (0.79, 4.887)T (relative tolerances, dotted), c∆ = (1, 1)T (absolute tolerances,
dashed-dotted) and c∆ = (0, 4.887)T (only perturbation of θ2 allowed, dashed).

− c∆ = ( 0
4.887 ): δ

∗ = 0.357,

with the resulting enclosures depicted in Figure 2. Recall that the data point ([x24 − 1
2 , x24 +

1
2 ], [y24, y24]),

being a C-point, need not be covered.

4. Conclusions

In this text we extended the tolerance-based approach, originally designed for possibilistic linear regression,
for a particular class of nonlinear regression models. The method provides a covering of either crisp or
interval data of the model and for that class of models it can be computed by an efficient algorithm (provided
that the algorithms fU and fL for the basic functions are efficient). For the class of non-A-type models, the
method provides only lower bound on the optimal tolerance rate δ∗ in general. The interesting question for
further research is whether and under which conditions the method could be adapted for a wider of nonlinear
models to yield the optimal value.
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Accuracy of Concrete Creep Predictions Based on Extrapolation of
Short-Time Data

Milan Jirásek and Svatopluk Dobruský
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Prague, Czech Republic

Abstract. The paper evaluates the accuracy of predictions obtained with various creep models after updating
of their parameters based on short-time data. The models considered in this comparative study include rela-
tively simple formulae recommended by major design codes (ACI, fib) as well as more sophisticated models
developed by researchers (B3, GL). Appropriate error measures are defined and two updating strategies are
examined. Predictions of the models are checked against basic creep data from a comprehensive database.
The dependence of the error on the load duration after which the update is performed is described. Finally,
preliminary conclusions and recommendations regarding the choice of the model and updating strategy are
formulated.

Keywords: concrete, creep, updating

1. Introduction

Concrete exhibits creep already at low stress levels and normal temperatures, and long-time measurements
on laboratory samples as well as on concrete structures indicate that the growth of strain at constant stress
continues even after many decades, see e.g. (Brooks, 2005) and (Bažant et al., 2010). Problems with exces-
sive deflections caused by creep have been reported for many large-span prestressed concrete bridges, and
comparative numerical simulations based on design codes and advanced models have revealed the essential
role played by a good predictive creep model (Bažant et al., 2010; Bažant et al., 2011). Unfortunately, empir-
ical formulae for determination of creep model parameters based exclusively on the fundamental properties
(such as compressive strength, concrete mix composition, size and shape of the member, environmental
conditions and curing) have a very limited accuracy and often lead to gross errors. It is essential to update
the model parameters based on laboratory tests or measurements of the early response of the real structure.

The present paper compares updated predictions obtained with the following creep models:

− the ACI model, recommended by the permanent committee TC 209 of the American Concrete Institute;

− the fib model, recommended in the Model Code 2010 of the International Federation for Structural
Concrete;

− the B3 model, developed at Northwestern University by Bažant and coworkers;

− the GL2000 model, developed at the University of Ottawa by Gardner and coworkers.
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Two updating strategies are considered: the standard one is based on simple least-square fitting, while its
modification introduces weight factors that emphasize the influence of measured data directly preceding the
interval of extrapolation. Absolute and relative error measures are defined and accuracy of the initial “blind”
as well as updated predictions is checked against data from a comprehensive creep database (Bažant and Li,
2008), with focus on the dependence of the error on the load duration after which the update is performed.

2. Creep Models

Concrete creep at low and moderate stress levels is usually handled within the framework of aging linear
viscoelasticity. Based on the superposition principle, the strain history corresponding to a given continuous
and differentiable stress history can be computed using the integral formula

ε(t) =

∫ t

t0

J(t, t′)σ̇(t′) dt′ (1)

For discontinuous stress histories, additional terms that reflect the influence of stress jumps can be added. In
formula (1), ε is the strain, σ is the stress, t0 is the time at the onset of loading, t is the current time, and J
is the compliance function that can be determined from a creep test at constant stress. The value of J(t, t′)
corresponds to the strain at time t in a creep test started at time t′, divided by the stress level at which the
test takes place. The time is measured from the set of concrete, i.e., it corresponds to the age of the material.
For a non-aging viscoelastic material, the compliance function would depend only on the elapsed time t− t′,
but for an aging material such as concrete it depends on t and t′ separately. In all the models presented here,
the values of time variables are supposed to be substituted in days.

For simplicity, the stress-strain relation (1) has been presented in a scalar format, valid for uniaxial stress.
In a general extension to multiaxial stress, the volumetric and deviatoric parts of the response could be
treated separately. In the absence of more precise data, it is usually assumed that all compliance coefficients
are proportional to one single compliance function, which is equivalent to the assumption that the Poisson
ratio remains constant and is not affected by creep.

2.1. ACI 209 MODEL

The model recommended by the permanent committee TC 209 Creep and Shrinkage in Concrete of the
American Concrete Institute (ACI) was first adopted in 1971. Its most recent version, labeled as 209R-92,
was published in 1992 (ACI, 1992) and again reapproved in 2008. The compliance function has the form

J(t, t′) =
1

EC

√
b+

a

t′

[
1 +

2.35γ

(t′)m
(t− t′)0.6

10 + (t− t′)0.6

]
(2)

with time variables t and t′ substituted in days. ParameterEC is the conventional elastic modulus of concrete,
measured at age 28 days. Parameters a, b andm depend on the type of cement and type of curing. For moist-
cured concrete and cement of type I, their recommended values are a = 4, b = 0.85 and m = 0.118.
Parameter γ is the product of six partial factors that depend on the type of curing, environmental humidity,
volume-surface ratio of the concrete member, slump, mass fractions of fine and total aggregate and on the
air content.
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2.2. fib MODEL CODE

The fib Model Code 2010 (fib, 2010), accepted in 2011 by the International Federation for Structural
Concrete (in French “fédération internationale du béton, fib”), is a successor of CEB Model Codes 1990
and 1999, developed by the Euro-International Committee for Concrete (CEB). The compliance function
has the form

J(t, t′) =
1

EC
exp

(
−s

2

[
1 −

√
28

t′

])
+
φRHβf
EC

1

0.1 + t′0.2

(
t− t′

βHβT + t− t′

)0.3

(3)

Parameter EC is the conventional elastic modulus, parameter s depends on the strength class of cement and
hardening characteristics (e.g., s = 0.25 for normal cement of strength class 42.5 or for rapidly hardening
cement of strength class 32.5), parameters φRH and βf express the influence of environmental humidity
and mean compressive strength, parameter βH depends on humidity and strength as well as on the notional
member size, and parameter βT reflects the influence of temperature and is equal to 1 at room temperature.

2.3. B3 MODEL

Model B3 (Bažant and Baweja, 1995; Bažant and Baweja, 2000) covers creep and shrinkage of concrete,
including their coupling. The compliance function has the general form

J(t, t′) = q1 + q2Q(t, t′) + q3 ln[1 + (t− t′)n] + q4 ln

(
t

t′

)
+ Jd(t, t′) (4)

where n = 0.1, q1 is the inverse of the asymptotic elastic modulus, the terms containing parameters q2, q3
and q4 represent the aging viscoelastic compliance, non-aging viscoelastic compliance and flow compliance,
respectively, and Jd(t, t′) is the additional compliance due to drying. Here we consider only basic creep,
i.e., creep of sealed specimens, not affected by drying, and thus Jd(t, t′) can be omitted. Function Q is not
available in a closed form and is defined by the integral formula

Q(t, t′) =

∫ t

t′

ns−m

(s− t′) + (s− t′)1−n
ds (5)

where m = 0.5. Its specific values can be obtained by numerical integration or approximated using an
explicit formula given in (Bažant and Baweja, 1995) and (Bažant and Baweja, 2000). Parameters qi, i =
1, 2, 3, 4, can be estimated based on composition of the concrete mix and mean compressive strength of
concrete using empirical formulae.

2.4. GL MODEL

The model proposed by (Gardner and Lockman, 2001) and denoted as the GL2000 Model is a modification
of the earlier Atlanta97 Model (or GZ Model) of (Gardner and Zhao, 1993). The compliance function has
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the form

J(t, t′) =
1

3.5 + (EC − 3.5) exp

(
s

2

[
1 −

√
28

t′

]) + (6)

+
Φ

EC

[
2(t− t′)0.3

(t− t′)0.3 + 14
+

√
7(t− t′)

t′(t− t′ + 7)
+ ch

√
t− t′

t− t′ + 0.12(V/S)2

]
Parameter EC is the conventional elastic modulus, parameter s depends on the type of cement, parameter Φ
is different from 1 only if the first loading is preceded by drying and, if this is the case, depends on the drying
time before loading and on the volume-surface ratio V/S, and parameter ch depends on the environmental
humidity.

3. Updating of Model Parameters

Parameters of creep models presented in the previous section can be estimated from the basic characteristics
of the concrete mix, curing procedure and environmental conditions. In this sense, the models can be con-
sidered as predictive and used already in the design stage. However, the dependence of model parameters on
the basic characteristics described by empirical equations has a limited accuracy. To get a better agreement
between the model and the real behavior, it would be advisable to perform creep tests of samples made of
the specific concrete intended for the designed structure. Due to the long-term nature of the creep process, it
is impossible to run the complete tests before construction. A compromise consists in continuous updating
of the model parameters from measurements on the real structure or on companion specimens kept under
the same environmental conditions. In the design stage, the parameters can be estimated from composition
and corrected based on short-term tests. During construction and even after completion of the structure,
the parameters can be continuously updated as more and more measured data become available. For this
purpose, it is essential to know how the accuracy of predictions of the future behavior of the structure
evolves depending on the growing amount of available information describing the past behavior (of the
structure or of a specimen made of the same concrete).

In the present preliminary study, we restrict attention to basic creep, so that the effect of environmental
humidity on the compliance function is eliminated. Measured values of the compliance function are taken
from a comprehensive creep database assembled at Northwestern University (Bažant and Li, 2008). The
database contains a wide range of creep tests run in the past in many laboratories around the globe under a
variety of conditions. For our purpose, only sufficiently long tests (at least 1000 days of loading) performed
under sealed conditions are considered. Furthermore, tests at extremely high or low temperatures (below 5◦C
or above 50◦C) are excluded. The study is limited to concrete with mean compressive strength at 28 days
lower than 82 MPa, loaded at stress levels not exceeding 45% of the strength. By applying these criteria, 40
tests from 12 laboratories have been extracted from the database.

In principle, the updating procedure could be applied to all parameters of each model. However, this
would result into complicated problems of nonlinear regression, with multiple local minima of the error
function and with a danger of extremely high sensitivity to the unavoidable scatter of experimental data,
especially during early stages of the response when only a few measured values are available. For this
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reason, it seems preferable to consider the updated compliance function as the original compliance function
transformed in a linear fashion, i.e., by vertical scaling and shifting. Mathematically, we can write

Ju(t, t′) = p1 + p2Jo(t, t
′) (7)

where Jo is the original compliance function with parameters estimated from composition and Ju is the
updated compliance function, adjusted such that the early part of the measured response up to the updating
time tm is reproduced with the minimum possible error. Coefficients p1 and p2 are obtained by minimizing
the function

F (p1, p2) =
m∑
i=1

[p1 + p2Jo(ti, t0) − Je(ti, t0)]
2 (8)

where Je denotes the experimentally determined compliance function, t0 is the age of concrete at load
application, and t1 < t2 < . . . < tm are the times at which individual measurements were taken, up to the
selected updating time tm. For each specific test, t0 is fixed but tm can have an arbitrary value between t1
and the age at the end of the test, tmax. Therefore, coefficients p1 and p2 and the resulting updated function
Ju depend on the time tm at which the updating is performed.

Function F defined in (8) is quadratic in terms of the variables p1 and p2, and the stationarity conditions
lead to two linear equations,

p1m+ p2

m∑
i=1

Jo(ti, t0) =
m∑
i=1

Je(ti, t0) (9)

p1

m∑
i=1

Jo(ti, t0) + p2

m∑
i=1

J2
o (ti, t0) =

m∑
i=1

Je(ti, t0)Jo(ti, t0) (10)

from which the optimal values of p1 and p2 are easily computed.
As an example, consider the data on Water Tower Place concrete (Russell and Burg, 1996). The concrete

mix consisted of c = 501.7 kg/m3 of cement, w = 195.7 kg/m3 of water and a = 1676 kg/m3 of aggregates,
and the mean compressive strength at 28 days was f̄c = 63 MPa. From these data, parameters of the B3
model can be estimated as follows:

q1 = 126.77 f̄−0.5c = 15.97 [10−6/MPa] (11)
q2 = 185.4 c0.5f̄ −0.9c = 99.75 [10−6/MPa] (12)
q3 = 0.29(w/c)4q2 = 0.669 [10−6/MPa] (13)
q4 = 20.3(a/c)−0.7 = 8.727 [10−6/MPa] (14)

The cement was of type R (rapid hardening) according to the CEB classification, and the mix also contained
11.8 kg/m3 of fly ash. The experiments were performed on standard 6-inch cylinders (152 mm in diameter
and 305 mm in height) at room temperature (23◦C) and stress level 15.5 MPa (i.e., 25% of the mean
strength). The specific test considered here (test C 078 05 from the database) started at age t1 = 28 days
and was run under sealed conditions for 6768 days, i.e., 18.5 years.

The “blind” prediction based on the parameter values (11)–(14) is plotted as the dash-dotted curve in
Figure 1a. If the data measured during the first 143 days of loading are taken into account, equations (9)–
(10) lead to p1 = −16.77 × 10−6/MPa and p2 = 1.542. The updated compliance function (7) is plotted in
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Figure 1a as the solid curve; it corresponds to the B3 model with modified parameters q∗1 = p1+p2q1 = 7.85,
q∗2 = p2q2 = 153.78, q∗3 = p2q3 = 1.031 and q∗4 = p2q4 = 13.454 (all in 10−6/MPa). The result is
somewhat disappointing. The original blind prediction underestimates the compliance after 18.5 years of
loading by 14.4% and the updated prediction overestimates it by 14.7%. If the update is performed already
after 14 days of loading, the results get even worse, and the extrapolated compliance after 18.5 years of
loading is then overestimated by 45.8%; see the dashed curve in Figure 1a.

The reason for the poor accuracy of updated predictions is that the update optimizes the fit of the entire
initial period of loading up to time tm while the main purpose should be an improved accuracy of the
extrapolation to longer times. Therefore, it makes sense to reduce the influence of early measurements and
emphasize those that are closer to the updating time and thus also to the intended extrapolation. This can be
achieved by introducing weight factors that have larger values for measurements at later times. The simplest
choice is to take the time elapsed from the first loading up to the given measurement as the weight factor.
The definition of the function F to be minimized is then changed from (8) to

F (p1, p2) =
m∑
i=1

(ti − t0) [p1 + p2Jo(ti, t0) − Je(ti, t0)]
2 (15)

and equations (9)–(10) are adjusted accordingly. This modified updating approach leads to a substantial
improvement, as shown in Figure 1b. The update after 14 days still does not lead to an improvement (but at
least it is not as bad as for the standard updating method), but the update after 143 days gives a very nice
prediction of the future evolution of compliance, with the value after 18.5 years overestimated by only 3.6%.
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Figure 1. Compliance function of Water Tower Place concrete: (a) standard updating with equal weights of all measured points,
(b) modified updating with the weight of each measured point proportional to the duration of loading.
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4. Accuracy of Updated Predictions

To compare the accuracy of the original “blind” prediction and the updated predictions with different
updating times, we can start from the so-called absolute residual error, which is considered as the root-
mean-square (RMS) deviation of the prediction from the experimental data, averaged over the time interval
from the updating time tm up to time tmax at the end of the test. The averaging is done with respect to the
logarithmic scale of the load duration, and so the error is defined as

e(m)
u =

√√√√∑n
i=m+1 ln ti+1−t0

ti−1−t0 [Ju(ti, t0) − Je(ti, t0)]
2∑n

i=m+1 ln ti+1−t0
ti−1−t0

(16)

where n is the total number of measurements, and tn+1 is set to tn. The error of the updated prediction can
be evaluated for m ≥ 2, because the updating procedure needs at least the first two measurements, at times
t1 and t2, for determination of two parameters, p1 and p2. Note that the deviations at times preceding or
equal to the updating time tm are not taken into account, and so the interval over which the RMS error is
computed diminishes with increasing updating time (this is why the error is called “residual”).

The error measure defined in (16) has the dimension of compliance and it can be used for comparison of
the relative accuracy of individual models applied to the same test. For evaluation of the average accuracy
in the set of 40 tests considered here, it is better to use the normalized error, defined as the absolute error
according to (16) divided by the reference compliance value, which is taken as J(t0 + 1000, t0) (i.e., as the
compliance corresponding to the load duration of 1000 days). The normalized error is dimensionless and its
value of 0.1 corresponds to 10% deviation with respect to the reference compliance value.

The dependence of the normalized residual error on the time elapsed from load application to the updating
time is graphically presented for individual creep models in Figure 2. All the graphs still refer to one single
test of the Water Tower Place concrete. The dashed curves show the error of the prediction based on standard
updating and the solid curves refer to the modified updating. The first points of both curves always coincide
because they correspond to updating after the second measurement, when two measured values uniquely
determine parameters p1 and p2, independently on whether weighting is used or not. Later on, both curves
in general differ and the modified update typically leads to higher accuracy, with some exceptions in the
range from 4 to 80 days for the ACI model and from 1 to 13 days for the GL model.

For comparison, the graphs also contain dash-dotted curves that correspond to the blind prediction, with
no updating. For the blind prediction, the model parameters remain fixed and the prediction does not evolve
in time. However, to be able to compare directly the error of the blind and updated predictions, the error
of the blind prediction is also evaluated over the interval that starts at the current updating time tm. This
residual error is defined by a formula similar to (16), with Ju replaced by Jo. As seen in Figure 2, the
residual error of the blind prediction typically increases in time with increasing tm, which means that the
blind prediction is usually more accurate for short load durations than for long ones. Another interesting
observation is that the early updates are in some cases less accurate than the blind prediction, which means
that updating has an adverse effect on accuracy. This is particularly striking for model B3; see Figure 2a.
Here, the blind prediction leads to normalized error (over the entire tested time interval) close to 0.1 while
the update based on a few measurements up to load duration of 1 day gives a much higher error, about 0.5.
To get improved accuracy as compared to the blind prediction, one needs to take into account measurements
from at least 82 days of loading for the standard update and from at least 28 days of loading for the modified
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Figure 2. Normalized residual error e(m)
u /J(t0 + 1000, t0) as a function of the load duration up to the updating time, tm − t0, for

Water Tower Place concrete: comparison of the blind prediction with the standard and modified updates for (a) B3 model, (b) fib
model, (c) ACI model, (d) GL model.

update. A similar phenomenon, albeit less dramatic, can be observed for the other models as well. The
initial error of the blind prediction using the fib model is much higher than for the B3 model, about 0.3, and
the updated prediction becomes more accurate already after less than 2 days; see Figure 2b. For the ACI
model, the behavior is similar, with a lower error of the initial blind prediction, about 0.2; see Figure 2c.
Finally, for the GL model, the initial accuracy of the blind and updated predictions is comparable, about
0.16, but then the error of the updated predictions grows and remains above the error of the blind prediction
up to 31 days for the modified update and up to 64 days for the standard update. Let us emphasize that all
these observations refer to one single experimental test and cannot be considered as general statements. For
instance, the fact that the blind prediction with the ACI model is more accurate than with the fib model is
rather an exception. Nevertheless, this specific example illustrates the methodology and brings our attention
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Figure 3. Normalized residual error e(m)
u /J(t0 + 1000, t0) as a function of the load duration up to the updating time, tm − t0, for

Water Tower Place concrete: comparison of modified updates for individual models

to certain unexpected trends. For comparison, the evolution of the residual error based on the modified
updating procedure for all creep models is plotted in Figure 3.

As already mentioned, the results in Figures 2 and 3 refer to one single test, and for other tests they can
be quite different. To get an idea about the overall performance of individual creep models and updating
procedures, it is necessary to take into account all the available tests and perform some averaging. Figure 4
shows the normalized residual error of the updated predictions based on the B3 model for all 40 tests con-
sidered in the present study. One can see that the modified updates (Figure 4b) are in general more accurate
than standard ones (Figure 4a). After 100 days almost all the individual error points corresponding to the
modified updates (perhaps with 2 or 3 exceptions) are below 0.2 and most of them are actually much lower.
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Figure 4. Normalized residual error of updated B3 model for all tests considered: (a) standard updating, (b) modified updating.
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Figure 5. Comparison of power-law curves approximating the average normalized residual error for different models: (a) standard
updating, (b) modified updating.

Table I. Average values of load
duration after which updating
leads to an improved prediction

model load duration [day]

B3 48.7
fib 59.1
ACI 58.0
GL 18.6

For this overall comparison, all the tests have been truncated at load duration of 1000 days, otherwise the
meaning of the residual error would be different for tests of different total durations. For easier comparison,
the dependence of the normalized residual error on the updating time has been fitted (in the least-square
sense) by a power law. The corresponding smooth curves that represent the average errors for individual
models are plotted in Figure 5. It is confirmed that the modified updating procedure gives in general better
results than the standard one. This effect is particularly strong for the fib model and the GL model. With
standard updating, model B3 gives by far the highest accuracy, while the fib model is the second best. With
modified updating, the average performance of the B3 model and the fib model is comparable. The GL
model gives higher errors of the updated predictions, and the worst results are obtained with the ACI model,
which is no surprise because the original version of this model is more than 40 years old.

It is also interesting to compare the typical load durations after which the modified updating procedure
leads to an improvement. The average times needed to get at least the same accuracy as with the original
blind prediction are summarized in Table I. It turns out that updating is beneficial for the GL model already
after 19 days of loading while the other models require between 49 and 59 days. This means that if, for
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instance, the B3 model is used, it does not seem to be a good idea to adjust the parameters based on
measurements that cover only a few weeks of loading, and one should use data covering at least several
months.

5. Conclusions

It should be emphasized that the results presented in this short paper are only partial, and a more detailed
evaluation remains to be finished. An extension to drying creep represents another important step to be
taken before the final conclusions can be drawn. Nevertheless, the preliminary findings lead to the following
recommendations:

− Updating of creep predictions based on short-time measured data exhibit higher accuracy if the updating
procedure incorporates weight factors that reduce the influence of very early stages of the response.

− The updating procedure can be expected to provide better accuracy than predictions based on concrete
mix composition and similar data, provided that the measured response covers a certain minimum
period of time, which is in the order of a couple of weeks for the GL model and a couple of months for
the other models considered in this study.

− If the updating is based on measurements covering a sufficiently long loading period, the B3 model and
the fib model seem to provide the most accurate predictions.
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Abstract: Long-term regional statistics of disasters distributions with consideration of climatic parameters 

and variations of economic activity have been analyzed. Suitable techniques of observation data 

regularization for normalization of data reliability are proposed. The technique proposed based on 

utilization of modified kernel-based nonlinear principal component analysis. Problem-oriented analysis of 

regional climatic parameters trends has been done also. Correlation matrices for sub-regional distribution of 

several types of natural and technological disasters in connection with dynamics of climatic parameters for 

observation period have been constructed. Form of indexes for analysis of impact of climatic parameters 

change to disaster emergency is proposed. As the result of analysis the stable correlations between analyzed 

distributions have been identified. Basing these correlations the assumptions about driving forces and 

triggers of most hazardous disasters types were formulated. In view of obtained results the suitable form of 

copula for disaster risk analysis and mitigation has been proposed. 
 

Keywords: natural & technological disasters; multisource observations; data regularization; nonlinear 

component analysis; disaster driving forces; risk analysis; copula. 

 

 

 

Problem of construction of correct techniques of risk assessment, first of all disaster – induced socio-

ecological risks, is often connected with lack of reliable long-term series of catastrophic events 

observations, socio-ecological parameters, and natural systems state (Bartell, Gardner, O’Neill, 1992; 

O’Neill, Gardner, Barnthouse, et al., 1982). Correct and regular events statistics is important for 

construction of adequate risk function and also for risk management strategies development (US EPA, 

2008; White, Maurice, Mysz, et al., 2008). Demonstration of way of observation data regularization for 

normalization of data reliability is the purpose of this paper. 

Correct statistical analysis requires the set of data xi with controlled reliability, which reflects 

distribution of investigated parameters over study area during whole observation period (taking into account 

variances of reliability of observation and archive data xt). Set of observation data xt (
m

t Rx ) consists of 

multi-source data: historical records, archives, observations, measurements, etc., including data with 

sufficient reliability xj (
m

j Rx ), where j = 1, …. N. Problem of determination of controlled quality and 

 

5th International Conference on Reliable Engineering Computing (REC 2012) 
Edited by M. Vořechovský, V. Sadílek, S. Seitl, V. Veselý, R. L. Muhanna and R. L. Mullen 
Copyright © 2012 BUT FCE, Institute of Structural Mechanics 
ISBN 978-80-214-4507-9. Published by Ing. Vladislav Pokorný − LITERA

 
 
 
 
 

 
 
 
209



Yuriy V. Kostyuchenko, I. Kopachevsky, P. Zlateva, D. Solovyov, and P. Akymenko 

reliability spatial-temporal distribution of investigated parameters might be solved in framework of tasks of 

multivariate random processes analysis and multidimensional processes regularization (Raiffa, Schlaifer, 

1968). 

Required regularization may be provided by different ways. If we able to formulate stable hypothesis on 

distribution of reliability of regional archives data in the framework of defined problem we may to propose 

relatively simple way to determine investigated parameters distributions xt
(x,y)

 towards distributions on 

measured sites x
m

t basing on Fowler, Kilsby, O’Connell (2003,): 
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according to Cowpertwait (1995). Here m – number of records/points of measurements or observations; n – 

number of observation series; x
m

t – distribution of observations data; R
m
 – set (aggregate collection) of 

observations; 
m

tx
~  – mean distribution of measured parameters. 

This is the simple way to obtain a regular spatial distribution of analyzed parameters over the study 

area, on which we can apply further analysis, in particular temporal regularization. 

Further regularization should take into account both observation distribution temporal non-linearity 

(caused by imperfection of available statistics) and features of temporal-spatial heterogeneity of data 

distribution caused by systemic complexity of studied phenomena – natural and technological disasters. 

According to (Mudelsee, Börngen, Tetzlaff, 2001; Lee, Yoo, Choi, et al, 2004; Villez, Ruiz, Sin, et al, 

2008) the kernel based non-linear approaches are quite effective for analysis of such types of distributions. 

Proposed method is based on modified kernel principal component analysis (KPCA) (Scheolkopf, 

Smola, Muller, 1998; Mika, Scheolkopf, Smola, et al., 1999; Romdhani, Gong, Psarrou, 1999). In the 

framework of this approach the algorithm of non-linear regularization might be described as following rule: 





N

i

tit

k

ii xxkx
1

),(
~

       (3) 

In equation (3) the coefficients α selected according to optimal balance of relative validation function 

and covariance matrix, for example as (Lee, Yoo, Choi, et al, 2004): 
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where non-linear mapping function of input data distribution Ф determined as (Scheolkopf, Smola, Muller, 

1998): 





N

k

kx
1

0)( ,      (5) 

 

 
 
 
210

 
 
 
 
 

 
 
 
5th International Conference on Reliable Engineering Computing (REC 2012)



Toward complex risk assessment and management based on multisource data statistics of natural and technological disasters 

 

and tk
~

 – is mean values of kernel-matrix 
NRK  ( )],([][ jiij k xxK  ). Vector components of matrix 

determined as 
NRtk ; )],([][ jti xxk tj k . Matrix calculated according to modified rule of 

(Christianini, Shawe-Taylor, 2000) as: 

jj x

ij

x

tjtit )1(),( ,,  xxk      (6) 

Here ρ – empirical parameters, selected according to the classification model of study phenomena (Villez, 

Ruiz, Sin, et al, 2008). 

Using described algorithm it is possible to obtain regularized spatial-temporal distribution of 

investigated parameters over whole observation period with rectified reliability (Mudelsee, Börngen, 

Tetzlaff, 2001). 

Proposed regularization algorithm has been applied to analysis of disaster statistics and obtaining of 

smoothed distributions of frequency of disasters, climatic and socio-economic parameters for period 1960–

2010 over Southern part of Ukraine adjacent to Black Sea – Black Sea Lowland. Study region includes 

Odesa, Mykolayiv, Kherson and Zaporizhyia administrative regions, and Northern – West shelf of Black 

Sea. 

Black Sea Lowland is a flat plain, slightly sloping to the south. Heights from 5 (near the estuary 

Kuyal'nik liman), an average of 90–150 m. The Black Sea lowland composed of Paleogene and Neogene 

marine sediments (limestone, sand, clay) overlain by loess and loess-like loams. Low plains crossed by 

wide river valleys of the Dnieper, Southern Bug, Dniester Rivers and other watersheds are flat, 

characterized by sinkholes. The coastline is predominantly steep. Near the sea there are many deep estuaries 

and limans (Dnieper, Dniester, and others) and sand braid. The steppe landscapes with southern chernozem 

and dark chestnut soils are dominated. Much of the steppe is under cultivation and used as agricultural land. 
 

 

 

Figure 1. Study area: Black Sea Lowland 
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For the area studied for period 1960–2010 has been analyzed wide group of natural and technological 

disasters. Was used international classification of disasters according to (Guha-Sapir, Vos, Below, 2010) 

with some minor variations caused by national classification features and data availability. Final set of 

disaster analyzed includes the following types of events: 

a)  natural: climatological (& meteorological): wind storms, squalls, tornadoes, dust storms, hail-storms, 

heavy rains, heavy snowfalls, glazed frosts, heavy snow blasts, heavy frosts, heavy heat, heat and cold 

waves, droughts, forest, grassland fires, peatmoor fires; hydrological: high water level (floods, 

freshets), mudflows, underfloodings, inundations, avalanches; geophysical (and geological): 

earthquakes, mud volcanoes eruptions, landslides, rockslides, surface subsidence, karst caverns 

rockfalls; epidemiological (biological, connected with human diseases): individual cases of exotic and 

specific dangerous infectious diseases, group cases of dangerous infectious diseases, epidemic outbreak 

of dangerous infectious diseases, epidemics, pandemics, human infectious diseases of uncleared 

aetiology; epizootical (biological, connected with animal diseases): individual cases of exotic and 

specific dangerous infectious diseases, group cases of dangerous infectious diseases, epizootic outbreak 

of dangerous infectious diseases, epizootics, enzootics, animal infectious diseases of uncleared 

aetiology; and additionally was analyzed separately the landscape fires: forest fires, grassland fires, 

cropland fires, peatmoor fires; 

b)  technological: abrupt destroying of structures, buildings and communications; transport accidents 

including connected with threat of pollution; accidents on energy systems and structures: accidents on 

hydroelectric power plants, nuclear power plants emergencies, accidents on steam power plants, other 

power plants types emergencies, breakdowns of power lines; accidents on life-support systems: 

accidents on drainage systems with massive contamination, accidents on heating and hot water supply 

systems, accidents on water supply systems, accidents on gas pipelines, oil pipelines breakdowns, 

hydrodynamic accidents, dams breaks, technical reservoirs emergency draw-downs; anthropogenic 

derived environmental contamination: ground contamination, air contamination, surface water 

contamination, drinking-water contamination, ground-water contamination; fires and explosions: fires 

and explosions of civil and industrial structures, buildings and communications, mines, and dangerous 

objects. 

For analysis were used data from international surveys and national reports (GSOD; USSR National 

Economy, 1969, 1980; State Budget of USSR, 1981–1985, 1989; National report, 2004, 2006, 2009; Guha-

Sapir, Vos, Below, 2010). 

On Figures 2 and 3 presented calculated according the described algorithm resulting distributions of 

mean probability of various types of disasters per year per 1.000 km
2
 during observation period 

[<P>/10
3
km

2
year]. 
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Figure 2. Natural and technological disasters probability distribution over study area 
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Figure 3. Distribution of probability of separate types of natural disasters 

Basing on geographical distribution (location, water regime, topography) and in accordance with 

distribution of long-term meteorological trends the area studied was divided to tree conventional zones: 

preferentially sea impacted zone, zone of mixed impact and continental sites. Distribution of disasters over 

these zones might be calculated separately as it is shown on Figures 4 and 5. 
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Figure 4. Distribution of probability of natural disasters according to regional features 
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Figure 5. Distribution of probability of technological disasters according to regional features 

 

Obtained distributions (Figures 2 – 5) demonstrate good corresponding with impact of climate-forming 

factors (sea influence), and reflect the distribution of regional geo-morphological features, such as terrain, 

erosion, neo-tectonics, landslides, subsidences, peculiarities of local water regime. Also the spatial-temporal 

changes of land-use are reflected on disaster probability distribution. 

Important direction of further studies is analysis of correlations of disasters probability and regional 

ecosystems reactions: changes of biomass, variations of horizontal and vertical distribution of vegetation, 
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which might be registered via satellite observation (analysis of integrated spectral reflectance indexes as 

indicators of vegetation state, ecological stresses, and water load variations). 

On Figures 2 – 5 presented the smoothed distributions of investigated parameters calculated using 

proposed algorithm. Non-smoothed output sets of parameters have been examined to correlations. Obtained 

correlations presented in Table 1. 

 
Table I. Correlations between analyzed disaster distribution and some climatic parameters 

 

 

Presented figures are the solid base for analysis of driving forces and causes of disasters. In particular, 

such dangerous technological hazard as environmental contamination, which usually considering in 

connection with transport accidents, or water and energy systems collapse, is closely and more hard 

connected with natural hydrological disasters (floods, inundations). And drivers of hydrological threats are 

climatological and hydro-meteorological disasters. 

Drastic change of frequency of climatological and hydro-meteorological disasters caused by increasing 

of droughts and heat waves in period 1985–2010, but it also connected with regional agricultural and land-

use practices, not adopted to altered climatic stress and lead to additional losses registered as the disaster 

events. 

Also it should be noted that such disasters as destroying of structures and buildings, fires and 

explosions of civil and industrial sector, and transport accidents obey the separate relationships, and so 

should be analyzed as the separate statistical group. 
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The special issue is the analysis of climate impact to disaster probability. As the index for climate – 

disaster correlation analysis the “reduced temperature maximum factor” Tred was proposed in form: 
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 ,   (7) 

where N – number of meteorological observations, Tn – is the observed temperature, T
max

 – maximal 

registered temperature during observation period. Mean correlations of this index with disaster distributions 

are higher than other climatic parameters such as mean or maximal temperature during the investigated 

period. 

Technically, formula (7) describes the variations of maximal registered temperatures relative to long-

term observed changes of maximal temperature (mean maximal temperature), reduced to regional trend of 

mean temperature. Used data indicates that Tred index is optimal correlation parameter for spatial-temporal 

variability of disasters frequency toward climate parameters variations on long time periods. 

So using proposed algorithm it is possible to obtain spatially-temporally regularized distributions of 

disasters and to analyze the corresponding risks features. 

Analyzing the results obtained it is possible to propose for the further risks assessment and disaster 

connected damage relief strategies development to use multivariate cumulative distribution function taking 

into account identified internal interrelations in structure of disasters distribution. If observation distribution 

describing as vector (X1, X2,..., Xn) with multivariate cumulative distribution function FX1, X2,..., Xn(x1, x2,..., xn) 

and marginal distributions functions FX1(x1), FX2(x2),..., FXn(xn), according to (Sklar, 1996), it is possible to 

determine distribution function C on hypercube [0,1]
n
 with uniform marginal distributions on interval [0,1] 

and FX1,X2,...,Xn(x1, x2,..., xn) = С(FX1(x1), ..., FXn(xn)). Proposed regularization algorithm allows to produce 

distributions, which satisfy such conditions, and additionally distribution FXi might be presented as 

continuous for all i = 1, 2, ..., n and so according to (Sklar, 1996), this distribution function C, or copula, 

will be determined uniquely. For our case following to (Rachev, Martin, Racheva, Stoyanov, 2009) the 

copula might be presented in form: 
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  (8) 

where с – is the correlation matrix obtained through analysis of regularized data. 

Using of such type view of function for description of dependencies between disaster risks 

corresponding to results of insurance analysts, in particular (Bradley and Taqqu, 2003; Rachev, Menn and 

Fabozzi, 2005). Proposed equation of copula might be recognized with some assumptions as the particular 

case of general formula proposed by (Rachev, Martin, Racheva, Stoyanov, 2009) or (Rachev, Menn and 
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Fabozzi, 2005). Proposed view of copula reflects that risks in complex multi-component systems can not be 

adequately described by linear superposition of scalar correlations on large time periods (Ermoliev, 

Hordijk, 2006; Ermoliev, Winterfeldt, 2010). More complicated interdependencies reflect complex systemic 

interrelations, spatial-temporal heterogeneities and study phenomena immanent uncertainties should be 

used in this case (Ermoliev, Winterfeldt, 2010). Besides it might be supposed that proposed way to analysis 

of multidimensional distributions of multivariate correlations could be quite successful used in systemic 

tasks of optimal control (Warga, 1972). This is the field for further applications. 
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Abstract: This paper describes the reliability analysis of a concrete containment for NPP under a high 

internal overpressure. There is showed summary of calculation models and calculation methods for the 

probability analysis of the structural integrity considering degradation effects and high internal 

overpressure. The probabilistic safety assessment (PSA) level 3 aims at an assessment of the probability of 

the concrete structure failure under the excessive overpressure. The non-linear analysis of the concrete 

structures was considered. The constitutive model presented is a further extension of the smeared crack 

model. Following the experimental results of Vecchio, Collins and Červenka  and Kupfer a new concrete 

cracking layered finite shell element was developed and implemented into the ANSYS system. In this 

model the Kupfer's bidimensional failure criterion of concrete is considered. The uncertainties of the loads 

level (long-time temperature and dead loads), the material model (concrete cracking and crushing, behavior 

of the reinforcement and liner), degradation effects and other influences following from the inaccuracy of 

the calculated model and numerical methods were taken into account in the response surface method 

(RSM). The results of the reliability analysis of the NPP structures are presented. 
 

Keywords: Nuclear Power Plant; Concrete Failure; Probability; RSM; ANSYS. 

 

 

 

1. Introduction 

 

The International Atomic Energy Agency set up a program to give guidance to its member states on many 

aspects of the safety of nuclear power reactors. The resistance of the building structure must be checked for 

extreme steam pressure in the case of small or medium-sized accidents, such as a LOCA (Loss of Coolant 

Accident) or a HELB (High Energy Line Break) or a SBLA (Steam Line Break Accident) on the different 

primary loop piping system. A complex high confidence and low probability analysis of power plant 

buildings with a WWER 230 reactor meets all the requirements of the IAEA. Compliance with the IAEA 

(IAEA, 2008) and Eurocode 2 (Eurocode, 1990) will be considered in three load combinations: NOC 

(Normal Conditions), DBA (Design Basic Accident) and BDBA (Beyond Design Basic Accident). During 

the nineties the requirements for service safety of the NPP Type V1 increased. In 1994 the Slovak Nuclear 

Inspection Authority (Kralik, 2009) defined the conditions for the general reconstruction of the NPP V1 

hermetic zone. This project was realized in the frame of the program PHARE “Reconstruction project of 

NPP V1” in cooperation with companies SIEMENS KWU, VÚEZ Levice and VÚJE Trnava (Kralik, 2002). 

Moreover, the principal tasks for checking the capacity and integrity of the hermetic zone after an accident 

involving the pipeline cooling system were defined. The object of NPP V1 is rectangular in plan (Figure 1). 

The part in the modul V-G/10-12 has dimension 13.7/39.2 m and in part V-G/12-17 has 25.0/39.2 m. 
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Figure 1. Containment and emergency tank 800 m3 of NPP V1. 
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The floor of the steam box is at level 10.5 m. The exterior walls are with thickness about 1.0−1.7 m. The 

foundation conditions under the NPP V1 structure are also complicated. The greater part of the structure 

(modulus V-D/12-20) is located on a reinforced concrete foundation plate at depths of − 4.2 m and – 7.3 m 

under the surface level. The reactor itself and the building sector in the modulus V-G/10-12 under the 

emergency basin is located at depths of – 12.3 m and – 13.8 m. The complicated wall configuration inside 

the hermetic zone provides more possibilities for the occurrence of local peak strain into the spoil liaison 

wall and panel. 

 The general purpose of the reconstruction of NPP V1 (Králik, 2002) was to increase the reliability and 

safety of service in the hermetic zone by establishing a new condensation system using the space of an 

800 m
3
 tank with its cooling water for cutting down the radioactivity of escaped steam and its chilling from 

any accident that occurred and depressurization in the hermetic zone (Králik, 2002). The new cooling 

system includes piping systems and backward shutters that were installed in the newly-built holes of the 

tank ceiling plate in modulus 10/G (Figure 1). Therefore, we have to check the resistance and reliability of 

the upgraded structures through calculations and an experimental strength test. From 1995−96, the new 

technology system of the bearing structures of the hermetic zone were tested, and in accordance with a 

reconstruction project from 1999−2000, the bearing frames of the hermetic space have been checked after 

the application of a new safety system for accidents and after reconstruction of the bearing structure. 

In the case of the analysis PSA 3 level it is necessary to determine the probability of the concrete structure 

failure under higher overpressure (Králik, 2009).  

The general purpose of the probabilistic analysis of the containment integrity failure was to define the 

critical places of the structure elements and to estimate the structural collapse (Králik, 2005, 2009, 2010).  

 Two critical structures are in the NPP object – the containment (CTMT) and the emergency water 

safety tank (EWST). The foundation conditions under the NPP V1 structure are also complicated.  

 The complicated wall configuration inside the hermetic zone provides more possibilities for the 

occurrence of local peak stress along the contact of walls and plates. The computational FEM model of the 

NPP V1 structures is presented in Figure 2. 

 

  

Figure 2. Computational model of the NPP building with layered shell elements. 
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 For a complex analysis of the reinforced concrete structure of the hermetic zone for different kinds of 

loads, the ANSYS software and the CRACK program (Králik, 2009, 2010) were provided to solve this task. 

The building of the power block was idealized with a discrete model consisting of 26
.
923 elements with 

325
.
036 DOF. The link finite elements and the infinite layered space elements developed by the author 

(Králik, 2009) were used to model the soil. The link finite elements for the model of the thin soil layer 

under the power block building loaded by a steam pressure are accurate enough, and thus create a more 

realistic model. Recently the soil under the foundation plate has been consolidated. 

 The accident scenario was defined by SIEMENS KWU, VÚEZ Tlmače and VÚJE Trnava within the 

Phare program and “The NPP V1 Reconstruction Project” (Králik, 2002). 

 

 

 

2. Nonlinear Solution of Concrete Cracking and Crushing 

 

The probabilistic analysis of the containment integrity failure is based on the nonlinear analysis of the 

concrete structures due to the accident of the coolant system and under the high level of the overpressure 

into the box of the steam generator (Králik, 2009, 2010).  

 The theory of large strain and rate independent plasticity were proposed during the high overpressure 

loading using the SHELL91 or the SHELL281 layered shell element from the ANSYS library (Kohnke, 

2008). 

 The vector of the deformation parameters r of this element (Figure 3) with the corner nodes “1, 2, 3, 

4” and midside nodes “5, 6, 7, 8“ is defined in the form 

 r=r1, r2, r3, r4, r5, r6, r7, r8
T
,       ri=uxi, uyi, uzi, xi, yi

T
        i = 1..8 (1) 

The vector of the displacement of the l-th shell layer    , ,
T

l l l l

x y zu u u u  is approximated by the quadratic 

polynomial (Králik, 2009) in the form 
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    (2) 

where Ni is the shape function for i-th node of the 8-node quadrilateral shell element, uxi, uyi, uzi are the 

motion of i-th node,  is the thickness coordinate, ti is the thickness at i-th node,  a is the unit vector in x 

direction,  b is the unit vector in plane of element and normal to  a , xi  or yi  are the rotations of i-th 

node about vector  a  or  b . 

The linear strain vector  l  for the l-th layer is related to the nodal displacement vector by 

    l l lB u     ,
 (3) 

where lB    is the strain-displacement matrix based on the element shape functions.  

In the case of the elastic state the stress-strain relations for the l-th layer are defined in the form 
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, 

l

xE  (versus l

yE ) is Young modulus of the l-th layer in the direction x (versus y), 

l

xyG , l

yzG , 
l

zxG  are shear moduli of the l-th layer in planes XY, YZ and ZX; ks  is the coefficient of the 

effective shear area (
2

1 0.2 1.2
25

s

A
k

t
   ), A is the element area, t is the element thickness. 

 

Figure 3. The shell element with 8 nodes. 
 

2.1.  GEOMETRIC NONLINEARITY 

 

If the rotations are large but the mechanical strains (those that cause stresses) are small, then a large rotation 

procedure can be used. A large rotation analysis is performed in a static analysis in the ANSYS program 

[10].  
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The strain in the n-step of the solution can be computed from the relations   

      n o n nB T u  , (5) 

where  nu is the deformation displacement,  oB  is the original strain-displacement relationship,  nT is 

the orthogonal transformation relating the original element coordinates to the convected (or rotated) 

element coordinates. 

 The convected element coordinate frame differs from the original element coordinate frame by the 

amount of rigid body rotation. Hence [Tn] is computed by separating the rigid body rotation from the total 

deformation {un} using the polar decomposition theorem. A corotational (or convected coordinate) 

approach is used in solving large rotation/small strain problems (Kohnke, 2008). 

 

2.2.  MATERIAL NONLINEARITY 

 

The presented constitutive model is a further extension of the smeared crack model (Bažant et al, 2007; 

Červenka, 1985; Hinton and Owen, 1984; Hughes, 1984; Meskouris et al, 1997; Oñate et al, 1993), which 

was developed in (Králik, 2000). Following the experimental results (Červenka, 1985; Kupfer, 1969; Jerga 

and Križma, 2006) a new concrete cracking layered finite shell element was developed and incorporated 

into the ANSYS system (Králik, 2009). The layered approximation and the smeared crack model of the 

shell element are proposed.  

The processes of the concrete cracking and crushing are developed during the increasing of the load. 

The concrete compressive strength fc, the concrete tensile strength ft and the shear modulus G are reduced 

after the crushing or cracking of the concrete (Kolmar, 1986).  

In this model the stress-strain relation is defined (Figure 4) following ENV 1992-1-1 (1991)  

 Loading in the compression region        0eq

cu    
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 Softening in the compression region        
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 (7) 

 The tension region        
eq

t m     

 .exp( 2.( ) / )ef eq

c t t tmf              ( 0.0001, 0.002)t tm    (8) 

In the case of the plane state the strength function in tension tf  and in compression cf  were considered 

equivalent values 
eq

tf  and 
eq

cf .  

In the plane of principal stresses (c1, c2) the relation between the one and bidimensional stresses state 

due to the plasticity function by Kupfer (see Figure 5) can be defined as follows: 
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Figure 4. The concrete stress-strain diagram. Figure 5.  Kupfer’s plasticity function. 
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The shear concrete modulus G was defined for cracking concrete by Kolmar (Kolmar, 1986) in the form   

 .g oG r G ,  
2

1
ln u

g

1

ε
r

c c

 
  

 
,    1 7 333 0.005c p   ,    2 10 167 0.005c p   , (12) 

where Go is the initial shear modulus of concrete, u  is the strain in the normal direction to crack, c1 and c2 

are the constants dependent on the ratio of reinforcing, p is the ratio of  reinforcing transformed to the plane 

of the crack ( 0 0.02p  ). 
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 It is proposed that the crack in the one layer of shell element is oriented perpendicular to the orientation 

of principal stresses. The membrane stress and strain vector depends on the direction of the principal stress 

and strain in one layer 

     cr T  ,              cr T  ,  (13) 

where  T ,  T  are transformation matrices for the principal strain and stress in the direction   in the 

layer. 

  

2 2

2 2
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The strain-stress relationship in the Cartesian coordinates can be defined in dependency on the direction of 

the crack (in the direction of principal stress, versus strain) 

     cr cr crD      and  therefore           
T

crT D T       (15) 

For the membrane and bending deformation of the reinforced concrete shell structure the layered shell 

element, on which a plane state of stress is proposed on every single layer, was used. 

The stiffness matrix of the reinforced concrete for the l-th layer can be written in the following form 

 
T T

. .

1

reinN
l l l l l l l

cr c cr c s s s

s

D T D T T D T 


                             (16) 

where [Tc.], [Tc.], [Ts] are the transformation matrices for the concrete and the reinforcement separately, 

Nrein is the number of the reinforcements in the l-th layer. 

 After cracking the elasticity modulus and Poisson’s ratio are reduced to zero in the direction 

perpendicular to the cracked plane, and a reduced shear modulus is employed. Considering 1 and 2 two 

principal directions in the plane of the structure, the stress-strain relationship for the concrete l-th layer 

cracked in the 1-st direction, is  
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where the shear moduli are reduced by the coefficient of the effective shear area ks and parameter rg1 by 

Kolmar (12) as follows: 12 1.cr

o gG G r ,     13 1.cr

o gG G r ,    23 /cr

o sG G k  

 When the tensile stress in the 2-direction reaches the value tf  , the latter cracked plane perpendicular to 

the first one is assumed to form, and the stress-strain relationship becomes : 
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 (18) 

where the shear moduli are reduced by the parameter rg1 and rg2  by Kolmar (12) as follows: 12 1.cr

o gG G r ,     

13 1.cr

o gG G r , 23 2

cr

o gG G r . The cracked concrete is anisotropic and these relations must be transformed to 

the reference axes XY. The simplified averaging process is more convenient for finite element formulation 

than the singular discrete model. A smeared representation for the cracked concrete implies that cracks are 

not discrete but distributed across the region of the finite element. 

 The smeared crack model (Červenka, 1985; Oñate, 1993), used in this work, results from the 

assumption, that the field of more micro cracks (not one local failure) brought to the concrete element will 

be created. The validity of this assumption is determined by the size of the finite element, hence its 

characteristic dimension
cL A , where A is the element area (versus integrated point area of the element). 

For the expansion of cracking the assumption of constant failure energies Gf = const is proposed in the form 

  
0

d .f n G cG w w A L


  ,          wc = w.Lc, (19) 

where wc is the width of the failure, n is the stress in the concrete in the normal direction, AG is the area 

under the stress-strain diagram of concrete in tension. Concrete modulus for descend line of stress strain 

diagram in tension (crushing) can be described according to Oliver (Červenka, 1985; Oñate, 1993) in 

dependency on the failure energies in the form 
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where Ec is the initial concrete modulus elasticity, max is the maximal stress in the concrete tension. From 

the condition of the real solution of the relation (20) it follows, that the characteristic dimension of element 

must satisfy the following condition 

 
2

max

2 f c

c

G E
L


 , (21) 

The characteristic dimension of the element is determined by the size of the failure energy of the element. 

The theory of a concrete failure was implied and applied to the 2D layered shell elements SHELL91 and 

SHELL281 in the ANSYS element library (Kohnke, 2008). 

 The limit of damage at a point is controlled by the values of the so-called crushing or total failure 

function Fu. The modified Kupfer’s condition (Kupfer, 1969) for the l-th layer of section is following 

  1 2; ; 0l l

u u uF F I I    ,       2 13 0l

u uF J I       ,  (22) 

where I1, J2 are the strain invariants, and u is the ultimate total strain extrapolated from uniaxial test 

results ( 0.002u 
 
in the tension domain, or 0.0035u 

 
in the compression domain), ,  are the material 

parameters determined from the Kupfer’s experiment results ( 1.355,   0.355 u  ).  

 The failure function of the whole section will be obtained by the integration of the failure function 

through to the whole section in the form 

    1 2 1 2

10

1 1
. ; ; d ; ;

layNt

l l

u u u u u l

l

F F I I z F I I t
t t

    


    (23) 

where tl is the thickness of the l-th shell layer, t is the total shell thickness and Nlay is the number of layers. 

This failure condition is determined by the maximum strain s of the reinforcement steel in the tension area 

(  max 0.01s sm   ) and by the maximum concrete crack width wc (  max 0.3mmc cmw w  ).  

 

 

 

3. Degradation of Reinforced Concrete Structure 

 

The safety of nuclear power plants could be affected by the age related degradation of structures (ACI, 

1989) if it is not detected prior to the loss of the functional capability and if timely corrective action is not 

taken.  

The reduction even or the loss of functional capability of the key plant components could reduce the 

plant safety. Mild steel reinforcing bars are provided to control the extent of cracking and the width of 

cracks at operating temperatures, to resist tensile stresses and computed compressive stresses for elastic 

design, and to provide the structural reinforcement where required. Potential causes of degradation of the 

reinforcing steel would be corrosion, exposure to elevated temperatures and irradiation (ACI, 1989; Králik, 

2009; Li, 2005; Meskouris and Wittek, 1997; Teplý et al., 2010). 

So-called „uniform“ or general corrosion consists of approximately uniform loss of metal over the 

whole exposed surface of the reinforcing bar. Faraday’s law indicates that a corrosion current density of 
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icorr = 1 A cm
-2

 corresponds to a uniform corrosion penetration of 11.6 m year
-1

. Thus the reduction of the 

diameter of a corroding bar, D, at time T, can be estimated directly (in mm) from icorr as 

    0.0232 d

o

T

corr

T

D T i t t   ,  (24) 

where T is the actual time, To is the time of corrosion initiation (in years). If a constant annual corrosion rate 

is assumed, equation (24) reduces to the following equation 

   o0.0232 corrD T T T i    

The net cross-sectional area of a reinforcing bar, Ar at time T, is then equal to 
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 ,  (25) 

where Do is the initial diameter of the reinforcing bar (in mm).  

 

 
Figure 6. Computational model with two vertical cracks. 

 

The limit concrete strength and its Young modulus are practically not changed during the corrosion 

process. The corrosion process can be considered as the reduction of the reinforced steel cross section. The 
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state of the NPP reinforced concrete structures has been periodically monitored in the frame of the IAEA 

requirements for safety and reliability of the NPP performance. 

 Special attention was paid to the EWST structure. After 10 years of the operation, two vertical cracks in 

the wall in axis 12, near the contact of the reactor corps and the basin wall, were identified (Figure 6). Also, 

hence the degradation effects at the bottom of the emergency water storage tank were identified (Figure 7). 

These effects were the consequence of the corrosion process of the reinforced steel in the basin plate.     
 

  

Figure 7. Degradation effects at the basin bottom. 

             

Figure 8. Detail of reinforcement and the concrete crack.                Figure 9. Steel corrosion depending on time. 
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There is proposed conservatively that this corrosion process had been acting from 10 to 20 years. In 

regard to all uncertainties to define the influence of the corrosion effects and to identify cracks the state of 

the NPP structure resistance is investigated using the probabilistic methodology and conservative 

proposition of the degradation processes.  

The corrosion effects of the reinforcement at the basin bottom and in the concrete cracks were 

considered according to Faraday’s law (Figure 9) using the uniform corrosion penetration (of  

11.6 m.year
-1

). This assumption is also conservative from the point of view of the higher safety level 

(ACI, 1989). 

 

 

 

4. Nonlinear Deterministic Analysis 

 

The critical sections of the structure were determined on the base of the nonlinear analysis due to the 

monotone increasing of overpressure inside the hermetic zone (Králik and Cesnak, 2000; Králik, 2002). The 

resistance of these critical sections was considered taking into account the design values of the material 

characteristics and the load. The combination load and design criteria were considered for the BDBA state 

(IAEA, 2008). 

The critical areas were identified in the connection walls and plate of the hermetic zone at level 

+ 10.5 m near the hole in the modulus „10“ and „V“ (Figure 10). The tension forces and the bending 

moments were concentrated between two outside large walls.  

  

Figure 10. Critical area of containment structure loading at overpressure 320 kPa. 

On the base of the nonlinear analysis of the containment resistance for median values of the material 

properties and failure function (22) the critical overpressure was equal to 309 kPa without the degradation 

effect and 287 kPa (versus 283 kPa) with degradation effects during 10 years (versus 20 years) (Figure 

11a). 

The capacity of the concrete wall of the EWST structure is equal 45% without considering the 

degradation effect (versus 50% with the degradation effect after 20 years) under overpressure 300kPa in the 
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CTMT structure (Figure 11b). The temperature of the water (about 55
o
C) in the emergency tank (EWST) 

affects the compression in the tank wall as the prestressed. This effect is opposite to the overpressure effects 

in the CTMT. The degradation effect occurs during overpressure higher than 150 kPa (Figure 11). 

 

        

Figure 11. The capacity utilization of the reinforced concrete containment (CTMT) and emergency water storage tank (EWST) due 

to overpressure with and without degradation effects. 

 

 

 

5. Probabilistic Analysis of the Structure Reliability 
 

Recent advances and the general accessibility of information technologies and computing techniques give 

rise to assumptions concerning the wider use of the probabilistic assessment of the reliability of structures 

through the use of simulation methods in the world (Haldar and Mahadevan, 2000; Králik, 2009; Lenkei 

and Györgyi, 1999; Vejvoda, 2003;). A great attention should be paid to using the probabilistic approach in 

an analysis of the reliability of structures (Bažant et al., 2005; Holický and Marková, 2000; Kala, 2011; 

Melcher et al., 2004; Vořechovský and Chudoba, 2006).  

Most problems concerning the reliability of building structures are defined today as a comparison of 

two stochastic values, loading effects E and the resistance R, depending on the variable material and 

geometric characteristics of the structural element. The variability of those parameters is characterized by 

the corresponding functions of the probability density fR(r) and fE(e). In the case of a deterministic approach 

to the design the deterministic (nominal) attributes of those parameters Rd and Ed are compared. 

The deterministic definition of the reliability condition is of the form 

 d dR E  (26) 

and in the case of the probabilistic approach it is of the form 

  , 0RF g R E R E     (27) 

where  ,g R E  is the reliability function. 

The probability of failure can be defined by the simple expression  
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     0fP P R E P R E         (28) 

The reliability function RF can be expressed generally as a function of the stochastic parameters X1, X2 to 

Xn, used in the calculation of R and E. 

 1 2( , ,..., )nRF g X X X  (29) 

The failure function g({X}) represents the condition (reserve) of the reliability, which can be either an 

explicit or implicit function of the stochastic parameters and can be single (defined on one cross-section) or 

complex (defined on several cross-sections, e.g., on a complex finite element model). 

In the case of simulation methods the failure probability is calculated from the evaluation of the statistical 

parameters and theoretical model of the probability distribution of the reliability function Z = g(X). The 

failure probability is defined as the best estimation on the base of numerical simulations in the form 

  
1

1
0

N

f i

i

p I g X
N 

       (30) 

where N in the number of simulations, g(.) is the failure function, I[.] is the function with value 1, if the 

condition in the square bracket is fulfilled, otherwise is equal 0.  

The RSM method was chosen for the PSA analysis of the containment safety. It is based on the 

assumption that it is possible to define the dependency between the variable input and the output data 

through the approximation functions in the following form: 

 
1

2

o

1 1 1

N N N N

i i ii i ij i j

i i i j i

Y c c X c X c X X


   

       (31) 

where co is the index of the constant member; ci are the indices of the linear member and cij the indices of 

the quadratic member, which are given for predetermined schemes for the optimal distribution of the 

variables or for using the regression analysis after calculating the response. Approximate polynomial 

coefficients are given from the condition of the error minimum, usually by the "Central Composite Design 

Sampling" (CCD) method or the "Box-Behnken Matrix Sampling" (BBM) method (Kohnke, 2008). 

The computation efficiency of the experimental design depends on the number of design points, which 

must be at least equal to the number of the unknown coefficients. In the classical design approach, a 

regression analysis is carried out to formulate the response surface after calculating the responses at the 

sampling points. These points should have at least 3 levels for each variable to fit the second-order 

polynomial, leading to 3
k
 factorial design. This design approach becomes inefficient with the increasing of 

the number of random variables. More efficient is the central composite design, which was developed by 

Box and Wilson  (Kohnke, 2008).  

The central CCD method is composed of (Figure 13a) :  

1. Factorial portion of design − a complete 2
k
 factorial design (equal − 1, + 1) 

2. Center point − no center points, no  1 (generally no = 1 ) 

3. Axial portion of design − two points on the axis of each design variable at distance  from the 

design center  

Then the total number of design points is N = 2
k
 + 2k + no, which is much more than the number of the 

coefficients p = (k + 1)(k + 2)/2. The graphical representation for k = 3 and the matrix form of the coded 

values are represented in Figure 13. 
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Figure 12. A procedural diagram of the probabilistic calculations using the ANSYS software system. 

 It is advisable to use the displacement-based FEM for reliability analysis of the complicated structures 

with one of the defined simulation methods. In this work the ANSYS licensed program [10] with a 

probabilistic postprocessor was utilized for the probability analysis of the reliability of the NPP structures 

for various action effects. In Figure 13, the procedural diagram sequence is presented from the structure of 

the model through the calculations, up to the evaluation of the probability of the structural failure.  

 

                

                           a) The Central Composite Design                  b) The Box-Behnken Matrix Design 

Figure 13. Distribution schemes of the stochastic numbers of the RSM method for three input variables 

The postprocessor for the probabilistic design of structures enables to define the random variables using 

the standard distribution functions (normal, lognormal, exponential, beta, gamma, Weibull, etc.), or 

externally (user-defined sampling) using other statistical programs as the AntHILL or the FREET. The 

probabilistic calculation procedures are based on the Monte Carlo simulations (DS, LHS, user-defined 

sampling) and the approximation RSM method (CCD, BBM, user-defined sampling) [15 and 17]. The RSM 

 

 
 
 
234

 
 
 
 
 

 
 
 
5th International Conference on Reliable Engineering Computing (REC 2012)



A RSM Method for Nonlinear Probabilistic Analysis of the NPP Reinforced Concrete Structures 

 

method generates the explicit performance function for the implicit or complicated limit state function. This 

method is very effective for robust and complicated tasks. 

On the base of experimental design, the unknown coefficients are determined due to the random 

variables selected within the experimental region. The uncertainty in the random variables can be defined in 

the model by varying in the arbitrary amount producing the whole experimental region. 

 

 

 

6. PSA Level 3 Analysis of Containment Failure  

 

The methodology of the probabilistic analysis of integrity of reinforced concrete structures of containment 

results from requirements (IAEA, 2008) and experience from their applications (Králik, 2009, 2010 and 

2011; Lenkei  and Györgyi, 1999, Melcher et al., 2004; Rosowsky, 1999; Vejvoda, 2003; Vořechovský and 

Chudoba, 2006).  

The probability of containment failure is calculated from the probability of the reliability function RF in 

the form,  

 Pf = P(RF < 0) (32) 

where the reliability condition RF is defined depending on a concrete failure condition (30)  

 RF = 1 − Fu (; J2; u)/u,  (33)  

where the failure function Fu(.) was considered in the form (23). 

The previous design analyses, calculations and additions include various uncertainties, which determine 

the results of probability bearing analysis of containment structural integrity are presented in Table 1. Due 

to the mentioned uncertainties of the input data for the probabilistic analysis of reinforced concrete 

containment structures loss of integrity the mean values and standard deviations, the variable parameters for 

normal, lognormal and beta distribution were determined. 

 
Table I Variable parameters of the input data 

 Soil Material Loads Model 

Stiffness Young 

Modulus 

Dead 

load 

Live  

load 

Pres- 

sure 

Tempe-

rature 

Action 

uncertaint 

Resist. 

uncertaint 

Characteristic value kzk Ek Gk Qk Pk Tk Tek Trk 

Variable kzvar evar gvar qvar pvar tvar Tevar Trvar 

Histogram type N LN N BETA N BETA N N 

Mean value  1 1 1 0.643 1 0.933 1 1 

Deviation  [%] 5 11.1 10 22.6 8 14.1 5 5 

Minimum value 0.754 0.649 0.621 0.232 0.662 0.700 0.813 0.813 

Maximum value 1.192 1.528 1.376 1.358 1.301 1.376 1.206 1.206 

 

On the base of the RSM simulations the increment vector of the deformation parameters {rs} in the FEM 

is defined for the s-th
 
simulation in the form 

       
1

, , , , ,s GN s s s s s sr K E kz F F G Q P T



       (34) 

and the strain vector increment  
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     s s sB r    (35) 

where  GNK  is the nonlinear stiffness matrix depending on the variable parameters , ands sE kz F , F is 

the Kupfer’s yield function defined in the stress components,  F  is the increment vector of the general 

forces depending on the variable parameters , , ands s s sG Q P T  for the s-th simulation. The total strain vector 

is defined as the sum of the strain increments. 

 Resulting from the variability of the input quantity 25 simulation steps on the base of the RSM method 

under the ANSYS-CRACK system were realized (Králik, 2005 and 2009). The probability of loss 

containment structure integrity was calculated from 10
6
 Monte Carlo simulations for 25 steps of the RSM 

approximation method on the full structural FEM model. The probability analysis was considered for the 

structural model without (model V1_10) and with (model V1_11) the wall cracking and the corrosion 

effects below the emergency tank (Figure 1).  

    
1

Nstep

s s istep
istep

 


   (36) 

 The evaluation of the probabilistic sensitivities was calculated from the correlation coefficients between 

all random input variables and a particular random output parameter by Spearman. These analyses show 

(Figure 14) that the variability of the overpressure and the structure stiffness has the fundamental impact 

upon the reliability of the containment. The effects of the variability of the concrete stiffness are dominant 

in the model V1_10 without the degradation effect (Figure 14a), and on the other hand, the variability of the 

overpressure is dominant in the model V1_11 with the degradation effect (Figure 14b).  

 The probability of the concrete structure failure in accordance with the relation (33) under overpressure 

320 kPa is less than 10
-6

 in the model without cracking effects (original status). If the influence of the tank 

wall cracking and the corrosion effects are considered the probability of failure is equal 1.375.10
-4

 for 

overpressure 320 kPa. The histograms of the reliability function RF under overpressure 320 kPa for two 

models without (V1_10) and with (V1_11) the degradation effect, respectively, are presented in Figure 15.  

 

 

Figure 14. Sensitivity of reliability function RF. 
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Figure 15. Reliability function RF under overpressure 320 kPa for two models: a) without the degradation effect, b) with the 

degradation effect 

 

 

 

7. Conclusions 

 

The probability analysis of the loss of the concrete containment integrity was made for the overpressure 

loads from 40 kPa to 320 kPa using the nonlinear solution of the static equilibrium considering the 

geometric and material nonlinearities of the reinforced concrete shell layered elements. The nonlinear 

analyses were performed in the CRACK program, which was developed by the author and implemented 

into the ANSYS system (Králik and Cesnak, 2000; Králik, 2009). The uncertainties of the loads level 

(longtime temperature and dead loads), the material model of the composite structure (concrete cracking 

and crushing, reinforcement, and liner), the degradation effects (carbonization and reinforcement corrosion) 

and other influences following from the inaccuracy of the calculated model and the numerical methods 

were taken into account in the Monte Carlo simulations on the base of the RSM method (Králik, 2009). The 

reliability function RF was defined in dependency on the failure function Fu (; J2; u) for requirements of 

the PSA analysis in the form (23). The probability of the loss of the concrete containment integrity is less 

than 10
-6

 for the original structural model. In the case of the degradation effects of the concrete structure 

under the emergency tank the probability of the containment failure is equal to 1,375.10
-4

 for the 

overpressure 320 kPa. The theory of the nonlinear analysis using the RSM method was developed in the 

framework of the VEGA grant project (Králik, 2009). 
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Application of the Direct Optimized Probabilistic Calculation

Martin Krejsa
Department of Structural Mechanics, Faculty of Civil Engineering, VSB - Technical University Ostrava,

Ludvika Podeste 1875/17, 708 33 Ostrava - Poruba, Czech Republic, martin.krejsa@vsb.cz .

Abstract. The Direct Optimized Probabilistic Calculation method - DOProC - deals with probabilistic tasks
where certain input quantities are of a random nature. DOProC is typically used in probabilistic reliability
assessment of load carrying structures. DOProC can be also employed in probabilistic designs of structural
elements with the specified reliability. In many cases, this calculation method is very efficient and provides
accurate estimates of resulting probabilities.

DOProC has been successfully applied, among others, in the probabilistic calculation of fatigue cracks
in steel structures and bridges which are subject to cyclical loads. The software used for that purpose,
FCProbCalc, makes it possible to monitor efficiently and operatively development of fatigue damage to the
structure and to specify times for service inspection. This means, the structure is compliant and well suited
for operation in terms of fatigue damage. The methods and application can considerably improve estimation
of maintenance costs for the structures and bridges subject to cyclical loads.

Keywords: Direct Optimized Probabilistic Calculation; DOProC; Safety Margin; Probability of Failure;
Fatigue Crack Propagation; Inspection of Structure; Random Variable.

1. Introduction

Many calculation methods exist now for the designing and reliability assessment of load carrying structures
and elements with the specified reliability. Those methods are based on the probability theory and mathe-
matic statistics. They have been becoming more and more popular. The methods which are referred to as
probabilistic or stochastic make it possible to analyze safety margin Z defined by a calculation model where
at least some input quantities are of a random nature (Rackwitz et al., 1978). The calculation procedures
contribute to a qualitatively higher level of the reliability assessment and, in turn, higher safety of those who
use the buildings and facilities (Melchers, 1994).

The most frequently used and most numerous group of the computational method comprises the simula-
tion methods which are based on the popular simulation technique - Monte Carlo (Bjerager, 1988; Hurtado
et al., 1998) or any advanced or stratified simulation methods, for instance, Adaptive Sampling (Bucher,
1988), LHS (Helton et al., 2003; Olsson et al., 2003) and Importance Sampling. Eurocodes which are in
force now mention the application of approximation methods FORM and SORM types (Der Kiureghian et
al., 1998; Zhao et al., 2001) which are used mostly for calibration of partial factors. Those methods are also
used in rather complex software applications based on Finite Elements Methods (FEM) (Vanmarcke et al.,
1986; Reh et al., 2006; Stefanou, 2009).

The probabilistic approach to the assessment and designing of the structures has started appearing in
practice recently only (Bergmeister et al., 2009). The pre-requisite is, however, a sufficient database of input
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quantities including the experience from practical operation because many input quantities cannot be based
on models and laboratory measurements only (this being the case, for instance, of geotechnics). Those com-
putational methods are used, in particular, when designing the load-carrying systems for civil engineering
structures and bridges (Kala, 2005; Krivy et al., 2007), where degradation processes in structures can be also
taken into account (Konecny et al., 2007; Straub, 2009). It is possible to carry out the Performance-Based
Design of structures which consider utility values such as durability, fire resistance, insulation or seismic
resistance (Kralik et al., 2009; Teply et al., 2010). The probabilistic approach is used also in risk engineering
(Kubecka, 2010). Stochastic models are being developed which describe interaction of building structures
with subsoil or which taken into account undermining effects (Marschalko et al., 2011).

This paper describes the use of the original method and method which is under development now: the
Direct Optimized Probabilistic Calculation (in short ”DOProC”) uses a purely numerical approach without
any simulation techniques. This provides more accurate solutions to probabilistic tasks, and, in some cases,
to considerably faster completion of computations. Such solution entails a small numerical error only and
minor inaccuracies, the reason being discretizing of input and output quantities. In case of the probabilistic
assessment of the reliability of structures, DOProC expresses directly the probability of failure pf , which can
be compared with the design value of nominal failure probability pd, defined in standards and regulations
in force. Where the failure probability pf is zero (the structure is excessively reliable) or equal to one (the
input quantities in any combination result in a failure), DOProC estimates the result immediately and no
probabilistic calculations are needed anymore. In this case, DOProC method represents a very suitable and
highly efficient solution (Krejsa, 2011).

Theoretical background of DOProC was described in detail in many publications (Janas et al., 2009).
DOProC can be used now to solve efficiently a number of probabilistic computations. It has been used, for
instance, in probabilistic assessment of combined load, reliability of cross-sections and systems consisting
of statically determined or undetermined load carrying constructions, in probabilistic assessment of load
carrying constructions which are subject to impact, in probabilistic analyses of steel-fibre reinforced concrete
mixtures or in probabilistic assessment of reliability of anchored reinforcement or arc reinforcement in
underground and long mine works with a special focus on anti-slipping properties.

DOProC has proved to be a good solution, among others, in probabilistic analyses of fatigue crack
propagation in constructions subject to cyclical loads. Detailed methods with examples of the probabilistic
assessment for a construction subject to fatigue load are available, a particular attention being paid to cracks
from the edge and those from surface. Similarly to other probabilistic analyses, this information is used as a
basis for proposing a system of inspections of the cyclic load construction (Moan, 2004; Chen et al., 2011;
Li et al., 2011). In order to improve quality of probabilistic calculations, a special software - FCProbCalc -
was developed. Using this software, the task can be solved flexibly in a user-friendly environment.

2. Direct Optimized Probabilistic Calculation

The Direct Optimized Probabilistic Calculation (”DOProC”) has been under development since 2002. The
calculation procedure for a certain task in DOProC is clearly determined by its algorithm, while Monte
Carlo simulation methods generate calculation data for simulation on a random basis. The term in the name
of the method - ”the optimized” - is based on following facts: the number of variables that enter calculation
of the failure probability pf , computation is, however, limited by capabilities of the software to process the
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application numerically. If there are too many random variables, the application is extremely time demanding
- even if high-performance computers are used. Therefore, efforts have been made to optimize calculations
in order to reduce the number of operations, keeping, at the same time, reliable calculation results. Currently,
the DOProC along with the optimizing steps can address well several probabilistic tasks.

2.1. BASICS OF DOPROC METHOD

Similarly as with the other probabilistic methods, input random quantities in DOProC (such as the load,
geometry, material properties, or imperfections) are described using the non-parametric (empirical) distri-
bution in histograms. This technique can be also used for parametric divisions. The distribution is typically
based on observations, being often long-lasting ones. A computational procedure is being developed now,
the aim being to implement into DOProC the statistic dependence of input parameters, such as (Vorechovsky
et al., 2009).

The basic computation algorithm of DOProC is based on general terms and procedures used in proba-
bilistic theories. Let the histogram B be an arbitrary function f of histograms Aj where j ranges from 1 to
n. Then:

B = f(A1, A2, A3, . . . , Aj , . . . , An) . (1)

Each histogram Aj consists of ij interval where each interval is limited with aj,i from below and aj,i+1

from above. This means, that for the interval ij = 1, the values will be as follows:

aj,1 ≤ aj < aj,2 , (2)

where
aj,2 = aj,1 + ∆aj , (3)

where
∆aj =

aj,max − aj,min

ij
. (4)

In ij , following formula is valid:
aj,i ≤ aj < aj,i+1 . (5)

Let us express aj in that interval as a(ij)
j . Similar relations are valid for the B histogram. If there are i

intervals, the values of the histogram in the ith interval range from bi to bi+1, this means b(i). They can be
expressed as follows:

b(i) = f
(
a

(i1)
1 , a

(i2)
2 , . . . , a

(ij)
j , . . . , a(in)

n

)
(6)

for the specific combination of arguments: a(i1)
1 , a

(i2)
2 , . . . , a

(ij)
j , . . . , a

(in)
n . The same value - b(i) - can be

derived for other values too (or at least for some values too) - a(ij)
j . If the potential combination of values

a
(ij)
j is marked as l, the following general formula can be derived:

b(i) = f
(
a

(i1)
1 , a

(i2)
2 , . . . , a

(ij)
j , . . . , a(in)

n

)
l
. (7)
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The probability pibl of occurrence of b(i) is the product of p(ij)
aj (probabilities of occurrence of aijj values).

Then:
pibl =

(
p

(i1)
aj · p

(i2)
aj · p

(i3)
aj · . . . · p

(ij)
aj · . . . · p

(in)
aj

)
. (8)

The probability of occurrence of all potential combinations
(
ai11 , a

i2
2 , . . . , a

ij
j , . . . , a

in
n

)
l

of f with the

result of b(i) is:

p
(i)
b =

l∑
l=1

p
(i)
bl . (9)

The number of intervals ij in each histogram Aj can vary similarly as the number of i intervals in the
histogram B. The number of intervals is of utter importance for the number of needed numerical operations
and required computing time. On top of this, the accuracy of the calculation depends considerably on the
number of intervals.

Fig. 1 shows the numerical operations in the probabilistic calculations with two random quantities ex-
pressed in a histogram using the basic computational DOProC algorithm. In this case, two load components
are combined or a sum of two histograms is used.

Figure 1. Principles of numerical operations with two histograms (the combination of dead load and long lasting load).

DOProC method is possible to use in ProbCalc (Janas et al., 2009; Janas et al., 2012) - software applica-
tion which is still under development. It is rather easy and simple to implement quite a complicated analytical
transformation model of a probabilistic task defined using a text-oriented editor, similar to Nessus software
(Thacker et al., 2006) or Proban software (Tvedt, 2006). In more complex numerical calculation models,
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there is a chance to use the procedure programmed by the user as DLL (with a dynamic library extension).
More advanced user knowledge is required then to enter the probabilistic tasks in ProbCalc. It is essential
to know, at least, general basics of algorithms because this influences the way of defining the computational
model and selection of the best optimizing procedure. This weakness is removed if the application software
is customized for a specific probabilistic task, this being, for instance, the case of FCProbCalc which is
described in Chapter 3.3.

The computational complexity of DOProC is given, in particular, by:

− the number of random input quantities i = 1 . . . N ,
− the number of histogram classes (intervals) for each random input quantity ni,
− complexity of the task (computational model),
− the algorithm used in the probabilistic calculation (the method used for definition of the computational

model - in a ProbCalc text mode or using a dynamic library or application software).

2.2. USING DOPROC FOR CALCULATION OF FAILURE PROBABILITY

The construction should be designed in such as way so that the structural resistance R, would be higher
than the load effects S. Considering all random phenomena in the load, manufacturing and installation
inaccuracies and inaccuracies where the construction is used, the structural resistance R, and load effect S,
should be regarded as random quantities - see Fig. 2. The both quantities need to be of the same dimension.

Figure 2. Probability density curves - load effect S, structural resistance R, and the area where a failure may occur.

The probabilistic reliability assessment is based on the reliability condition which can be expressed as
follows:

Z = R− S ≥ 0 , (10)

where Z is safety margin, R is the structural resistance and S is the load effect. If the reliability condition
is not fulfilled, such situation is undesirable in terms of reliability - it is a failure when the load effect S
exceeds the magnitude of the structural reliability R. The area where a failure may occur is shown in Fig. 2.
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Figure 3. Basic approach to the calculation of the safety margin histogram Z, for two random variables using DOProC.

Fig. 3 shows the calculation of the safety margin Z, for two random quantities using the DOProC algo-
rithm. The probability pZ,i in the i-class is the sum of products of the ps,i probabilities for si in i-classes of
the S histogram and pr,i probability of ri in i classes for the R histogram:

pZ,i =
∑

ps,i · pr,i . (11)

This results in the histograms for the safety margin Z, the final part of which gives the resulting proba-
bility failure pf , which is compared then with the nominal probability of failure pd.

If the Z histogram comprises n classes (intervals) with the ∆z width, the resulting probability of failure
pf , is calculated then as the sum of probabilities p(i=1...j)

z in individual intervals (classes) where the safety
margin is Z < 0 (this results from (10)). In the interval where the boundary values of the j class of the
Z reliability histograms are within zj < 0 < zj+1, the distribution of probability p(j)

z should be divided
proportionally into two parts. This means, the final probability of failure pf is determined using Fig. 4 and
equation:

pf =

j−1∑
i=1

p(i)
z + p(j)

z ·

(
1−

zj + ∆z
2

∆z

)
=

j−1∑
i=1

p(i)
z + p(j)

z ·
(

1

2
− zj

∆z

)
. (12)
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Figure 4. Calculation of the probability of failure pf , from the histogram for the safety margin Z.

2.3. DOPROC OPTIMIZING TECHNIQUES

The purpose of the DOProC optimizing techniques is to minimize the computing time since the algorithm is
limited to a certain extent, in particular, for extensive applications where too many simulations exist. If the
optimizing techniques are used in DOProC, the failure probability pf , can be determined in a real time. On
top of this, results are reliable and accurate enough even in relatively demanding probabilistic tasks.

The optimizing techniques include:

− Grouping of variable input quantities: Grouping of the input quantities makes it possible to eliminate
the number of input variable histograms. If possible, the resulting histogram is determined on the basis
of the required mathematical operation. Then, the histogram is used for the probabilistic calculation
of the model. This can considerably reduce the number of computational operations. This optimizing
technique is used most frequently in calculations of the combined load or in a summary histogram
which expresses impacts of wind loading by means of a ”wind rose”. If the grouping (this means, the
creation of joint histograms of the input quantities) is possible and reliable, it is a very efficient and
reasonable optimizing technique which reduces dramatically the number of computational operations
in the probabilistic calculation.

− Interval optimizing: The objective of the interval optimizing is to minimize the number of classes used
in the input quantity histograms. This reduces the number of computation operations and minimizes
the machine time needed for the probabilistic calculation. A mandatory condition for this optimizing
technique is the maintaining of sufficient accuracy of the required results. For this optimizing technique
it is essential to make a sensitivity analysis and to check the influence of such reduction onto the result.

− Zone optimizing: In the zone analysis, each input quantity interval is divided into three zones. The
first zone is always involved in creation of the probability of failure pf , irrespective of values in other
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histograms (the first zone is involved there, whatever combination of interval of the remaining input
quantities is). The second zone may, but does not need to, be involved in the process (it is involved only
in some combinations of intervals of the other input quantities), while the third zone is never involved
there (when determining the probability of failure pf , it is possible to omit this part of the histogram).
If the zones are known, it is possible to calculate the probability of failure pf very efficiently. Detailed
information is available about the zone optimizing and practical aspects of this approach.

− Trend optimizing: Trend optimizing can be used as a supplement to the zone optimizing in the prob-
abilistic calculations. In the zone optimizing technique is used, the calculation is carried out only for
the zone #2. If a trend is found for the random variable (this means that the resulting positive value
of the safety margin Z, increases with changes in the random variable) it does not make any sense to
introduce other computational combinations. For such a quantity, the safety margin Z, cannot reach
negative values and cannot influence the failure probability pf . This means, it is possible to eliminate
computational combinations and to keep only those which are really needed.

− Grouping of partial computation results: The purpose of the grouping of partial computational re-
sults is to decrease the number of computational operations during the assessment of the histograms of
the quantities which are the result of the computational model. In case of the probabilistic reliability
assessment, this group is defined by the safety margin Z, where the values entered pursuant to (10) are
the calculated reliability of the structure R, and loading impacts S. In some cases, it is possible to enter
directly the input quantity histogram into this group. (Such quantity can be the strength characteristic
of the used material if the reliability assessment is done for the tension and the quantity is not involved
in the computational model, or a limit deflection of the reliability assessment is based on the ultimate
state of usability).

− Computation parallelization: The computation is carried out in several processors or core at the same
time. The basic algorithm of DOProC is an optimum solution for the parallelism: partial results reached
by multi core/processor computation are summed up in the final phase of the probabilistic calculation.

− Combination of the aforementioned optimizing techniques: Below is the recommended sequence
of the optimizing techniques in DOProC:

• Grouping: It should be used always, if possible.
• Interval optimizing: It is recommended to minimize the number of histogram groups, particularly,

when debugging the computational algorithm. Then, the number of the histogram classes should
be optimized for specific results.

• Other optimizing techniques which should be used, if possible and feasible in terms of complexity.

The optimizing techniques have been described in detail and implemented into ProbCalc and can be
combined in the probabilistic calculation.

3. Using DOProC to calculate propagation of fatigue cracks

Probabilistic calculation of steel structures and bridges using DOProC method, leads to the probabilities
of three basic random events in dependence on years of bridge’s operation and fatigue crack propagation.
On the basis of that calculation for each individual year, determined by analysis of reliability function, the
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dependence of the failure probability on time of the bridge’s operation is specified. When the limit reliability
is known, it is possible to determine times of the structure’s inspections (Krejsa, 2011).

3.1. BASICS OF PROPAGATION OF FATIGUE CRACKS

Reliability of the load-bearing structure has been significantly influenced by degradation resulting, in par-
ticular, from the fatigue of the basic materials. Whler’s curves are used when designing such structures.
The service life can be limited until a failure occurs. The failure is, however, very difficult to determine.
For purposes of the modeling, the amplitude oscillation is considered to be constant, and a certain number
of load cycles is taken into account. The method has been developed to provide procedures describing
real conditions, all this making the work of design engineers easier. As fatigue cracks appear randomly on
existing structures (in crane rails and bridges), it is believed that the designing method is imperfect to a
certain extent (Fisher et al., 1998). Methods are under development that would be able to reveal potential
defects and damage resulting from initiation cracks that accelerate considerably the propagation of fatigue
cracks (Giner et al., 2008). Linear fracture mechanics is among alternative methods. Machinery experts have
been dealing with such issues for many years. Results have been gradually taken over and implemented into
designs of the loading structures in buildings. This approach is typically used for the determination of times
of inspection and analyses of inspection results. If cracks are not found, a conditional probability exists that
they might appear later on.

Attention is paid to fatigue damage of building steel structures and bridges where the acceptable fatigue
(Anderson, 2005) crack size is assessed. The acceptable crack size plays a key role in degradation of an
element dimensioned for an extreme loading combination that is exposed to variable operation loads. It
represents a possible degradation of an element in an ultimate limit state that can be still monitored.

The outcome is procedures that should clarify currently acceptable methods used for the designing of the
fatigue crack in the context of the safe service life and acceptable failure rate. A flange of the composite
reinforced concrete bridge has been chosen for applications of the theoretical solution. This tension is
exposed, in particular, to tension. Depending on location of an initial crack, the crack may propagate from
the edge or surface. Regarding the frequency, weight and concentration of stresses, those locations rank
among those with the major hazard of fatigue cracks appearing in the steel structures and bridges.

3.2. PROBABILISTIC APPROACH TO PROPAGATION OF FATIGUE CRACKS

Occurrence of initiation cracks and crack propagation in structures subject to fatigue load has been known
for a long time. The process is closely connected with fabrication of the steel structures and, in particular,
with creation of details which tend to be damaged by fatigue. The key difference is between initiation
of cracks resulting from steelmaking inclusions and those created during fabrication of structural details.
Regarding the former, it takes a long time until it reaches the surface, while the latter is at the surface
from the beginning of the loading. Standardized approaches of previous EC standards suppose that surface
cracks were not present there. The acceptable damage method which is described in the new standard admits
random occurrence of surface cracks. The major difference is that a fatigue crack might not be fragile, but
could be ductile. In real components of steel structures and bridges, the latter is more frequent that the
former which is used in experimental measurements in processed small test-pieces. This fact is not a new
phenomenon. It has been known for a long time and has been mentioned, for instance, by (Anderson, 2005).
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During the designing, fabrication and processing of details, nobody, however, paid attention to random
occurrence of initiation cracks from surface areas (from the surface or from the edge).

Three sizes are important for the characteristics of the propagation of fatigue cracks. These are the
initiation size, the detectable size and the final size which occurs prior to failure caused by a fragile or
ductile crack. The fatigue crack damage depends on a number of stress range cycles. This is a time factor in
the course of reliability for the entire designed service life. In the course of time, the failure rate increases,
while the reliability drops.

The topic is discussed in two levels that affect each other: the probabilistic solution to the propagation of
the fatigue crack and uncertainties in determination of quantities used in the calculation. When investigating
into the propagation, the fatigue crack that deteriorates a certain area of the structure components is described
with one dimension only: a. In order to describe the propagation of the crack, the linear elastic fracture
mechanics is typically used. It is based on the Paris-Erdogan law (Sanford, 2003):

da

dN
= C · (4K)m , (13)

where C, m are material constants (Carpinteri et al., 2007), a is the crack size and N is the number of
loading cycles.

The initial assumption is that the primary design should take into account the effects of the extreme
loading resulting from the ultimate state of carrying capacity method. Then, the fatigue resistance should be
assessed. This means, the reliability margin in the technical probability method is:

Z(R,S) = RF = R− S , (14)

where R is the random resistance of the element and S represents random variable effects of the extreme
load.

When using (13), the condition for the acceptable crack length aac is:

N =
1

C

∫ aac

a0

da

4Km
> Ntot , (15)

where N is the number of cycles needed to increase the crack from the initiation size a0 to the acceptable
crack size aac, and Ntot is the number of cycles throughout the service life.

The equation for the propagation of the crack size (13) needs to be modified for this purpose. The state
of stress near the crack face is described using ∆K (the stress intensity coefficient) which depends on the
loading (bending, tension), size and shape of the fatigue crack, and geometry of the load-bearing component.
If the ∆σ stress range and axial stress-load of the flange are constant, the following relation applies:

∆K = ∆σ ·
√
πa · F(a) , (16)

where F(a) is the calibration function which represents the course of propagation of the crack. After the
change of the number of cycles from N1 to N2, the crack will propagate from the length a1 to a2. Having
modified (13) and using (16), the following formula will be achieved:∫ a2

a1

da

(
√
πa · F(a))m

=

∫ N2

N1

C · (4σ)m dN . (17)
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If the length of the crack a1 equals to the initial length a0 (this is the assumed size of the initiation crack
in the probabilistic approach) and if a2 equals to the final acceptable crack length aac (this is the acceptable
crack size which replaces the critical crack size acr if the crack results in a brittle fracture), the left-hand
side of the equation (17) can be regarded as the resistance of the structure R(aac):

R(aac) =

∫ aac

a0

da

(
√
πa · F(a))m

. (18)

If the upper integration limit ad is used, the resistance of the structure R(aad) can be specified similarly.
Similarly, it is possible to define the cumulated effect of loads that is equal to the right side (randomly
variable effects of the extreme load) (17):

S =

∫ N

N0

C · (4σ)m dN = C · (4σ)m · (N −N0) , (19)

whereN is the total number of oscillations of stress peaks (∆σ) for the change of the length from a0 to aaac ,
and N0 is the number of oscillations in the time of initialization of the fatigue crack (typically, the number
of oscillations is zero).

It is possible to define a reliability function RF :

RF(X) = R(aac) − S(N) . (20)

where X is a vector of random physical properties such as mechanical properties, geometry of the structure,
load effects and dimensions of the fatigue crack.

The analysis of the reliability function (20) gives a failure probability pf :

pf = P (RF(X) < 0) = P (R(aac) < S(N)) . (21)

3.3. APPLYING THEORETICAL APPROACH TO PROPAGATION OF FATIGUE CRACKS IN FCPROBCALC

A tension flange has been chosen for applications of the theoretical solution suggested in the studies (Tomica
et al., 2007). Depending on location of an initial crack, the crack may propagate from the edge or from the
surface (see Fig. 5). Regarding the frequency, weight and stress concentration, those locations rank among
those with the major hazard of fatigue cracks appearing in the steel structures and bridges.

A flange without stress concentration is used for confronting the both cases depending on the location of
the crack initiation. The cases are different in calibration functions F(a) - and in weakened surfaces which
are appearing during the crack propagation.

3.3.1. Probabilistic calculation of fatigue cracks propagating from the edge
For the crack propagating from the edge, the calibration function is:

F(a) = 1.12− 1.39 · a
b

+ 7.32 ·
(a
b

)2
− 13.8 ·

(a
b

)3
+ 14.0 ·

(a
b

)4
, (22)

where a is the length of the crack and b is the width of the flange (Janssen et al., 2002); (see Fig.5).
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Figure 5. Characteristic propagation of cracks from the outer edge (left) and from the surface (right).

The acceptable crack size aac can be described then by a formula resulting from the deduced weakening
of the cross-section area of the flange:

aac = b ·
(

1− σmax

fy

)
. (23)

3.3.2. Probabilistic calculation of fatigue cracks propagating from the surface
A similar approach can be used to determine the acceptable size of a crack propagating from the surface.
The bending component can be neglected for welded steel two-axis symmetric I-profiles where the fatigue
crack appears in the lower tension flange. The flange is loaded only by the normal stress resulting from the
axial load - tension: σm = σ.

It is rather difficult to deduce analytically the acceptable size of the crack propagating from the surface.
In accordance with (Krejsa et al., 2010), the shape is replaced with a semi-elliptic curve where the ellipsis
axes are a (the crack depth) and c (a half of the crack width) - see Fig. 5. The area of the surface crack
depends on the number of N loading cycles and is described by the following formula:

Acr(N) =
1

2
· π · aN · cN . (24)

During propagation of the fatigue crack from the surface, it is not enough to monitor only one crack size
(which would be sufficient, for instance, for a crack propagating from the edge). In that case, the crack size
needs to be analyzed for directions of the both semi-axes: a and c. The propagation of the fatigue crack from
the surface in the a direction depends on the propagation in the c direction. Crack velocity propagation is
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described by (13). In (Krejsa et al., 2010) there is a formula for calculation of the crack depth ∆a as a result
of an increased width of the ∆c crack:

∆a =


1[

1.1 + 0.35 ·
(a
t

)2
·
√
a

c

]


m

·∆c . (25)

The crack sizes for a and c are during the propagation limited by upper limit values:

2 · c ≤ 0, 4 · bf a ≤ 0, 8 · tf , (26)

If these upper limit values are exceeded, the fatigue crack propagates differently. (Krejsa, 2011) gives also
the formula for the mutual dependence of the sizes in a and c:

c = 0.3027 · a
2

t
+ 1.0202 · a+ 0.00699 · t . (27)

When determining the acceptable crack size, a modified relation (24) using (25) and (27), should be taken
as a basis. After modification:

σmax ·
bf tf

bf tf −
1

2
· πa ·

(
0.3027 · a

2

tf
+ 1.0202 · a+ 0.00699 · tf

) ≤ fy , (28)

It is difficult to describe the a crack size directly explicitly. In order to calculate the acceptable crack size
aac, it is necessary to use a numerical iteration approach where restrictions resulting from (28) should be
taken as a basis.

3.3.3. Determination of inspections of structures subject to fatigue
Because it is not certain in the probabilistic calculation whether the initiation crack exists and what the
initiation crack size is and because other inaccuracies influence the calculation of the crack propagation, a
specialized inspection is necessary to check the size of the measureable crack in a specific period of time.
The acceptable crack size influences the time of the inspection. If no fatigue cracks are found, the analysis
of inspection results gives conditional probability during occurrence.

While the fatigue crack is propagating, it is possible to define following random phenomena that are
related to the growth of the fatigue crack and may occur in any time t during the service life of the structure.
Then:

− U(t) phenomenon: No fatigue crack failure has not been revealed within the t-time and the fatigue
crack size a(t) has not reached the detectable crack size ad . This means:

a(t) < ad , (29)

− D(t) phenomenon: A fatigue crack failure has been revealed within the t-time and the fatigue crack
size a(t) is still below the acceptable crack size aac. This means:

ad ≤ a(t) < aac , (30)
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− F(t) phenomenon: A failure has been revealed within the t-time and the fatigue crack size a(t) has
reached the acceptable crack size aac. This means:

aac < a(t) . (31)

If the crack is not revealed within the t-time, this may mean that there is not any fatigue crack in the
construction element. This might be an initiative phase of nucleation of the fatigue crack (when a crack
appears in the material) and this phenomenon is not taken into account in the fracture mechanics. Even if
the fatigue crack is not revealed it is likely that it exists but the fatigue crack size is so small that it cannot
be detected under existing conditions.

Using the phenomena above, it is possible to define probability for their occurrence in any t-time. Those
three phenomena cover the complete spectrum of phenomena that might occur in the t-time. This means:

P (U(t)) + P (D(t)) + P (F(t)) = 1 . (32)

The probabilistic calculation is carried out in time steps where one step typically equals to one year of the
service life of the construction. When the failure probability P (F(t)) reaches the nominal failure probability
pd, an inspection should be carried out in order to find out fatigue cracks, if any, in the construction element.
The inspection provides information about real conditions of the construction. Such conditions can be taken
into account when carrying out further probabilistic calculations. The inspection in the t time may result in
any of the three mentioned phenomena. Using the inspection results for the t time, it is possible to define
the probability of the mentioned phenomena in another times: T > tI . For that purpose, the conditional
probability should be taken into consideration.

3.3.4. Using FCProbCalc for the probabilistic calculation of fatigue cracks propagating
FCProbCalc (Fig. 6) was developed using the aforementioned techniques. By means of FCProbCalc, it
is possible to carry out the probabilistic calculation of propagation of fatigue cracks in a user friendly
environment. The cracks propagate from edges or surface and the goal of the probabilistic calculation is
to determine the time for the first inspection which focuses on damage to the structure.

Both deterministic and stochastic approaches are used for input values in the probabilistic calculation. In
(Krejsa et al., 2010), the probabilistic assessment was carried out for a detail of a highway bridge made
from steel/concrete which tends to suffer from fatigue damage. Real input values were used there: the
geometric shape in the specified place, the yield stress fy, the nominal designed stress of extreme impacts
σ, material constants m and C, as well as constant stress oscillation ∆σ. The source of the oscillation value
was measurements of the response in regular operation. Other input data include the random quantities - they
are expressed by means of the parametric distribution and were rather inaccurate if used as the input values.
These values include the expected length of the detectable crack ad = 10 mm, the number of load cycles
per year N = 1.106 and, in particular, the size and exact location of the initiation crack a0. Considering
the detail of connection of the flange plate, it was decided to choose the mean value of a0 = 0.2 mm with
lognormal distribution. For all input data see Table I (the random quantities with variable values) and Table II
(the deterministic quantities). The required reliability is expressed in the technical practice as a reliability
index β = 2, that corresponds to the failure rate of pd = 0.02277.

Using FCProbCalc it is possible to specify for a certain time interval the load effect S (Fig. 7), resistance
of the structure R(ad) (Fig. 8) and R(aac) (Fig. 9), as well as probability of elementary phenomena U , D
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Figure 6. FCProbCalc desktop - entry of input quantities.

Table I. Overview of variable input quantities expressed in a histogram with parametric distribution of
probabilities.

Quantity Type Mean value Standard deviation

Oscillation of stress peaks ∆σ [MPa] Normal 30 3
Total number of oscillation of stress peaks per year N [-] Normal 106 105

Yield stress fy [MPa] Lognormal 280 28
Nominal stress in the flange plate σ [MPa] Normal 200 20
Initial size of the crack a0 [mm] Lognormal 0.2 0.05

Smallest detectable size of the crack ad [mm] Normal 10 0.6

and F (Fig. 10) which are the source information for determination of the time of inspection which focuses
on fatigue damage to the construction (Fig. 11).

The probabilistic calculation in FCProbCalc has proved, among others, that the propagation of the fatigue
crack from the surface is considerably slower than that from the edge. The calculated time for the first in-
spection of the bridge is the 55th year of operation for the fatigue crack propagating from the edge and 113th

year of operation for the fatigue crack propagating from the surface. This means the former propagation rate
is approximately twice slower than the latter one.
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Table II. Overview of input quantities expressed in a
deterministic way.

Quantity Value

Material constant m 3
Material constant C 2.2 · 1013

Width of the flange plate bf [mm] 400
Thickness of the flange plate tf [mm] 25
Nominal probability of failure pd 0.02277

Figure 7. FCProbCalc program output: histograms for the load effects S after 55 years (left) and 113 years (right) of operation.

Figure 8. FCProbCalc program output: Resulting histogram of the structural resistance R(ad) for propagation of fatigue crack
from the edge (left) and from the surface (right).
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Figure 9. FCProbCalc program output: Resulting histogram of the structural resistance R(aac) for propagation of fatigue crack
from the edge (left) and from the surface (right).

Figure 10. FCProbCalc program output: Probabilities of the phenomena U , D and F for the propagation of fatigue crack from
the edge (30 to 70 years of operation, left) and for the propagation of fatigue crack from the surface (80 to 120 years of operation,
right).

4. Conclusions

This paper discusses development of probabilistic methods and application of the probabilistic methods
in assessment of reliabilities of structures. The basics of this work are a detailed overview of the Direct
Optimized Probabilistic Calculation (DOProC) which can be used now in many probabilistic calculations.
DOProC appears to be a very efficient tool that results in the solution affected by a numerical error and
by an error resulting from the discretizing of the input and output quantities only. The biggest weakness
of DOProC is a considerable increase in the machine time for probabilistic operations and rather many
random variables in the computational model. The maximum number of the random variables depends on
complexity of the computational model. What is also important is whether it is possible to use any of the
described optimized steps.
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Figure 11. FCProbCalc program output: failure probability pf , depending on the years of operation for the propagation of fatigue
crack from the edge (30 to 70 years of operation, left) and for the propagation of fatigue crack from the surface (80 to 120 years of
operation, right).

Examples of applications of the probabilistic method DOProC described in specialized papers and men-
tioned in this work should provide general information about this probabilistic method. DOProC seems to
be a good choice not only for reliability assessment tasks but also for other probabilistic calculations. For
instance, theoretical information and practical guidelines are available to the probabilistic assessment of
propagation of fatigue cracks from the surface and edge, a particular attention being paid to the maximum
permissible dimension and proposed system of regular inspections of the structure.

FCProbCalc was used for the probabilistic assessment of fatigue damage to a bridge structure where
cracks were propagating from both the surface and edge. Times were specified for inspections of the bridge
structure, where the purpose was to monitor occurrence of certain fatigue cracks. The comparison proved
that velocity of propagation of the fatigue crack from the surface is considerably slower than that from the
edge.

A relatively complex algorithm in DOProC requires good theoretical knowledge and practical computing
skills of the user. It is essential to know, at least, general basics of algorithms because this influence the
way of defining the computational model and selection of the best optimizing procedure. This weakness is
removed if the application software is customized for a specific probabilistic task, this being, for instance,
the case of FCProbCalc.

It should be pointed out that DOProC still provides many other options to be used. What is worth being
investigated further is the use of statistically dependent input quantities with direct entries in the computa-
tional algorithm, assessment of reliability of structural systems and development of numerical procedures
which will make the application of DOProC in matrix calculations more efficient.

Appendix

For a lite version of FCProbCalc and for other software products based on DOProC method please visit web
pages http://www.fast.vsb.cz/popv (Janas et al., 2012).
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Abstract: The knowledge of fracture mechanical parameters values is fundamental for virtual failure 

modeling of elements and structures made of concrete. A key parameter of nonlinear fracture mechanics 

modeling is certainly specific fracture energy of concrete and its variability. Within this paper experimental 

results from three-point bending tests on notched-beam specimens are analyzed. Two basic approaches are 

applied to determine fracture mechanical parameters from these tests: (i) effective crack model / work-of-

fracture method, (ii) inverse analysis using artificial neural networks and virtual stochastic simulations. In 

order to automate the whole time consuming process of inverse analysis a FraMePID-3PB software tool has 

been developed. The paper is focused on the determination of statistical fracture-mechanical parameters 

values of four different concrete types. It is a part of complex methodology for statistical and reliability 

analyses of concrete structures. 

 
 

Keywords: Fracture parameters, concrete, inverse analysis, artificial neural networks, nonlinear analysis, 

fracture mechanics, FraMePID-3PB software 

 

 

 

1. Introduction 

 

The stochastic nonlinear computational mechanics faces in real-world application problems a fundamental 

obstacle – the lack of the knowledge of basic random variables involved in the problem. The direct 

experimental testing, often performed as compression test on cubic specimens, provides incomplete 

information about mechanical and fracture parameters and the lack of information is often substituted by an 

engineering judgment or by the information from literature. One possibility is to get parameters of 

computational model indirectly – based on combination of fracture test with inverse analysis. The paper 

describes a methodology to get such parameters using experimental data of three-point bending tests used in 

inverse analysis based on combination of artificial neural networks and stochastic analysis (Novák and 

Lehký, 2006). Since the whole procedure of inverse analysis is time consuming and complicated from data 

handling and artificial neural network training point of view a software tool FraMePID-3PB has been 

developed to automate fully the whole task. 

A key parameter of nonlinear fracture mechanics modeling is certainly specific fracture energy of 

concrete and its variability, which is a subject of research of many authors, e.g. Bažant and Planas (1998). 

Other important parameters of concrete are modulus of elasticity, tensile and compressive strength. Crack 

propagation resistivity is described by e.g. effective crack elongation, effective fracture toughness etc. 

(Karihaloo, 1995). Determination of parameters values was done using two techniques – (i) direct 
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evaluation from experimental load–deflection diagram by effective crack model and work-of-fracture 

method; (ii) inverse analysis using artificial neural network based method. 

Depending on sample size of statistical set, statistical characteristics of material parameters being 

identified can be determined using two approaches: (i) “One by one” approach – parameters of each 

specimen are identified separately and final statistics are calculated from the set of all values for each 

parameter. (ii) “Direct approach” – in case of larger statistical set it is more efficient not to identify each 

specimen one by one but to identify the whole statistical set for all specimens together based on random 

response of fracture tests (Lehký and Novák, 2011). The first approach was used in this paper. 

 

 

 

2. Laboratory tests 

 

Laboratory experiments and evaluation of fracture-mechanical parameters were performed using four sets 

of specimens of different concrete types: I (C30/37 H), II (C25/30 B3), III (C25/30 XC1 GK16), and IV 

(C20/25 XC1 GK16) prepared and casted in co-operation with Bautechnische Prüf- und Versuchsanstalt 

GmbH and University of Natural Resources and Life Sciences in Vienna, Austria. Specimens were tested in 

laboratory at Faculty of Civil Engineering, Brno University of Technology in Brno, Czech Republic in 

following ages: 91 days (set I), 87 days (set II), 67 days (set III) and 66 days (set IV). Each set consists of 9 

specimens except of set IV which consists of 8 specimens. Nominal sizes of specimens were 

100×100×400 mm. In the center of the beam the edge notch of the depth about 1/3 of the depth of the 

specimen was cut using diamond blade saw. Specimens were tested in three-point bending (3PB) 

configuration. Loading span was equal to 300 mm. Example of the tested specimen is in Figure 1. 

Testing was performed using mechanical press Heckert FPZ 100/1. Loading of specimen was applied 

continuously with constant increment of displacement 0.1 mm/min in the middle of the span (300 mm). 

Midspan deflections were recorded using inductive sensor with accuracy of 0.001 mm. Result of 

measurement is diagram load vs. midspan deflection (l–d diagram). 

For enlarging the set of material parameters with compressive strength which is not obtained from 3PB 

test the compression tests were performed too. It was carried out using two broken parts obtained after each 

three-point bending test. Broken parts were cut to nominal size 100×100×100 mm using diamond blade saw 

(Figure 2). 

 

 

 

3. Evaluation of material parameters 

 

3.1. EFFECTIVE CRACK APPROACH, WORK-OF-FRACTURE METHOD 

 

Recorded l–d diagram serves as a basis for evaluation of effective crack elongation and effective fracture 

toughness (or effective toughness) using models of equivalent elastic crack (Karihaloo, 1995). Then, using 

work-of-fracture method, a fracture work or specific fracture energy are assessed. As was already 

mentioned specific fracture energy is basic parameter of cohesive crack models which are used for 

prediction of fracture behavior of structures made of quasi-brittle materials (Stibor, 2004; Veselý, 2004). 
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a)                   b) 

 
 

Figure 1. a) Selected specimen tested in three-point bending configuration and b) the fracture parts/surfaces after test [photo: 

B. Kucharczyková]. 

 
 a)                     b) 

 
 

Figure 2. a) Compression test on broken parts of specimens and b) the shape after destruction [photo: B. Kucharczyková].  

 

Important step before parameters evaluation from obtained l–d diagram is to recognize the origination 

of “catastrophe” in measured data (Frantík and Keršner, 2006). In time series of deflections in loading point 

an irregularity of loading speed and sudden increase of displacement can occur. Then, the time derivative of 

deflection is a useful criterion to detect the origin and range of the so-called fold catastrophe. The 

catastrophe is recognizable as extreme values of loading speed. The corrected l–d diagram and fold 

catastrophe have such properties which can help to discover the probable development of the diagram in the 

catastrophic part. 

 

3.2. INVERSE ANALYSIS 

 

Along with classical fracture mechanical parameters evaluation from fracture tests, parameters 

identification using artificial neural network based inverse method was carried out; see details in Novák and 
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Lehký (2006). The basis of inverse analysis is finite element method (FEM) model which is used for 

numerical simulation of three-point bending fracture test (Figure 3). FEM model was created in ATENA 

software (Červenka et al., 2007); material model 3D Nonlinear Cementitious 2 with rotational cracks was 

used. Subject of identification were following three parameters of concrete: modulus of elasticity, tensile 

strength and fracture energy. Other parameters of material model mentioned above, e.g. compressive 

strength, were omitted from identification based on sensitivity analysis. Here, Spearman’s nonparametric 

rank-order correlation coefficient was used (Novák et al., 1993). 

The material model parameters are considered as random variables described by a probability 

distribution, rectangular distribution is a “natural choice” as the lower and upper limits represent the 

bounded range of physical existence. The variables are then simulated randomly based on the Monte Carlo 

type simulation; the small-sample simulation Latin Hypercube Sampling (LHS) is recommended (McKay et 

al., 1979). A multiple calculation of deterministic computational model using random realizations of 

material model parameters is performed and a statistical set of the virtual structural response is obtained. 

Random realizations and the corresponding responses from the computational model serve as the basis for 

the training of an appropriate neural network (Cichocki and Unbehauen, 1993). After the training the neural 

network is ready to solve the main task: To provide the best material parameters in order the numerical 

simulation will result in the best agreement with experiment. This is performed by means of the simulation 

of network using measured response as an input. It results in a set of identified material parameters. The last 

step is results verification – calculation of computational model using identified parameters. A comparison 

with experiment will show to what extend the inverse analysis was successful. More details about structure 

of artificial neural network, training set, etc. are described in section 4. 

To obtain statistical characteristics of material parameters inverse analysis is performed for each 

specimen (l–d diagram) individually. The set of identified values is obtained as the result of individual 

identification and can be assessed statistically as it is usually done for experiments. 

 

 
 

Figure 3. Scheme of nonlinear FEM computational model of three-point bending test. 

 

 

 

4. FraMePID-3PB software tool 

 

The methodology of artificial neural network based inverse analysis is general and can be used for any 

inverse task, which is its advantage. On the other hand it is very time consuming. In order to automate the 

whole difficult process of material parameters identification a FraMePID-3PB software tool has been 

developed. The whole system is based on standardized fracture test of beam with central edge notch in 

three-point bending configuration described in section 2. Finite element computational model implemented 

in FraMePID-3PB is created in ATENA software (Červenka et al., 2007). 3D Nonlinear Cementitious 2 
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material model for concrete is used. Softening of concrete is modeled using model according to Hordijk 

(1991).  

Previous identifications using various types of concrete mixtures and ages showed that the structure of 

artificial neural network used for identification in this testing configuration is in all cases almost the same. 

Thank to that and using standardized test the time needed for inverse analysis can be significantly reduced 

because only one neural network is created, trained, tested and implemented within FraMePID-3PB system. 

Therefore, time consuming training set preparation using stochastic nonlinear analysis and training of the 

network using suitable optimization technique is performed only once. Structure of neural network 

implemented within FraMePID-3PB system is as follows (see Figure 5): 1 hidden layer with 5 nonlinear 

neurons (hyperbolic tangent transfer function), output layer with 3 linear neurons (linear transfer function) 

and 3 inputs of the network. Three output neurons correspond to three material parameters which are being 

identified (modulus of elasticity, tensile strength and specific fracture energy), three inputs correspond to 

three parameters extracted from l–d diagram. 

During training set preparation for artificial neural network material parameters are randomized. Here, 

purposely large variability was used in order to create rather general network which will be able to identify 

parameters of concretes of various strengths and ages. Mean values were 40 GPa for modulus of elasticity, 

4.5 MPa for tensile strength and 200 J/m
2
 for fracture energy. Coefficients of variation were 0.2 for 

modulus of elasticity, 0.25 for tensile strength and 0.4 for fracture energy. Training set was generated using 

100 simulations of Latin Hypercube Sampling method. Training of the network was carried out using 

Levenberg–Marquardt (Singh et al., 2007) and genetic algorithms (Schwefel, 1991) optimization methods. 

Procedure of material parameters identification using FraMePID-3PB tool can be itemized as follows: 

1. L–d diagram obtained from experiment is loaded into FraMePID-3PB. Curve is analyzed and inputs of 

inverse analysis are extracted and prepared for neural network (Figure 4). 

2. Input signal is transmitted through the neural network and from the output layer of the network the best 

set of material parameters is obtained. This step is possible because neural network is trained in 

advance and remains the same for parameters identification of various concretes (Figure 5). Emphasize, 

that there is no new nonlinear fracture mechanics calculations to train network – the network is ready to 

use and implemented in FraMePID-3PB. 

3. Verification of identification is performed. Obtained material parameters are used in the computational 

model and numerical analysis is carried out. Here, ATENA software is linked to FraMePID-3PB for 

data transfer. Resulting l–d diagram is compared with experimental one which will show to what extent 

the inverse analysis was successful (Figure 6). 

At present, FraMePID-3PB software operates with “basic” configuration of experiment and model as 

was mentioned above. But, it was designed more generally with respect to next future extension for other 

configurations, e.g. specimens with various notch depths, other softening models of concrete (linear, 

multilinear, etc.), additional testing configurations (compressive test, wedge splitting test), etc. This will 

help with routine material parameters identification for various research and practical tasks. 

 

 

 

5. Results 

 

Values of selected parameters of all 35 specimens of four sets obtained using both above mentioned 

methods were statistically evaluated and their mean values and coefficients of variation (COV) can be 
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found in Table 1. There is a significant advantage in case of using inverse analysis – value of tensile 

strength of concrete can also be determined. 

 

 
 

Figure 4. FraMePID-3PB tool panel – experimental data loading and preparation of input signal for neural network. 

 

 
 

Figure 5. FraMePID-3PB tool panel – structure of neural network and material parameters identification. 
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Table I. Selected statistical parameters of set I (C30/37 H) obtained from experiment and inverse analysis. 

Parameter of  

concrete / model 

Experiment Inverse analysis Ratio (inv. 

analysis / 

experiment) 
Mean value COV [%] Mean value COV [%] 

Modulus of elasticity 

[GPa] 
35.5 7.4 40.3 16.6 1.14 

Tensile strength  

[MPa] 
– – 5.0 14.3 – 

Compressive strength 

[MPa] 
58.5 8.0 – – – 

Specific fracture 

energy [J/m2] 
235.9 18.6 281.5 19.5 1.19 

Effective crack 

elongation [mm] 
9.5 21.9 – – – 

Effective fracture 

toughness [MPa.m1/2] 
1.489 9.9 – – – 

Effective toughness 

[J/m2] 
62.3 13.7 – – – 

Volume density 

[kg/m3] 
2341.8 0.7 – – – 

 

 

Table II. Selected statistical parameters of set II (C25/30 B3) obtained from experiment and inverse analysis. 

Parameter of  

concrete / model 

Experiment Inverse analysis Ratio (inv. 

analysis / 

experiment) 
Mean value COV [%] Mean value COV [%] 

Modulus of elasticity 

[GPa] 
30.8 8.6 35.0 8.2 1.14 

Tensile strength  

[MPa] 
– – 4.1 17.2 – 

Compressive strength 

[MPa] 
47.3 5.4 – – – 

Specific fracture 

energy [J/m2] 
188.9 11.5 211.8 18.1 1.12 

Effective crack 

elongation [mm] 
12.5 23.5 – – – 

Effective fracture 

toughness [MPa.m1/2] 
1.406 8.0 – – – 

Effective toughness 

[J/m2] 
65.2 21.8 – – – 

Volume density 

[kg/m3] 
2286.2 1.5 – – – 
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Table III. Selected statistical parameters of set III (C25/30 XC1 GK16) obtained from experiment and inverse 

analysis. 

Parameter of  

concrete / model 

Experiment Inverse analysis Ratio (inv. 

analysis / 

experiment) 
Mean value COV [%] Mean value COV [%] 

Modulus of elasticity 

[GPa] 
35.4 5.6 40.4 9.5 1.14 

Tensile strength  

[MPa] 
– – 4.2 12.1 – 

Compressive strength 

[MPa] 
53.4 5.2 – – – 

Specific fracture 

energy [J/m2] 
183.3 5.5 214.0 6.0 1.17 

Effective crack 

elongation [mm] 
12.4 22.7 – – – 

Effective fracture 

toughness [MPa.m1/2] 
1.405 9.0 – – – 

Effective toughness 

[J/m2] 
56.3 19.9 – – – 

Volume density 

[kg/m3] 
2326.9 0.9 – – – 

 

 
Table IV. Selected statistical parameters of set IV (C20/25 XC1 GK16) obtained from experiment and inverse 

analysis. 

Parameter of  

concrete / model 

Experiment Inverse analysis Ratio (inv. 

analysis / 

experiment) 
Mean value COV [%] Mean value COV [%] 

Modulus of elasticity 

[GPa] 
31.2 4.3 34.8 5.3 1.12 

Tensile strength  

[MPa] 
– – 3.1 15.6 – 

Compressive strength 

[MPa] 
39.8 5.4 – – – 

Specific fracture 

energy [J/m2] 
146.2 13.3 166.8 15.4 1.14 

Effective crack 

elongation [mm] 
13.0 14.3 – – – 

Effective fracture 

toughness [MPa.m1/2] 
1.131 10.6 – – – 

Effective toughness 

[J/m2] 
41.4 20.7 – – – 

Volume density 

[kg/m3] 
2292.2 0.6 – – – 
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     a)       b) 

 
 

Figure 6. Comparison of selected experimental and numerically simulated load–deflection diagrams with material parameters 

obtained from identification: a) specimen I-34 (C30/37 H) and b) specimen III-17 (C25/30 XC1 GK16). 

 

From the presented results it is possible to conclude recommended values of mechanical–fracture 

parameters for deterministic and stochastic nonlinear FEM analyses of beam/structures made of all four 

analyzed concretes, see Tables I–IV. Two-parametric lognormal probability distribution function is 

suggested for all three identified parameters (modulus of elasticity, tensile strength and fracture energy) and 

all four tested concrete types based on curve fitting tests carried out using FReET software (Novák et al., 

2011) and JCSS Probabilistic Model Code recommendations (2001). Detailed results of all parameters for 

every single specimen and comparison of experimental and numerical l–d diagrams can be found in Keršner 

et al. (2011). 

 

 

 

6. Conclusions 

 

The proposed paper describes fracture tests and consequent evaluation of fracture mechanical parameters of 

specimens made of four different concrete types. Determination of values of these parameters was done 

using two techniques – (i) direct evaluation of parameters from experimental l–d diagram by effective crack 

model and work-of-fracture method; (ii) inverse analysis using artificial neural network based method. 

Results were compared; both techniques provided results which are close to each other including basic 

information on variability (COV). The inverse analysis technique provided additionally values of tensile 

strength of concretes. L–d diagrams from numerical simulations of all six specimens with identified 

parameters shows very good agreement with experimental ones. Results can serve efficiently as input data 

for stochastic nonlinear simulation of studied concretes. 
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Abstract: The objective of this paper is to conduct the reliability analysis of high-rise buildings under wind 

loads. Numerical examples are provided to capture the dynamic effects of structures with eccentricity 

between the elastic and mass centers. The framework of this research consists of two stages. The first stage 

includes two parts: the deterministic analysis of wind-induced acceleration for a variety of attack angles, 

i.e., the demand, and the determination of allowable acceleration based on the occupant comfort criteria for 

wind-excited buildings, i.e., the capacity. According to the results obtained in the first stage, the reliability 

analysis is conducted in the second stage, which can predict the probability of dissatisfaction with occupant 

comfort criteria for a variety of probability distributions of the structural eccentricity. The findings indicate 

that, compared to the lognormal and type I extreme value distributions, the normal distribution can be used 

to more conservatively simulate the uncertainties of the eccentricity between the elastic and mass centers. 

Furthermore, the probability of dissatisfaction with occupant comfort criteria of the torsionally coupled 

system is relatively higher than that of the torsionally uncoupled system for each attack angle due to the 

coupled mode effects. 
 

Keywords: Reliability analysis, High-rise building, Wind load, Elastic center, Attack angle 

 

 

 

1. Introduction 

 

Traditionally, structural analysis is based on deterministic approaches, i.e., each parameter of analytical 

model is considered to be a certain value. In fact, uncertainties exist in design, construction, operation and 

maintenance of real structures. Consequently, traditional analysis is not able to effectively capture structural 

properties. On the basis of probabilistic approaches, reliability analysis is used to simulate probability 

distribution of each parameter, implying that uncertainties can be reasonably modeled by such method. This 

fact indicates that reliability analysis is a more appropriate tool than traditional analysis. In Taiwan, both 

structural safety and occupant comfort of high-rise buildings have become important due to frequent 

typhoons, implying that wind hazard is a significant factor for design purposes. Uncertainties of both wind 

loads and high-rise buildings have to be considered for structural design. From the above description, 

reliability analysis is useful for exploring the problem of high-rise buildings under wind loads. 

The objective of this paper is to conduct the reliability analysis of high-rise buildings under wind loads. 

Numerical examples are provided to capture the dynamic effects of structures with eccentricity between the 

elastic and mass centers. The framework of this research consists of two stages, as shown in Figure 1. The 

first stage includes two parts: the deterministic analysis of wind-induced acceleration for a variety of attack 

angles, i.e., the demand, and the determination of allowable acceleration based on the occupant comfort 
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criteria for wind-excited buildings, i.e., the capacity. According to the results obtained in the first stage, the 

reliability analysis is conducted in the second stage, which can predict the probability of dissatisfaction with 

occupant comfort criteria for a variety of probability distributions of the structural eccentricity. 
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Figure 1. Framework of the research. 
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2. High-Rise Building Model 

 

An N -story torsionally coupled system is used to simulate a high-rise building, and its corresponding 

three-dimensional configuration and top view of the i th floor are illustrated in Figure 2(a) and 2(b), 

respectively
1
, where x , y , z  and   are the coordinates of the system; 

i
D , 

i
B , 

iH  and 
i
Z  are the depth, 

breadth, height and elevation, respectively; 
iMC , 

i
EC  and 

i
AC  are the mass, elastic and aerodynamic 

centers, respectively; 
iEx  and 

iEy  are the eccentricities between 
i

EC  and 
iMC  in the x  and y  axes, 

respectively; 
iAx  and 

iAy  are the eccentricities between 
i

AC  and 
iMC  in the x  and y  axes, respectively. 

Several assumptions are adopted in this study: (1) each rigid diaphragm with three degrees of freedom 
ix , 

i
y  and 

i  is characterized by the mass 
i

M  and the moment of inertia 
i
I  about 

iMC ; (2) each massless 

column is characterized by 
iKx , 

iKy  and 
i

K , which individually denote the stiffnesses in the x , y  and   

axes referred to 
i

EC ; (3) wind loads are applied at 
i

AC ; (4) iMC , 
i

EC  and 
i

AC  are non-coincident, and 

iMC  is located in the centroid of the diaphragm; (5) the Rayleigh damping with the mass-related coefficient 

0
A  and the stiffness-related coefficient 

1
A  is used. The model in Figure 2 can be simplified to an N -story 

torsionally uncoupled system when 
iEx  and 

iEy  both equal zero. 

The procedure for the modeling of high-rise buildings is summarized in Figure 1. Based on the 

parameters mentioned above, the mass, stiffness and damping matrices of the system can be generated, and 

the frequency response function of acceleration can therefore be obtained (Kan and Chopra, 1977; Yang et 

al., 1981; Samali et al., 1985; Kareem, 1985; Kareem, 1992; Wu and Yang, 2000; Liu et al., 2008). 

 

 

 

3. Wind Load Model 

 

Wind loads can be decomposed into an average, aerodynamic damping and fluctuation terms. The 

fluctuation term is considered and the other two terms are neglected, which can be used to appropriately 

conduct the dynamic analysis under the assumption of small deformation theory. The wind load 

components including the drag, lift and torque are illustrated in Figure 3, where the attack angle   is 

defined as the angle between the wind direction and the x  axis. The drag and lift both act through 
i

AC , 

where the former and the latter are parallel and perpendicular to the wind direction, respectively. The torque 

is due to the eccentricity between i
AC  and iMC . The drag, lift and torque can be written as a function of   

(Yang et al., 1981; Samali et al., 1985; Wu and Yang, 2000; Simiu and Scanlan, 1996; Peng, 2005). 

The procedure for the computation of wind loads is summarized in Figure 1. According to the power 

law, the wind velocity profile showing the variations in the mean wind velocity over the elevation can be 

expressed as a function of the exponent  , the gradient height 
GZ  and the gradient wind velocity 

G
V  

(Simiu and Scanlan, 1996). Based on the wind velocity profile, the reference mean wind velocity at 10 m 

above the ground 
R
V , the ground roughness coefficient 

0
K  and the exponential decay coefficient 

1
C  are 

used to calculate the cross-spectral density function of wind velocity between two elevations (Davenport, 

                                                      
1 The subscript i  in Figure 1 represents the parameter of the i th floor in this research. 
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1968). By combining both the wind velocity profile and cross-spectral density function of wind velocity, 

the cross-spectral density function of wind load between two axes can be obtained by the air density  , the 

windward side area of floor, the mean wind velocity, the drag coefficient 
D
C , the lift coefficient 

LC , 
iAx  

and 
iAy  for a variety of   (Yang et al., 1981; Samali et al., 1985; Wu and Yang, 2000). 
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(a) Three-dimensional configuration    (b) Top view of the i th floor 

 

Figure 2. N -story torsionally coupled system. 
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Figure 3. Wind load components. 

 

 

 

4. Demand and Capacity 

 

As shown in Figure 1, the deterministic analysis of wind-induced acceleration of structures with 

eccentricity between 
i

EC  and iMC  for a variety of   is conducted from the high-rise building and wind 

load models. The computational procedure is based on the frequency domain analysis. By combining both 

the frequency response function of acceleration and cross-spectral density function of wind load, the cross-

spectral density function of acceleration between two axes, and the corresponding root-mean-square 

acceleration at mass center and that at corner can be calculated (Kareem, 1985; Kareem, 1992). The peak 

acceleration at corner, i.e., the demand, then can be obtained by multiplying the response at mass center by 

the peak factor (Melbourne, 1977). 

The allowable peak acceleration of structures, i.e., the capacity, can be determined based on the 

occupant comfort criteria for wind-excited buildings. The threshold can be written as a function of the 

frequency of structural oscillation F , the duration of wind velocity T  and the return period of wind 

velocity R  (Melbourne and Palmer, 1992). 

 

 

 

5. Reliability Analysis 

 

According to the demand and capacity for different attack angles obtained in the first stage, the reliability 

analysis of high-rise buildings under wind loads based on the synthetic method combining both the 

Rackwitz-Fiessler and finite difference methods is conducted in the second stage, which can predict the 
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design point, reliability index and probability of dissatisfaction with occupant comfort criteria for a variety 

of probability distributions of the structural eccentricity, as shown in Figure 1. 

The basic variables 
iX ( ni ,,2,1  ) and the corresponding limit state function  

nXXXgZ ,,,
21
  

are the essences of reliability analysis. 
iX ( ni ,,2,1  ) can be used to simulate the uncertainties of n  

parameters in a system. Z  is the standard to judge whether each performance criterion is satisfied in the 

system. Figure 4(a) illustrates the relationships between Z  and 
iX ( ni ,,2,1  ) in the original coordinate 

system. The limit state ( 0Z ) is the boundary between the safe region ( 0Z ) and the unsafe region 

( 0Z ). 
iX ( ni ,,2,1  ) can be transformed to the standard normal variables 

i
X  ( ni ,,2,1  ), 

respectively, and the corresponding limit state function  
nXXXgZ  ,,,

21
  can therefore be determined. 

The relationships between Z  and 
i
X  ( ni ,,2,1  ) in the transformed coordinate system are illustrated in 

Figure 4(b). The safe region ( 0Z ) and the unsafe region ( 0Z ) are divided by the limit state ( 0Z ) 

similar to Figure 4(a). The design point  *,*,*,
21 nxxx   2

 is located in 0Z  closest to the origin. The 

reliability index   with the distance between the design point and the origin is a useful index for assessing 

the system reliability. The probability of dissatisfaction with occupant comfort criteria f
p  can be expressed 

as a function of   (Haldar and Mahadevan, 2000a; Haldar and Mahadevan, 2000b). 
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(a) Original coordinate system   (b) Transformed coordinate system 

 

Figure 4. Relationships between the limit state function and the basic variables. 

 

The Rackwitz-Fiessler method contains the parameters in both the original and transformed coordinate 

systems. The algorithm is formulated as follows (Rackwitz and Fiessler, 1978): 

 

                                                      
2 The parameters marked with asterisk represent the ones based on the design point in this research. 
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Step 1. Z  is defined. 
 

Step 2. The initial value for each component of the design point in the original coordinate system 

*ix ( ni ,,2,1  ) is given. These values are assumed to be 
iX

 ( ni ,,2,1  ) representing the mean 

values of 
iX ( ni ,,2,1  ), respectively. The corresponding initial value of  *,*,*,

21 nxxxg   can 

therefore be determined. 
 

Step 3. For the non-normal variables in 
iX ( ni ,,2,1  ), both their mean values and standard deviations of 

the equivalent normal variables, i.e., N

X i
  and N

X i
 ( ni ,,2,1  ), respectively, can be estimated 

based on the Rackwitz-Fiessler transformation (Rackwitz and Fiessler, 1976). *ix ( ni ,,2,1  ) 

then can be calculated as 
 

N

X

N

Xi

i

i

i
x

x





*
* .       (1) 

 

Step 4. 

*
















i
X

g
( ni ,,2,1  ) are calculated. 

 

Step 5. 
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i
X

g
( ni ,,2,1  ) can be calculated as 
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Step 6. *ix ( ni ,,2,1  ) can be modified by the recursive formula 
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 . (3) 

 

Step 7.   can be calculated as 
 

 
2

1

*



n

i

i
x ,      (4) 

 

indicating that its value is equal to the distance between  *,*,*,
21 nxxx    and the origin. The 

convergence tolerance for   is assigned. 
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Step 8. Eq. (1) can be rewritten as 
 

**
i

N

X

N

Xi
xx
ii

  ,      (5) 

 

implying that *ix ( ni ,,2,1  ) are modified and  *,*,*,
21 nxxxg   can therefore be redetermined. 

The convergence tolerance for  *,*,*,
21 nxxxg   is assigned. Steps 3 to 8 are repeated until the 

convergence tolerances for both   and  *,*,*,
21 nxxxg   are achieved. 

 

Eqs. (1), (2) and (5) will also be valid for the normal variables in 
iX ( ni ,,2,1  ) if N

X i
  and N

X i
  are 

replaced by their mean values 
iX

  and standard deviations 
iX

 ( ni ,,2,1  ), respectively. 
f
p  can be 

approximately estimated based on the convergent  . 

The finite difference method used herein is a perturbation-based approach. The computational 

procedure is summarized as follows (Haldar and Mahadevan, 2000b): 
 

Step 1. The initial values of 
iX , i.e., 0

i
X ( ni ,,2,1  ), are assumed to be 

iX
 ( ni ,,2,1  ), respectively. 

The corresponding value of Z  before perturbation can therefore be determined as 
 

 00

2

0

10
,,,

n
XXXgZ  .      (6) 

 

Step 2. The small and positive 
1
X  with respect to the perturbation of 

1
X  is given. 

1
X  is assumed to be 

proportional to 
1X

 . 0

1
X  is replaced by 

1

0

1
XX   and 0

i
X ( ni ,,3,2  ) remain the previous 

values. The corresponding value of Z  after perturbation can therefore be determined as 
 

 00

21

0

11
,,,

n
XXXXgZ  .     (7) 

 

Step 3. The difference of Z  before and after perturbation can be calculated as 
 

01
ZZZ  .       (8) 

 

The derivative of Z  with respect to 
1
X  can be approximately estimated as 

1
X

Z




. 

 

Step 4. Similarly, the derivatives of Z  with respect to 
iX ( ni ,,3,2  ) can also be approximately obtained 

as 
i
X

Z




( ni ,,3,2  ), respectively, by repeating Steps 2 and 3. 
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By individually substituting  00

2

0

1
,,,

n
XXXg   and 

i
X

Z




( ni ,,2,1  ) of the finite difference method 

for  *,*,*,
21 nxxxg   and 

*
















i
X

g
( ni ,,2,1  ) of the Rackwitz-Fiessler method, these two methods can 

be combined (Haldar and Mahadevan, 2000b). 

 

 

 

6. Numerical Examples 

 

To illustrate the computational procedure in Figure 1, two numerical examples, i.e., the torsionally 

uncoupled and coupled systems, are provided to conduct the reliability analysis of high-rise buildings under 

wind loads for a variety of attack angles. The results can be used to capture the dynamic effects due to the 

structural eccentricity. 

Four types of parameters: the high-rise building model, wind load model, occupant comfort criteria and 

reliability analysis, are considered in this study. All parameters of the two numerical examples are the same 

except the eccentricity between the elastic and mass centers. For the parameters of the high-rise building 

model, a 40-story building ( N 40) with a height of 160 m is used. The geometric configuration and 

dynamic properties of each floor are assumed to be identical, as shown in Table I. Table II summarizes the 

parameters of the wind load model, where 
D
C  and 

LC  are a function of   (Peng, 2005). Table III lists the 

parameters of the occupant comfort criteria, where F  is selected from the natural frequency of the first 

mode of each system. The parameters of the reliability analysis are illustrated in Table IV, where 
1
X  and 

2
X  are employed to simulate 

iEx  and 
iEy , respectively. For both the torsionally uncoupled and coupled 

systems, iX
Ex

1
  and iX

Ey
2

  are given, and the probability distribution of 
1
X  and that of 

2
X  are 

assumed to be identical. Three types of probability distributions: the normal, lognormal and type I extreme 

value distributions, are used to model the uncertainties of both 
1
X  and 

2
X . 

The acceleration at the top floor corner is the target of both the deterministic and reliability analyses. 

This is because such response is the maximum throughout the system. The relationships between the peak 

acceleration at corner of the 40th floor, i.e., the demand, and  for the torsionally uncoupled and coupled 

systems are shown in Figure 5(a) and 5(b), respectively. The allowable peak acceleration independent of 
i.e., the capacity, is displayed in the figures. Both the figures illustrate that the demand is comparatively 

lower than the capacity for each . Consequently, the occupant comfort criteria are satisfied in the two 

numerical examples from the viewpoint of deterministic approaches. These two figures also show that the 

maximum peak acceleration occurs when the wind direction is parallel to the x axis, i.e.,  = 0˚ or 180˚. The 

peak acceleration of the torsionally coupled system is relatively higher than that of the torsionally 

uncoupled system for each  due to the coupled mode effects. 
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Table I. Parameters of the high-rise building model. 

iD  
[m] 24 

iB  
[m] 48 

iH  
[m] 4 

iEx  
[m] 0 (TUS) 

  − 1.2 (TCS) 

iEy  
[m] 0 (TUS) 

  − 2.4 (TCS) 

iAx  
[m] − 0.5 

iAy  
[m] 4.8 

iM  
[kg] 106 

iI  
[kg-m2] 2.4 108 

iKx
 

[N/m] 7 109 

iKy
 

[N/m] 1.05 1010 

iK
 

[N/rad] 3.5 1012 

0A  
[s-1] 0.2 

1A  
[s] 0 

      TUS: Torsionally uncoupled system 

      TCS: Torsionally coupled system 

 

 

Table II. Parameters of the wind load model. 


 

[None] 0.36 

GZ  
[m] 500 

GV  
[m/s] 27.4 

RV  
[m/s] 6.5 

0K  
[None] 0.025 

1C  [None] 7.7 


 

[kg/m3] 1.23 

DC  [None] (Peng, 2005) 

LC  
[None] (Peng, 2005) 

 

 

Table III. Parameters of the occupant comfort criteria. 

F
 

[Hz] 0.5164 (TUS) 

  0.5106 (TCS) 

T
 

[s] 600 

R
 

[yr] 0.5 

      TUS: Torsionally uncoupled system 

      TCS: Torsionally coupled system 
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Table IV. Parameters of the reliability analysis. 

1X


 
[m] 0 (TUS) 

  − 1.2 (TCS) 

2X


 
[m] 0 (TUS) 

  − 2.4 (TCS) 

1X


 
[m] 0.8 

2X


 
[m] 0.8 

      TUS: Torsionally uncoupled system 

      TCS: Torsionally coupled system 
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(a) Torsionally uncoupled system   (b) Torsionally coupled system 

 

Figure 5. Relationships between the peak acceleration at corner of the 40th floor and the attack angle. 

 

 

The reliability analysis is conducted based on the demand and capacity obtained by the deterministic 

analysis. The relationships between the probability of dissatisfaction with occupant comfort criteria for 

three types of probability distributions of the structural eccentricity, i.e., the normal, lognormal and type I 

extreme value distributions, and   for the torsionally uncoupled and coupled systems are shown in Figure 

6(a) and 6(b), respectively. Both the figures illustrate that the probability for the case of the normal 

distribution is relatively higher than that for the other two cases for each  . Furthermore, the probability for 

the case of the lognormal distribution is close to that of the type I extreme value distribution for each  . 

The findings indicate that, compared to the lognormal and type I extreme value distributions, the normal 

distribution can be used to more conservatively simulate the uncertainties of the eccentricity between i
EC  

and iMC  in the two numerical examples from the viewpoint of probabilistic approaches. These two figures 

also show that the maximum probability occurs when the wind direction is parallel to the x  axis, i.e.,  0˚ 

or 180˚. The probability of the torsionally coupled system is relatively higher than that of the torsionally 
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uncoupled system for each   due to the coupled mode effects. The results are in agreement with those 

obtained by the deterministic analysis. 
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(a) Torsionally uncoupled system   (b) Torsionally coupled system 

 

Figure 6. Relationships between the probability of dissatisfaction with occupant comfort criteria and the attack angle. 

 

 

 

7. Conclusions 

 

The objective of this paper is to conduct the reliability analysis of high-rise buildings under wind loads. 

Two numerical examples, i.e., the torsionally uncoupled and coupled systems, are provided to capture the 

dynamic effects of structures with eccentricity between the elastic and mass centers. The framework of this 

research consists of two stages. The first stage includes two parts: the deterministic analysis of wind-

induced acceleration for a variety of attack angles, i.e., the demand, and the determination of allowable 

acceleration based on the occupant comfort criteria for wind-excited buildings, i.e., the capacity. According 

to the results obtained in the first stage, the reliability analysis is conducted in the second stage, which can 

predict the probability of dissatisfaction with occupant comfort criteria for three types of probability 

distributions of the structural eccentricity, i.e., the normal, lognormal and type I extreme value distributions. 

In the first stage, both the examples illustrate that the demand is comparatively lower than the capacity 

for each attack angle. Consequently, the occupant comfort criteria are satisfied in the two numerical 

examples from the viewpoint of deterministic approaches. These two examples also show that the 

maximum peak acceleration occurs when the wind direction is parallel to the x  axis. The peak acceleration 

of the torsionally coupled system is relatively higher than that of the torsionally uncoupled system for each 

attack angle due to the coupled mode effects. 

In the second stage, both the examples illustrate that the probability for the case of the normal 

distribution is relatively higher than that for the other two cases for each attack angle. Furthermore, the 
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probability for the case of the lognormal distribution is close to that of the type I extreme value distribution 

for each attack angle. The findings indicate that, compared to the lognormal and type I extreme value 

distributions, the normal distribution can be used to more conservatively simulate the uncertainties of the 

eccentricity between the elastic and mass centers in the two numerical examples from the viewpoint of 

probabilistic approaches. These two examples also show that the maximum probability occurs when the 

wind direction is parallel to the x  axis. The probability of the torsionally coupled system is relatively 

higher than that of the torsionally uncoupled system for each attack angle due to the coupled mode effects. 

The results are in agreement with those obtained by the deterministic analysis. 
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Abstract. In this paper, interval extension of a sixth-order class of the classic modified Ostrowski methods
which improves the order of convergence of Ostrowski method from four to six for solving nonlinear equa-
tions is introduce. Also, error analysis and convergence will be discussed. Some implemented examples with
INTLAB are also included to illustrate the validity and applicability of the scheme. The results of proposed
method are compared with the results of the interval Ostrowski method and the interval Newton method.

Keywords: interval analysis, nonlinear equations, a sixth-order class of the modified Ostrowski method.

1. Introduction

1.1. BACKGROUND

Interval analysis was formally introduced by Moore (Moore, 1962; Moore, 1966). In practice, interval
analysis provides rigorous enclosure of solutions to the given model equations. In fact, interval algorithms
are designed to automatically provide rigorous bounds on accumulated rounding errors, approximation
errors, and propagated uncertainties in initial data during the process of the computation (Moore et al.,
2009; Neumaier, 1990).

There are many iterative methods to find a simple root of a nonlinear equation. The classical Newton
method is one of the most important these methods with convergence of quadratic. To improve the local order
of convergence and efficiency index, many modified methods have been proposed in (Grau And Barreo,
2006; Liu And Wanh, 2010; Bi et al., 2009; Bi et al., 2009; Thukral, 2008; Kou, 2007; Ham, 200; Kou,
2010; Sharma et al., 2010; Sharma et al., 2007; Ostrowski, 1973). One of these important and basic methods
is the Ostrowski method (Ostrowski, 1973). This method is a basic for many modified methods. The order
of convergence of this method increases by at least two at the expense of additional function evaluation at
another point iterated by the Newton method.

There are a class of the modified ostrowski methods that improves the order of convergence of the
Ostrowski method with an additional function evaluation (Chun And Ham, 2007). The local order of con-
vergence of this method is 6 (Chun And Ham, 2007).

An interval Newton method has been developed for solving nonlinear equations. This verified approach
enables us to compute interval enclosures for the exact values of the solution with sharp bounds (Moore et
al., 2009).

In the present article, using the interval extension of the Newton method in (Moore et al., 2009), an
interval extension of a sixth-order class of the classic modified Ostrowski methods (Chun And Ham, 2007)
is introduced to find the enclosure roots of nonlinear equations. Convergence rate of the proposed method is
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also examined. Moreover, error bound and comparison of this method with interval Newton and Ostrowski
methods are given. Applicability and reliability of this algorithm will be investigated and justified through
some examples implemented by using INTLAB, which is free to use (Rump, 199).

1.2. PRELIMINARIES: NOTATIONS AND RESULTS

We first introduce some basic notations and properties of interval arithmetic from (Moore et al., 2009;
Neumaier, 2001). An interval number is a closed set in R that includes the possible range of an unknown real
number, where R denotes the set of real numbers. Therefore, a real interval is a set of the form x = [x,x],
where x and x are the lower and upper bounds (end-points) of the interval number x, respectively. The set
of compact real intervals is denoted by IR = {x = [x,x]| x,x ∈ R, x ≤ x}.

A real number x is identified with a point interval x = [x, x] and is called degenerated interval. The
quality of interval analysis is measured by the width of the interval results, and a sharp enclosure for the
exact solution is desirable. The mid-point and the width of an interval x are denoted by mid (x) = (x+x)/2,
and wid (x) = x− x, respectively.

Considering |x| = max{|x|, |x|} for any x,y ∈ IR and a, b ∈ R we can conclude that (Moore et al.,
2009):

wid (ax+ by) = |a|wid (x) + |b|wid (y),

wid (xy) ≤ |x|wid (y) + |y|wid (x),

Definition 1.1. We say that f is an interval extension of f , if for degenerate interval arguments, f agrees
with f , i.e. f([x, x]) = f(x).

It should be noted that in general f is not the set image of f . Generally f(x) ⊆ f(x). Besides, when f
is an inclusion function of f , then we can directly obtain lower and upper bounds of f over any interval x
within the domain of f just by taking f(x) and f(x), respectively.

Definition 1.2. An interval extension f is said to be Lipschitz in x(0) if there is a constant L such that
wid (f(x)) ≤ Lwid (x) for every x ⊆ x(0).

Hence, the width of f(x) approaches zero at least linearly with the width of x.

Lemma 1.3 (See (Moore et al., 2009)). If f is a natural interval extension of a real rational function with
f(x) defined for x ⊆ x0, where x and x(0) are intervals, then f is Lipschitz in x(0); In other words:

wid (f(x)) ≤ Lwid (x), (1)

Definition 1.4. An interval sequence {x(k)} is nested if x(k+1) ⊆ x(k) for all k.

Lemma 1.5 (See (Moore et al., 2009)). Suppose {x(k)} is such that there is a real number x ∈ x(k) for all
k. Define {y(k)} by y(1) = x(1) and y(k+1) = x(k+1) ∩ y(k) for all k = 1, 2, · · ·. Then y(k) is nested with
limit y, and

x ∈ y ⊆ y(k) ∀k.

Lemma 1.6 (See (Moore et al., 2009)). Every nested sequence {x(k)} converges and has the limit ∩∞k=1x
(k).
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1.2.1. Interval Newton method
The Newton’s method is the well-known iterative method for finding a simple zero of function. Let f be a
real-valued function of a real variable x, and suppose that f is continuously differentiable.

Let f ′(x) be an inclusion monotonic interval extension of f ′(x) and consider the algorithm

x(k+1) = x(k) ∩N(x(k)), (k = 0, 1, 2, · · ·), (2)

where

N(x) = mid (x)− f(mid (x))

f ′(x)
. (3)

This is well-known as the interval Newton method (Moore et al., 2009).

Theorem 1.7 (See (Moore et al., 2009)). If an interval x(0) contains a zero x∗ of f(x), then so does x(k)

for all k = 0, 1, 2, · · ·, defined by (2). Furthermore, the intervals x(k) form a nested sequence converging to
x∗ if 0 6∈ f ′(x(0)).

The interval Newton method (2) is asymptotically error squaring.

Theorem 1.8 (See (Moore et al., 2009)). Given a real rational function f of a single real variable x with
rational extensions f , f ′ of f, f ′, respectively, such that f has a simple zero x∗ in an interval x(0) for
which f(x(0)) is defined and f ′(x(0)) is defined and does not contain zero i.e. 0 6∈ f ′(x(0)). Then there is a
positive real number C such that

wid (x(k+1)) ≤ C
(
wid (x(k))

)2
.

If 0 6∈ f ′(x(0)), then 0 6∈ f ′(x(k)) for all k and mid (x(k)) is not contained in N(x(k)), unless
f(mid (x(k)) = 0. So, convergence of the sequence follows (Moore et al., 2009; Neumaier, 2001).

1.2.2. Classic Ostrowski method
The Ostrowski method is an important and basic method for finding a simple root of a nonlinear equation.
This method is given by

xn+1 = S(xn, yn), (4)

S(xn, yn) = yn −
f(yn)

f(xn)− 2f(yn)

f(xn)

f ′(xn)
,

yn = xn −
f(xn)

f ′(xn)
.

This method is an improvement of the Newton method with the order of convergence equal to 4. A
detailed describe of this method is given in (Ostrowski, 1973).
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1.3. A SIXTH-ORDER CLASS OF THE CLASSIC MODIFIED OSTROWSKI METHODS

There is a class of the modified Ostrowski methods that uses the same information of the Ostrowski method
i.e., three evaluations of function f and one evaluation of derivative f ′ per step. This method is an improve-
ment of the Ostrowski method. The local order of convergence of this method is 6. This iteration method is
given by

xn+1 = G(xn, yn, zn), (5)

G(xn, yn, zn) = zn −H(un)
f(zn)

f ′(xn)
, un =

f(yn)

f(xn)
,

zn = yn −
f(xn)

f(xn)− 2f(yn)
.
f(yn)

f ′(xn)
,

yn = xn −
f(xn)

f ′(xn)
,

whereH(t) represents any real-value function that satisfies the propertiesH(0) = 1, H ′(0) = 2, |H ′′(0)| <
∞.

A detailed describe of this method is given in (Chun And Ham, 2007).

2. Main results

In this section a new interval method of a class of the modified Ostrowski methods is introduced for com-
puting a simple zero of a nonlinear equation. Our proposed approach is based on interval analysis which
was first invented by R. Moore (Moore, 1962; Moore, 1966; Moore et al., 2009) and a sixth-order class
of modified Ostrowski methods (Chun And Ham, 2007). This method is an improvement of its previous
method (Chun And Ham, 2007) which increases the local order of convergence. It is proved that the order
of convergence of the proposed method is 6 while the order of convergence of the Ostrowski method is 4.

2.1. INTERVAL FORM OF A SIXTH-ORDER CLASS OF THE MODIFIED OSTROWSKI METHODS

Let f ′(x) is inclusion monotonic interval extension of f ′(x). We seek a solution of the equation f(x) = 0,
on interval x = [x,x]. Interval extension of (5) is introduced as

x(k+1) = x(k) ∩G(x(k),y(k), z(k)), k = 0, 1, 2, . . . , (6)

where

G(x,y, z) = mid (z)−H(mid (un))
f(mid (z))

f ′(x)
, un =

f(y)

f(mid (x))
, (7)

z(k) = x(k) ∩ S(x(k),y(k)), (8)

S(x,y) = mid (y)− f(mid (x))

f(mid (x))− 2f(mid (y))
.
f(mid (y))

f ′(x)
, (9)

y(k) = x(k) ∩N(x(k)), (10)
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N(x) = mid (x)− f(mid (x))

f ′(x)
, (11)

whereH(t) represents any real-value function that satisfies the propertiesH(0) = 1, H ′(0) = 2. Moreover,
It is necessary to say that interval extension of the classic Ostrowski method is given in (8)–(10).

Now a computational algorithm for finding inclosure roots of a given nonlinear equation based on our
proposed method by using above relations is introduced.

Algorithm
To summarize the previous development, the following computational algorithm is produced : To find an
inclosure solution to f(x) = 0 given an initial interval x(0) included one root:

INPUT initial interval x(0);

tolerance TOL;

maximum number of iteration J;

functions f , f ′, f ′.

for k=0: J-1

Compute N(x(k)) from (10).
y(k) := N(x(k)) ∩ x(k).
Compute S(x(k),y(k)) from (9).
z(k) := S(x(k),y(k)) ∩ x(k).
Compute G(x(k),y(k), z(k)) from (7).
x(k+1) := G(x(k),y(k), z(k)) ∩ x(k).
If wid (x(k+1)) ≤ TOL, then go to OUTPUT STEP

end

OUTPUT (x(k+1)); (The procedure was successful.)

2.2. CONVERGENCE ANALYSIS AND ERROR BOUNDS

In this section, we’ll deal with the convergence and error bound for interval method (6). Unlike the classic
form of this method, the interval version always displays a very regular behavior. To begin with, we will
assume that f : x→ R is a continuously differentiable function, and x∗ ∈ x is a root of f . We also assume
that an interval extension of f ′ exist and satisfies 0 6∈ f ′(x). In particular, this implies that f ′(x) 6= 0 for all
x ∈ x. The sequence of the proposed interval method has some nice properties.

Theorem 2.1 (Interval form of a sixth-order class of the modified Ostrowski methods). Assume f ∈ C(x(0))
and 0 6∈ f ′(x(k)) for k = 0, 1, 2, · · ·. If x(0) contains a root x∗ of f , then so do all intervals x(k), k =
1, 2, · · ·, generated by (6). Besides, the intervals x(k) form a nested sequence converging to x∗.
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Proof. By induction, since 0 6∈ f ′(x(k)), if x∗ ∈ x(0) then x∗ ∈ x(k) for k = 1, 2, · · ·. Also, Lemma
(1.5) leads that the intervals x(k), generated by (6), form a nested sequence. Therefore, since for k =
0, 1, 2, · · · we have x∗ ∈ x(k) then x∗ ∈ ∩kx(k) or limn→∞ ∩nk=0x

(k) = x∗ and the proof is completed. �
One of the most useful properties of the interval operator G of this method is that we are provided with a

means of detecting when a region does not contain a root of f . As this is a common situation, it is important
that we can quickly discard a set on the grounds of it containing no roots. Another important contribution
from the properties of G is a simple verifiable condition that guarantees the existence of a unique root within
an interval.

Theorem 2.2. Suppose f ∈ C2(x(0)) and 0 6∈ f ′(x(k)) for k = 0, 1, 2, · · ·.

(1) If x∗ ∈ x(0) and G(x(k),y(k) z(k)) ⊆ x(k), then x(k) contains exactly one zero of f .

(2) If x(k) ∩G(x(k),y(k), z(k)) = ∅, then x(k) does not contain any zero of f .

Proof. First, part one is proved. Since 0 6∈ f ′(x(k)), then f ′(x) 6= 0 for all x ∈ x(k) and therefore
f is monotonic on x(k). In other words, it has at most one zero in x. Hence, it is sufficient to find a zero
x∗ ∈ x(k). Since G(x(k),y(k), z(k)) ⊆ x(k), using the Theorem (2.1) it clear that the f has exactly one root
in x(k).

To establish part (2), suppose x∗ is a zero of f and x∗ ∈ x(0), then Theorem (2.1) results x∗ ∈
G(x(k),y(k) z(k)). Consequently x∗ ∈ x(k) ∩ G(x(k),y(k), z(k)) which is contradiction. So the proof is
completed. �

If we start with an x(0) such that

G(x(0),y(0), z(0)) ⊆ S(x(0),y(0)) ⊆N(x(0)) ⊆ x(0),

then Theorems (2.1–2.2) guarantee a nested sequence of intervals {x(k)} convergent to an interval x∗ such
that x∗ ∈ x(0) and x∗ = G(x∗,x∗,x∗) and x∗ ⊆ x(k) for all k = 0, 1, 2, · · ·. On a computer, the procedure
can be stopped when x(k+1) = x(k) or wid (x(k)) ≤ ε; using IA, interval arithmetic, at a specific number
of digits, this yields the narrowest possible interval containing x∗, inclusion solution.

Remark 2.3. In much the same way of Theorems (2.1–2.2) it is possible to state the interval Ostrowski
method (8–10) convergent conditions. We just show it’s convergence rate in Theorem (2.4).

The sequence (6) converges to x∗ if the assumptions of the Theorems (2.1–2.2) are hold. Under conditions
similar to those of Theorem (1.8), it is possible to show that the convergence rate is 6. First we need to show
that the convergence rate of interval Ostrowski method, (8), is 4. A formal statement of this property ia as
follows.

Theorem 2.4. Assume that f ∈ C(x0) with 0 6∈ f ′(x(0)), and f has a unique simple root x∗ ∈ x(0). Then,
if S(x(k),y(k)) ⊆ x(k), the sequence (8) has convergent rate four, i.e., there exists a constant K such that

wid (z(k)) ≤ K
(
wid (x(k))

)4
. (12)

Proof. By Mean Value Theorem we have

f(mid (x(k))) = f ′(ξ)[mid (x(k))− x∗],
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with ξ is between mid (x(k)) and x∗. Since S(x(k),y(k)) ⊆ x(k), thus from (8), we have

z(k) = mid (y(k))− [mid (x(k))− x∗]f ′(ξ1)
f(mid (x(k)))− 2f(mid (y(k)))

[mid (y(k))− x∗]f ′(ξ2)
f ′(x(k))

, (13)

therefore

wid (z(k)) =
|mid (x(k))− x∗||f ′(ξ1)||mid (y(k))− x∗||f ′(ξ2)|

|f(mid (x(k)))− 2f(mid (y(k)))|
wid

(
1

f ′(x(k))

)
. (14)

It is clear that
|mid (x(k))− x∗| ≤ wid (x(k)). (15)

Also, from Lemma (1.3) we have

wid

(
1

f ′(x(k))

)
≤ wid (x(k)). (16)

Furthermore, since y(k) is generated from (10), Theorem (1.8) leads

|mid (y(k))− x∗| ≤ wid (y(k)) ≤
(
wid (x(k))

)2
. (17)

Let |f ′(ξ1)| ≤ K1, |f ′(ξ2)| ≤ K2 and |f(mid (x(k))) − 2f(mid (y(k)))| ≤ K3, so, considering (14–17),
we have the following error bound

wid (z(k)) ≤ K1K2

K3

(
wid (x(k))

)4
= K

(
wid (x(k))

)4
, (18)

where K = K1K2/K3, and the proof is completed. �
The interval form of this class of modified Ostrowski methods, (6), improves the local order of conver-

gence of the interval Ostrowski method, (8), with an additional evaluation of the function.

Theorem 2.5. Assume that f ∈ C(x0) with 0 6∈ f ′(x(0)), and f has a unique simple root x∗ ∈ x(0). Then,
if G(x(k),y(k), z(k)) ⊆ x(k), the sequence (6) has convergent rate 6, i.e., there exists a constant K such
that

wid (x(k+1)) ≤ K
(
wid (x(k))

)6
. (19)

Proof. By Mean Value Theorem we have

f(mid (x(k))) = f ′(ξ)
[
mid (x(k))− x∗

]
,

with ξ is between mid (x(k)) and x∗. Therefore, from (6), we have

x(k+1) = mid (z(k))−

[
mid (u

(k)
n )− x∗

]
H ′(ξ1)

[
mid (z(k))− x∗

]
f ′(ξ2)

f ′(x(k))
, (20)
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and

wid (x(k+1)) =
∣∣∣mid (u(k)

n )− x∗
∣∣∣ |H ′(ξ1)| ∣∣∣mid (z(k))− x∗

∣∣∣ |f ′(ξ2)|wid ( 1

f ′(x(k))

)
. (21)

It is clear that ∣∣∣mid (z(k))− x∗
∣∣∣ ≤ wid (z(k)),

∣∣∣mid (u(k)
n )− x∗

∣∣∣ ≤ wid (u(k)
n ). (22)

Also, since z(k) is generated by (8), from Theorem (2.4) there is positive constant K̃ such that

wid (z(k)) ≤ K̃
(
wid (x(k))

)4
, (23)

and from Lemma (1.3) we have

wid (u(k)
n ) = wid

(
f(y(k))

f(mid (x(k)))

)
≤ wid (x(k)). (24)

Now, let |H ′(ξ1)| ≤ K1, |f ′(ξ2)| ≤ K2 and using the relations (16), (22)–(24) in (21), we have the
following error bound as

wid (x(k+1)) ≤ K
(
wid (x(k))

)6
, (25)

where K = K1K2K̃. So the local order of convergence of the proposed interval method in this paper is
6 and the proof is completed. �

3. Numerical implementation

In this section, we want to apply our method to solve three examples. Also we compare the computed results
and justify the accuracy and applicability of the mentioned algorithm and theorem in the previous section.
In fact, we illustrate three examples by applying the interval form of a class of modified Ostrowski methods
(First algorithm). In these examples, we use the functions H as

H(t) = 1 + 2t+ µt2 + γt3, (26)

H(t) =
γ + (β + 2γ)t

γ + βt
, (27)

H(t) = 1 +
4t

1 +
√
1− 4t

, (28)

where µ, γ, β ∈ R and compare the results with the results of the interval Ostrowski method, (Second
algorithm) and the Newton interval algorithm (Third algorithm) proposed by Moore in (Moore et al., 2009).
Numerical results are computed by using INTLAB toolbox created by Rump (Rump, 199).

3.1. EXAMPLES

Example 3.1. Suppose we want to solve f(x) = 0 with f(x) = x3+4x2−10. The solution of this nonlinear
equation is x = 1.36523001341409684.
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First algorithm (Interval form of a class of the modified Ostrowski methods)
We take x(0) = [1, 2] and µ = γ = β = 1.
Using (26), we obtain

x(1) = [1.3640535118270273, 1.3657596756771437],

x(2) = [1.3652300134140966, 1.3652300134140968].

Using (27), we obtain

x(1) = [1.3640173134450457, 1.3656675343411908],

x(2) = [1.3652300134140966, 1.3652300134140971].

Using (28), we obtain

x(1) = [1.3640626978019838, 1.3657830581588510],

x(2) = [1.3652300134140966, 1.3652300134140971].

Second algorithm (Interval Ostrowski method)
Taking x(0) = [1, 2], we obtain

x(1) = [1.3571456435997661, 1.3687534033070793],

x(2) = [1.3652299985894846, 1.3652300283811582],

x(3) = [1.3652300134140967, 1.3652300134140969].

Third algorithm (Interval Newton method)
Taking x(0) = [1, 2], we obtain

x(1) = [1.2840909090909089, 1.4151785714285716],

x(2) = [1.3643820799441290, 1.3664268517584581],

x(3) = [1.3652298533439375, 1.3652302030363476],

x(4) = [1.3652300134140944, 1.3652300134140995],

x(5) = [1.3652300134140968, 1.3652300134140971].

The results show that the proposed interval method in first algorithm is faster than the interval Ostrowski
and Newton methods. For f(x(2)) of three methods, we have:
for the first method from (26)

f(x(2)) = 1.0e− 014× [−0.35527136788006, 0.17763568394003],
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and from (27) and (28)

f(x(2)) = 1.0e− 014× [−0.35527136788006, 0.53290705182008],

for the second method

f(x(2)) = 1.0e− 006× [−0.24480473648226, 0.24715706103962],

and for the third method

f(x(2)) = [−0.01399644365940, 0.01977546736885].

Example 3.2. Suppose we want to solve f(x) = 0 with f(x) = − sin2(x)+3 cos(x)+x exp(x2)+5. The
solution of this nonlinear equation is
x = −1.20764782713091892.

First algorithm (Interval form of a class of the modified Ostrowski methods)
We take x(0) = [−1.5,−1] and µ = γ = β = 1.
Using (26), we obtain

x(1) = [−1.2064954394368772,−1.2082267483787090],

x(2) = [−1.2076478271309178,−1.2076478271309201].
Using (27), we obtain

x(1) = [−1.2064583312305396,−1.2080334360657845],

x(2) = [−1.2076478271309172,−1.2076478271309205].
Using (28), we obtain

x(1) = [−1.2065037762572525,−1.2082701783956324],

x(2) = [−1.2076478271309178,−1.2076478271309198].

Second algorithm (Interval Ostrowski method)
Taking x(0) = [−1.5,−1], we obtain

x(1) = [−1.2106610890531674,−1.2015072023630468],

x(2) = [−1.2076478827088639,−1.2076477721947516],

x(3) = [−1.2076478271309190,−1.2076478271309187].
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Third algorithm (Interval Newton method)
Taking x(0) = [−1.5,−1], we obtain

x(1) = [−1.2336804731371404,−1.1649846948946225],

x(2) = [−1.2087043535177426,−1.2068781392342888],

x(3) = [−1.2076482734756950,−1.2076474416172571],

x(4) = [−1.2076478271309605,−1.2076478271308799],

x(5) = [−1.2076478271309190,−1.2076478271309187].

The results of this example also show that the proposed interval method in first algorithm is faster than
the interval Ostrowski method and interval Newton method. For f(x(2)) of three methods, we have:
for the first method from (26),

f(x(2)) = 1.0e− 013× [−0.28421709430405, 0.25757174171304],

from (27),
f(x(2)) = 1.0e− 013× [−0.37303493627406, 0.38191672047106],

from (28),
f(x(2)) = 1.0e− 013× [−0.23092638912204, 0.25757174171304],

for the second method

f(x(2)) = 1.0e− 005× [−0.11286442926917, 0.11156112638134],

and for the third method

f(x(2)) = [−0.02148941450246, 0.01561231591470].

Example 3.3. Suppose we want to solve f(x) = 0 with f(x) = exp(−x) + cos(x). The solution of this
nonlinear equation is x = 1.746139530408012285.

First algorithm (Interval form of a class of the modified Ostrowski methods)
We take x(0) = [1, 2] and µ = γ = β = 1.
Using (25), we obtain

x(1) = [1.7460718336173990, 1.7463268259266115],

x(2) = [1.7461395304080122, 1.7461395304080125].

Using (26), we obtain

x(1) = [1.7460778555890572, 1.7463311262322414],
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x(2) = [1.7461395304080122, 1.7461395304080125].

Using (27), we obtain

x(1) = [1.7460700894634930, 1.7463255804217692],

x(2) = [1.7461395304080122, 1.7461395304080125].

Second algorithm (Interval Ostrowski method)
Taking x(0) = [1, 2], we obtain

x(1) = [1.7451497239632181, 1.7487777462087110],

x(2) = [1.7461395303511697, 1.7461395304645352],

x(3) = [1.7461395304080122, 1.7461395304080125].

Third algorithm (Interval Newton method)
Taking x(0) = [1, 2], we obtain

x(1) = [1.7148342558350511, 1.8008450820083625],

x(2) = [1.7459521461460445, 1.7462654180910368],

x(3) = [1.7461395288164853, 1.7461395317156374],

x(4) = [1.7461395304080122, 1.7461395304080125].

The results of this example also show that the proposed interval method in first algorithm is faster than
all the others. For f(x(2)) of three methods, we have:
for the first method from (26), (27) and (28)

f(x(2)) = 1.0e− 015× [−0.19428902930941, 0.24980018054067],

for the second method

f(x(2)) = 1.0e− 010× [−0.65516481129180, 0.65887156841527],

and for the third method

f(x(2)) = 1.0e− 003× [−0.14591526185559, 0.21720562386582].
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4. Conclusion

In this paper, a new enclosure method was introduced to find the interval solution of a given nonlinear
equation. This method has the local order of convergence equal to 6. Moreover, necessary and sufficient
conditions about the convergency were discussed in details. Also, error bound and convergence rate were
studied. To verify the theory, this algorithm was then tested using some examples via INTLAB. Further-
more, the suggested method was compared with interval Ostrowski method and interval Newton method.
As expected, according to the discussed theory, this method was better than both of the other methods.
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Abstract: This paper presents a new set of reliability sensitivity measures. The purpose with these 

measures is to identify the optimal manner in which to reduce model uncertainty in order to improve risk 

estimates. In particular, two sensitivity measures are presented. One identifies the buildings, or other 

components within a region, that should be subjected to more refined modeling. The other sensitivity 

measure identifies model types that should be subjected to further research to improve the model form. The 

developments in this paper are presented in the context of a region with 622 buildings that are subjected to 

seismic hazard. A comprehensive seismic risk analysis is conducted with approximately 300 random 

variables, more than 30 different model types, and more than 3,000 individual model instances. All models 

are probabilistic and emphasis is placed on explicit characterization of epistemic uncertainty, i.e., reducible 

uncertainty. The models are available in a new computer program called Rt, which is tailored for reliability 

analysis with multiple probabilistic models. The primary result from the analysis is risk estimates, presented 

in the form of loss probability curves. However, focus in this paper is on the development and evaluation of 

sensitivity measures, in order to guide efforts to reduce the model uncertainty and thus improve the risk 

estimates. For the considered region it is found that concrete shear wall buildings, and structural response 

models for such buildings, rank highest according to both sensitivity measures. As described in this paper, 

this means that allocating resources for detailed analysis and improved models for this type of building has 

the greatest impact on the risk estimates.  
 

Keywords: Probabilistic models, model uncertainty, sensitivity analysis, risk, reliability 

 

 

 

1. Introduction 

 

The primary objective in this paper is to identify the optimal course of action to reduce model uncertainty. 

Context is provided by seismic risk analysis, where multiple probabilistic models are employed for hazard, 

infrastructure, and impacts. In this paper, reliability methods are utilized in conjunction with a library of 

probabilistic models to make predictions about potential future seismic losses. The analysis is carried out 

with a new reliability-based risk analysis program, called Rt, which is specifically developed for multi-

model reliability and optimization analysis. Rt is freely available online at www.inrisk.ubc.ca. The library 

of probabilistic models is implemented in Rt, and certain models are devoted particular attention in this 

paper. However, although the study is focused on seismic risk, the methods and models are generic. In fact, 

the developments in this paper are intended as universal techniques for the recognition and subsequent 

reduction of epistemic uncertainty, i.e., reducible uncertainty. To this end, two questions are asked and 
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addressed in this study: 1) Which infrastructure components should be subjected to more detailed modeling 

to reduce the epistemic uncertainty, in order to improve the quality of the present risk analysis? 2) Which 

models in the library of probabilistic models should be prioritized in research efforts to reduce the epistemic 

uncertainty to improve the quality of future risk analyses? The vehicle for the developments is reliability 

analysis with the limit-state function 
 

    vxθvxθ ,,,, 0 llgg   (1) 
 

where lt = loss threshold, l(θ,x,v) = loss due to earthquake damage, θ = vector of epistemic random 

variables, x = vector of aleatory random variables, and v = vector of decision variables that are at the 

discretion of the decision maker. The focus in this paper is on the uncertainty described by θ, while the v is 

omitted in the following. Reliability methods, such as the first-order and second-order reliability methods 

and importance sampling, estimates the probability that g < 0. As a result, reliability analysis with Eq. (1) 

yields the probability that the cost l exceeds lo. In other words, the result is a point on the loss exceedance 

probability curve, hereafter called loss curve. Loss curve results are presented later in this paper and they 

appear prominently in several areas of seismic risk analysis. They are particularly popular in the insurance 

industry and in modern performance-based earthquake engineering.  

 It is emphasized in this paper that many interacting probabilistic models are required to evaluate 

l(θ,x,v) in Eq. (1). In fact, a significant effort is made to develop or improve models for all facets of the 

hazards, infrastructure, and impacts associated with seismic risk. In turn, the models are implemented in Rt 

to facilitate the communication between the models at run-time. The new object-oriented software 

architecture to accomplish this is described by Mahsuli and Haukaas (2012). From a broader perspective, Rt 

is intended as a continuously growing framework of predictive probabilistic models, with explicit 

characterization of epistemic uncertainty. This is intended to promote targeted future efforts to reduce that 

uncertainty. In fact, the framework provides a rational basis for allocating resources to gather data and build 

better models, which ultimately yields improved risk mitigation decisions. This motivates the developments 

in this paper.  

 

 

 

2. Models 

 

The approach adopted in this paper has two components: probabilistic models and reliability methods. In 

contrast with many contemporary seismic risk analysis approaches, the present approach circumvents 

conditional probability models in favour of simulation-type models that produce scalars or vectors of 

physical responses. This is necessary in order to evaluate Eq. (1). In particular, the models that are utilized 

in this study employ random variables to discretize the uncertainty. A simple but instructive model is the 

linear regression model 
 

       xx 33221 hhy  (2) 
 

where y = model response, θi = model parameters, hi(x) = explanatory functions, and ε = zero-mean 

normally distributed model error. In the Bayesian approach to linear regression for this model, the 

parameters θi and the standard deviation of ε are random variables. This approach is adopted here, where 

the model parameters are categorized as epistemic random variables, i.e., θ = {θ1,θ2,σε}. Furthermore, 

their probability distribution is affected by model improvement, typically by data gathering efforts. The 
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statistical inference for the random variables in θ is carried out in accordance with Box and Tiao (1992), 

Gardoni et al. (2002), and others. In fact, the Bayesian modeling philosophy is adopted throughout this 

study, although the model forms may vary. 

 In Rt’s framework of models, each input variable in x to Eq. (2) is either provided as a random variable 

by the analyst or as a response from an “upstream” model. In turn, the response, y, may serve as input to a 

“downstream” model. For example, one variable in x may be an earthquake magnitude predicted by another 

model, while y may be a site-specific ground shaking intensity that serves as input to a building response 

model.  

 The specific set of models considered in this paper simulate the occurrence of hazards, building 

responses, damage, and cost for 622 buildings on the campus of the University of British Columbia (UBC) 

in Vancouver, Canada. Figure 1 displays a map of the region with the UBC campus identified in reference 

to downtown Vancouver. The dots in the zoomed map of the UBC campus identify the 622 building on 

campus. The second author’s research group surveyed each building to gather data about building type, 

building height, footprint area, etc.  

 

 
Figure 1. Map of the UBC campus and the 622 buildings that are modeled in this study. 

 

Table I displays some of the information that was gathered for each of the 622 buildings at the UBC 

campus. For brevity, only some of the buildings are presented. These particular buildings were selected for 

this table because they appear prominently in the rankings that are presented later in this paper.  
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Table I: Information for a few selected buildings among the 622 buildings on the UBC campus. 

Building Name 
Footprint 

Area (m2) 

Number of 

Stories 

Year 

Erected 

Mean Total 

Value ($) 
Code Level Longitude Latitude 

Animal Science Main Sheep Unit 552 1 1976 671,109 Moderate -123.2341 49.2509 

Chan Centre for Performing Arts 3,315 1 1997 7,107,360 Moderate -123.2551 49.2698 

Morris & Helen Belkin Art Gallery 1,105 2 1995 4,738,240 Moderate -123.2562 49.2682 

Power House Meter Station 90 1 1960 206,730 Low -123.2545 49.265 

St. Mark Chapel 524 2 1997 2,406,909 Moderate -123.249 49.2722 

University Centre Addition 230 1 1987 528,310 Moderate -123.2568 49.2691 

Vanier Pump Station 16 1 1986 37,277 Moderate -123.2603 49.2648 

Village Shops 1 922 2 1980 4,234,872 Moderate -123.2428 49.2666 

Village Shops 2 1,171 1 1980 2,689,424 Moderate -123.2434 49.2664 

Wesbrook Animal Care Unit 596 1 1981 1,369,012 Moderate -123.2489 49.2652 

… … … … … … … … 

 

 

The UBC campus is subjected to three sources of seismicity: Shallow crustal earthquakes, deep subcrustal 

earthquakes, and megathrust subduction earthquakes. The first two occur within area sources, while 

subduction earthquakes originate from a faultline that runs under the ocean outside the coastline of the 

Pacific Northwest.  

 

        
Figure 2. Sources of earthquakes affecting the UBC campus. 
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Table II: Overview of models employed in the analysis. 

Model Name Formulation Instances Size(x) K = Size(θ) 

Concrete Frame with Masonry Infill Wall Structural Damage Nonlinear Regression 10 7 9 

Concrete Frame with Masonry Infill Wall Structural Response Linear Regression 10 4 25 

Concrete Moment Frame Structural Damage Nonlinear Regression 22 8 10 

Concrete Moment Frame Structural Response Linear Regression 22 4 25 

Concrete Shear Wall Structural Damage Nonlinear Regression 134 7 9 

Concrete Shear Wall Structural Response Linear Regression 134 4 25 

Crustal Intensity Algorithm 1 4 1 

Non-Structural Acceleration Damage Nonlinear Regression 622 2 3 

Non-Structural Drift Damage Nonlinear Regression 622 2 3 

Precast Concrete Structural Damage Nonlinear Regression 11 8 10 

Precast Concrete Structural Response Linear Regression 11 4 25 

Reinforced Masonry Structural Damage Nonlinear Regression 58 8 10 

Reinforced Masonry Structural Response Linear Regression 58 4 25 

Steel Braced Frame Structural Damage Nonlinear Regression 5 7 9 

Steel Braced Frame Structural Response Linear Regression 5 4 25 

Steel Frame with Concrete Shear Wall Structural Damage Nonlinear Regression 6 6 8 

Steel Frame with Concrete Shear Wall Structural Response Linear Regression 6 4 25 

Steel Frame with Masonry Infill Wall Structural Damage Nonlinear Regression 2 6 8 

Steel Frame with Masonry Infill Wall Structural Response Linear Regression 2 4 25 

Steel Light Frame Structural Damage Nonlinear Regression 22 6 8 

Steel Light Frame Structural Response Linear Regression 22 4 25 

Steel Moment Frame Structural Damage Nonlinear Regression 4 7 9 

Steel Moment Frame Structural Response Linear Regression 4 4 25 

Subcrustal Intensity Algorithm 1 4 1 

Subduction Intensity Algorithm 1 4 1 

Unreinforced Masonry Structural Damage Nonlinear Regression 14 6 8 

Unreinforced Masonry Structural Response Linear Regression 14 4 25 

Wood Large Frame Structural Damage Nonlinear Regression 128 5 7 

Wood Large Frame Structural Response Linear Regression 128 4 25 

Wood Light Frame Structural Damage Nonlinear Regression 206 5 7 

Wood Light Frame Structural Response Linear Regression 206 4 25 

 

 

It is noted that Figure 2 divides the area sources into several sub-areas. Specifically, the crustal earthquake 

source is divided into six area sources, while the subcrustal area source is divided into three area sources. 

This is done for practical reasons that relate to the reliability analysis. In particular, the first-order reliability 
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method (FORM) is employed, and this type of analysis requires a continuously differentiable limit-state 

function that is relatively linear in the space of the random variables. This is achieved by the subdivision of 

the area sources in Figure 2. Furthermore, the subduction source is divided into a point source and a line 

source. This is done for physical reasons. Specifically, a certain range of magnitudes of subduction 

earthquakes is associated with rupture of the entire fault line. The location of such earthquakes is therefore 

known and thus modeled by a point source. In contrast, subduction earthquakes of lower magnitudes are 

associated with partial rupture of the fault. The unknown location of this type of earthquakes is modeled by 

the line source shown in Figure 2. 

In addition to the models required to simulate the earthquake hazard, an array of other models were 

utilized in this analysis. Table II provides an overview of these models. It is important to note that each 

model conforms to the following format: It takes random variables and other parameters as input, and it 

produces a physical measurable scalar or vector as output. For example, each of the earthquake location 

models described above takes the realization of a few random variables as input and produces the 

corresponding hypocenter location as output. Table II shows the number of instances of each model in the 

analysis. It also shows the number of random variables that each model takes. Specifically, the last two 

columns in Table II displays the number of aleatory random variables, size(x), and the number of epistemic 

random variables, size(), respectively, in each model. It is emphasized that the models for building 

response and building damage, i.e., the models in Table II that contain the word “Damage” or “Response” 

are simplified models rather than detailed finite element models. This is discussed later in the context of 

refining the building response and damage models. 

 

 

 

3. Analysis 

 

Given the sub-division of area sources in Figure 2 it is understood that there are 11 sources of earthquakes 

in the reliability analysis (Crustal + Subcrustal + Subduction = 6 + 3 + 2 = 11). As a result, a multi-hazard 

analysis is necessary. Several multi-hazard analysis options are available; one is the load coincidence 

method proposed by Wen (1990). However, matters simplify because the probability of coincidence of two 

earthquakes is negligible in this particular application. To address the presence of multiple hazards, let 

i = {1, 2, …, N}, where N = 11 = number of hazards, and let βi denote the reliability index associated with 

the limit-state function in Eq. (1) for each hazard. It is emphasized that each hazard is analyzed separately. 

From the theory of FORM reliability analysis it is know that the associated probability, i.e., the point on the 

loss curve is 
 

  iip   (3) 
 

where  is the standard normal cumulative distribution function. Provided the Poisson process is valid for 

each hazard, with rates i, the rate of loss exceedance associated with each hazard is ipi. The combined rate 

including all hazards is the sum of the individual rates, and the Poisson distribution provides the probability 

of loss exceedance within a time period, T: 
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In the context of FORM analysis is common to employ the reliability index instead of the probability. For 

this purpose, the generalized reliability index associated with p is obtained by inversion of the standard 

normal cumulative distribution function: 
 

  1 p    (5) 
 

where β is employed in the following as a surrogate measure for the exceedance probability when all 

hazards are considered.   

 

 

 

4. Loss Curve Results 

 

As mentioned earlier, an important objective in this study is to compute loss curves. To illustrate the 

concept, Figure 3 shows two loss curves obtained by Monte Carlo sampling with 100,000 samples. The 

black solid line displays the loss curve that is obtained when all random variables are included. To highlight 

the significance of epistemic uncertainty, the grey line in Figure 3 shows the loss curve that is obtained if all 

the epistemic random variables, i.e., θ, are set equal to their mean values. Naturally, this results in an 

underestimation of the probability of high losses, i.e., a “slimmer” tail of the loss curve. In fact, particular 

focus in this study is on the tail of the loss curve because of its importance in risk mitigation decisions. 

Unfortunately, although Monte Carlo sampling is a robust analysis approach, it yields less accurate results 

in the tail than around the mean of the loss. In contrast, FORM has two advantages that are explored in this 

study. First, it is tailored to estimate small probabilities, i.e., it addresses the tail of the loss curve. Second, it 

facilitates the computation of sensitivity measures that are employed in the following.  

 The loss curves in Figure 3 are plotted from zero to $100 million, and the figure reveals that there is 

roughly a 5% chance that this loss threshold will be exceeded. A better estimate is obtained by running 

FORM analysis with the following limit-state function: 
 

  100,000,000 – ,g l θ x  (6) 
 

FORM analysis for the individual hazards yield the reliability indices shown in Table III. The table shows 

that subduction earthquakes are associated with the lowest reliability indices. This implies that these 

earthquake sources produce the highest loss exceedance probabilities. However, it is also observed in 

Table III that subduction earthquakes are associated with low occurrence rates. This means that their overall 

influence on the seismic risk must be investigated further, which is done in the following. The results in 

Table III are substituted into Eq. (4) to compute the probability of exceeding a $100 million loss 

considering all earthquake sources. This yields p = 0.076, i.e., a 7.6% chance of exceeding that loss.  
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Figure 3. Loss curve with and without epistemic uncertainty. 

 

 

TableIII: Occurrence rates and reliability indices for individual hazards. 

Source Occurrence Rate Reliability Index 

Crustal Area Source 1 0.062 3.5 

Crustal Area Source 2 0.019 2.6 

Crustal Area Source 3 0.017 2.5 

Crustal Area Source 4 0.010 2.4 

Crustal Area Source 5 0.017 2.6 

Crustal Area Source 6 0.063 3.5 

Subcrustal Area Source 1 0.0029 1.6 

Subcrustal Area Source 2 0.027 2.0 

Subcrustal Area Source 3 0.063 2.7 

Subduction Line Source 0.0010 1.3 

Subduction Point Source 0.0013 1.3 

 

 

 

5. Sensitivity with respect to Model Refinement Decisions 

 

In the context of the regional seismic risk analysis of the UBC campus, suppose it is contemplated to refine 

some of the building models to reduce the epistemic uncertainty. In particular, the analyst may seek to 

replace simple building response models with detailed finite element models. Clearly, only the most 

important buildings can be addressed due to the time it takes to establish a detailed finite element model and 

the added computational cost. This section provides guidance for the analyst to prioritize between buildings.  
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 First, it is recognized that the objective is to reduce epistemic uncertainty. Provided that the epistemic 

uncertainty has been properly included in the models, a more detailed model will produce results with less 

uncertainty. Second, it is understood that it is the effect on the overall loss curve that must guide the 

decision to replace a model. In other words, the model whose θ has the largest influence on p in Eq. (4) 

should be replaced with a better model. In particular, for a model with only one epistemic random variable, 

it is the sensitivity ∂p/∂σ, where σ is the standard deviation of that epistemic random variable that should 

guide the prioritization. In general, each model has several epistemic random variables. To this end, a 

sensitivity measure that represents the derivative of p with respect to the standard deviation of all the 

epistemic random variables in a model is sought.  

 Suppose a model, such as the one in Eq. (2), is generically written as y = y(θ,x), where θ and x remain 

the vectors of epistemic and aleatory random variables, respectively. Furthermore, let K denote the number 

of epistemic random variables in the model. Next, consider the well-known first-order approximation of the 

variance of the response from this model with respect to the epistemic random variables:   
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    (7) 

 

where θy = gradient vector of y with respect to θ, Σθθ = covariance matrix of θ, ρij = correlation coefficient 

between the components of θ, and σi = standard deviation of the components of θ. For models that are linear 

with respect to the epistemic random variables Eq. (7) provides exact results; otherwise, it is an 

approximation. In order to study the influence of epistemic uncertainty on β, the following derivative is 

sought and evaluated by the chain rule of differentiation: 
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where N = number of hazards. The derivatives in the right hand side of Eq. (8) are addressed separately in 

the following. The first derivative is obtained by differentiating Eq. (5):  
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The second derivative is obtained by differentiating Eq. (4): 
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The third derivative is obtained by differentiating Eq. (3): 
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The fourth derivative is obtained by adding contributions from all the epistemic random variables in the 

model. The chain rule of differentiation yields: 
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where the first derivative in the right-hand side is a well-known reliability sensitivity measure, see for 

example Der Kiureghian (2005) for details, while the last derivative in the right-hand side of Eq. (12) is 

obtained by differentiating Eq. (7): 
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In the following, Eq. (8) is evaluated and compared for the 622 buildings at the UBC campus. Table IV 

displays values for ∂β/∂σ for the 10 highest ranked buildings. In other words, Table IV identifies the models 

for which a reduction in the epistemic uncertainty would have the greatest impact on the reliability index. 

Naturally, an increase in epistemic uncertainty, i.e., an increase in σ, increases the probability of exceeding 

a $100 million loss, which in turn reduces the reliability index; hence the minus sign in Table IV. It is 

observed in Table IV that the highest ranked buildings are mostly concrete shear wall buildings, which may 

indicate that the structural model for this type of building has the greatest potential for improvement. This 

point is brought up later in this paper.  

 Table V shows the ranking of magnitude models. It reveals that the magnitude model for subcrustal 

area source 2 is the model for which a reduction in the epistemic uncertainty would have the greatest impact 

on the loss probability. Similarly, Table VI shows the ranking of ground motion intensity models for an 

arbitrarily selected building. This ranking of the intensity models were observed for 430 of the buildings, 

while the intensity models for subduction and subcrustal earthquakes switch places for the other 192 

buildings. It is reemphasized that these results provide a basis for selecting models to be refined if proper 

resources are available.  

 It is of interest to investigate the value of ∂β/∂σ if the entire collection of models is considered as one 

model. For this case, the evaluation of ∂β/∂σ is disaggregated into two parts: 
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where the first sum is taken over epistemic random variables associated with hazard models, while the 

second sum is taken over epistemic random variables associated with building models. The analysis reveals 

that the first sum equals −8.54∙10
-9

 and the second equals −7.20∙10
-7

. This shows that, in the context of the 

epistemic uncertainty that is modeled in this study, it is far more effective to reduce the epistemic 

uncertainty in the building models rather than the hazard models.  

 

 

 

6. Sensitivity with respect to Model Improvement Decisions 

 

In the long run, researchers seek to improve the library of models that are available. This effort to reduce 

epistemic uncertainty in generic models addresses a different problem than that addressed in the previous 

section. In particular, the objective in the previous section was to identify, e.g., the building that should be 

subjected to more detailed modeling. In contrast, this section identifies which generic models should be 

prioritized for further research and data gathering. To make such decisions, it is necessary to assess the cost 

of long-term model improvement, and how those efforts will improve the assessment of risk. To this end,  
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TableIV: Top 10 building models according epistemic uncertainty. 

Building Name Building Type ∂β/∂σ 

University Centre Addition Concrete Shear Wall -0.76 

Village Shops 2 Concrete Shear Wall -0.57 

Power House Meter Station Concrete Shear Wall -0.48 

Vanier Pump Station Steel Light Frame -0.40 

Wesbrook Animal Care Unit Concrete Shear Wall -0.27 

St. Mark Chapel Concrete Shear Wall -0.11 

Chan Centre for Performing Arts Concrete Shear Wall -0.11 

Animal Science Main Sheep Unit Concrete Moment Frame -0.11 

Morris & Helen Belkin Art Gallery Concrete Shear Wall -0.023 

Village Shops 1 Concrete Shear Wall -0.022 

 

 

Table V: Ranking of magnitude models 

according to epistemic uncertainty. 

Model ∂β/∂σ 

Subcrustal Area Source 2 Magnitude -0.097 

Subcrustal Area Source 3 Magnitude -0.062 

Subcrustal Area Source 1 Magnitude -0.023 

Crustal Area Source 2 Magnitude -0.019 

Crustal Area Source 3 Magnitude -0.019 

Crustal Area Source 5 Magnitude -0.018 

Crustal Area Source 4 Magnitude -0.017 

Crustal Area Source 6 Magnitude -0.0039 

Crustal Area Source 1 Magnitude -0.0034 

 

 
Table VI: Ranking of intensity models  

according to epistemic uncertainty. 

Model ∂β/∂σ 

Crustal Intensity -2.81 

Subcrustal Intensity -1.42 

Subduction Intensity -0.80 

 

 

the sensitivity of the reliability index, β, with respect to the cost of modeling, c, i.e., ∂β/∂c, is sought. Chain 

rule of differentiation yields:  
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where the first derivative is expanded and explained earlier, and the second derivative is obtained by the 

chain rule, adding contributions over the K epistemic random variables of the model: 
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where n is introduced to quantify the number of observations that are used to develop the model. The first 

derivative in the right-hand side of Eq. (16) is addressed in the previous section. The second derivative 

represents the change in the standard deviation of a model parameter due to a change in the number of 

observations that are employed to build the model. In the following, this derivative, ∂σj/∂n, is expressed for 

three types of models: Linear regression models, nonlinear regression models, and generic models. For 

linear regression models, according to Box and Tiao (1992), the variance of the model parameter θj is 
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where k = number of θ-parameters in the model, y = vector of observed results, X = matrix of observations, 

θ̂  = mean vector of model parameters, and ( )jj identifies the j
th
 diagonal component. The variance of the 

model error is 
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The derivative of Eq. (17) with respect to n is  
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and, similarly, the derivative with respect to Eq. (18) is: 
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Similar derivatives are obtained for nonlinear regression models, where the expressions analogous to Eqs. 

(17) and (18) are made available by Seber and Wild (2003). For generic models, such as finite element 

models, it is argued that the epistemic uncertainty is primarily present in the random variables that are input 

to the model. This is assumed here, although some efforts have been made by Haukaas and Gardoni (2011) 

and others to incorporate epistemic uncertainty into finite element models. To this end, it is of interest to 

identify how the epistemic uncertainty in a physical random variable say, concrete strength, is affected by 

inclusion of more information. As a starting point, consider the well-known expression for variance: 
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where xi = i
th
 observation and μj = mean of observations. The derivative is: 
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It is emphasized that the expressions for the derivative ∂σj/∂n are derived under the assumption that the 

mean model is unaffected by added observations. Clearly, this may not be the case in practical 

circumstances, where one added observation may precipitate an increase in the variance of the epistemic 

random variables. However, if the fundamental model form is correct, then over time, new data will serve 

to reduce the epistemic uncertainty. The previously presented formulas are derived on this basis.  

 It is observed that the minus sign in equations above for ∂σj/∂n correctly implies that that the standard 

deviation of the model parameter is reduced when n is increased. Moreover, it is observed that the reduction 

in the standard deviation is smaller when n is large than when n is small. In other words, a model that is 

based on a large number of observations will benefit less from a few more observations. Furthermore, it is 

observed that the reduction in the standard deviation is greater when k is large than when k is small. In other 

words, a model with more parameters, i.e., a more complex model, will benefit more from new 

observations.  

 The last derivative in the right-hand side of Eq. (16) is the inverse of the cost of obtaining one data 

point. Naturally, the quantification of this cost is challenging. In fact, some observations are readily 

obtained, while others come at a significant cost. Examples of typical engineering observations that are 

counted by n include: 1) Testing of building on a shake table, which can be used to calibrate the building 

response, damage, and repair cost models; 2) Analysis of a highly refined numerical building model, which 

can be used to calibrate building response models; 3) Survey of buildings damaged in earthquakes, which 

can be used to calibrate building damage models; and 4) Claims reports from insurance companies, which 

can be used to calibrate building damage models. Although the cost of obtaining such data vary, it is 

assumed in this study that each observation will take two to three days of paid work and cost around $500, 

i.e., ∂c/∂n = 500.  

 The sensitivity measure ∂β/∂c is now evaluated for the models that were employed in the regional risk 

analysis for the 622 buildings at the UBC campus. The model types were presented in Table II. Table VII 

identifies the five models with highest value of ∂β/∂c. This means that allocating resources for improving 

these models has the greatest impact on the reliability index. In particular, gathering data to improve the 

concrete shear wall structural response model has the greatest effect on the reliability index per dollar spent.  

 The positive sign of the ∂β/∂c-values indicates that the reliability index increases when resources are 

allocated to data gathering. This makes sense, because the resulting model improvement reduces the 

uncertainty, which in turn reduces the probability of exceeding a $100 million loss. This decrease in 

probability is reflected by the increase in the reliability index, which is correctly captured by the positive 

sign of the ∂β/∂c-values.  

 Table VIII identifies the five models with lowest value of ∂β/∂c. In other words, these are the models 

for which data gathering and model improvement would not have significant impact on the reliability index. 

While structural response models rank highest according to ∂β/∂c, structural damage models rank lowest. In 

other words, in the context of the models employed in this study, it appears worthwhile to focus attention on 

reducing the epistemic uncertainty in the structural response models, i.e., models for building displacement 

and acceleration, rather than the damage models. However, an important remark is made in regards to these 

results: The ranking according to ∂β/∂c depends on the number of instances of a model type in the analysis. 

For example, in the present analysis, almost 54% of the building value is associated with concrete shear 

wall buildings, i.e., buildings of the type that ranked first in Table VII. On one hand, this skews the results 
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towards higher ∂β/∂c-values for this building type. Although this is not the only reason for the observed 

result, it should be duly noted when applying these results to regions with other compositions of the 

building stock. On the other hand, the ranking in Table VII and Table VIII are still valuable for the 

considered region. For researchers who seek to improve the risk assessment for this particular region, the 

results in Table VII and Table VIII are valid as measures to guide the allocation of resources for model 

improvement.  

 An additional remark about the results in Table VII, particularly the high rank of concrete shear wall 

structural response models, is made in regards to the results in the previous section. There it was noted that 

several of the concrete shear wall buildings are primary candidates for more refined structural analysis to 

reduce epistemic uncertainty. It is interesting to note that this type of building consistently ranks high 

according to both sensitivity measures.  

 

Table VII: Top five model types according to cost of model improvement. 

Model Type ∂β/∂c [∙10-6] 

Concrete Shear Wall Structural Response 46.7 

Wood Large Frame Structural Response 4.4 

Wood Light Frame Structural Response 1.0 

Concrete Frame with Masonry Infill Wall Structural Response 0.52 

Concrete Moment Frame Structural Response 0.50 

 

 

Table VIII: Bottom five model types according to cost of model improvement. 

Model Type ∂β/∂c [∙10-12] 

Wood Light Frame Structural Damage 0.2 

Steel Light Frame Structural Damage 0.09 

Steel Braced Frame Structural Damage 0.06 

Steel Moment Frame Structural Damage 0.03 

Steel Frame with Masonry Infill Wall Structural Damage 0.02 

 

 

 

7. Conclusions 

 

The overarching vision behind this paper is twofold. First, it is sought to identify and characterize epistemic 

uncertainty in a comprehensive manner. This is important because epistemic uncertainty, such as model 

uncertainty, is reducible and has significant influence on risk estimates. Second, it is sought to allocate 

resources in an optimal manner to reduce the epistemic uncertainty. The first goal is achieved by utilizing a 

library of probabilistic models that contain random variables that represent epistemic uncertainty. These 

models are implemented in a computer program, called Rt, dedicated to multi-model reliability analysis. Rt 

is employed in this paper to conduct risk analysis for a region in Vancouver, Canada that comprises 622 

buildings. The second goal is addressed in this paper by the development of two new reliability sensitivity 

measures. These are implemented in Rt and evaluated in the regional risk analysis. The results show that the 
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epistemic uncertainty associated with the models for concrete shear wall buildings is the most cost-effective 

to address for this region.  
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Abstract: Dynamic analysis of a structure is an essential procedure in designing a structure subjected to a 

system of suddenly applied loads such as wind or earthquake excitations. However, throughout 

conventional dynamic analyses, the existence of uncertainties in mechanical properties of a structure has 

not been considered. One method to quantify the presence of uncertainty in a physical system is to use an 

imprecise probability framework based on the concept of p-boxes. 

In this work, a new method for reliable dynamic analysis of structures using p-box based imprecise 

probability is developed. This method establishes a framework for handling incomplete information in 

structural dynamics. Using this method, the reliability and robustness in dynamic analysis are achieved. 

Example problem that illustrates the developed algorithm is presented. 
 

Keywords: Structural Dynamics; Uncertainty; Imprecise Probability; P-Box. 

 

 

 

1. Introduction 

 

Throughout conventional dynamic analysis, structural parameters in a system (including geometric, 

material, and load properties) are treated as deterministic values. Although the true values for structural 

properties generally have small variations from the deterministic values used in analysis, these uncertainties 

affect the system’s dynamic response significantly. 

There are two distinct types of uncertainty: aleatoric and epistemic. Aleatoric uncertainty is due to 

inherent randomness in the system. This type of uncertainty is irreducible with higher precision or more 

data acquisition. Epistemic uncertainty is due to lack of knowledge, modeling errors, and/or insufficient 

data. This uncertainty, also known as reducible uncertainty, can be reduced with further investigations, more 

data, and updated models. 

A method for handling uncertainty in a system with no assumptions of a well-defined Probability 

Density Function (PDF) is imprecise probability. This method involves setting bounds on the Cumulative 

Distribution Function (CDF), between which the true CDF exists. Williamson and Downs (1990) developed 

a method for combining imprecise probabilities using the four basic arithmetic operations, known as 

dependency bounds convolutions. These methods are enveloping methods in order to retain robustness in 

calculations, while avoiding overestimation on bounds due to dependency between different imprecise 

probabilities. Ferson and Donald (1998) developed a method for handling imprecise probability, referred to 

as Probability Bounds Analysis (PBA). Another method for handling imprecise probability is to discretize 

the upper and lower CDFs into probability boxes (p-boxes), each of equal probability mass. (Ferson et al. 

1998) 

A much older framework for handling imprecise probability is the Dempster-Shafer approach. While 
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the development of the Dempster-Shafer (DS) structures has been confirmed several times, the methods 

proposed for combining multiple DS structures has shown complexities. Ferson et al. (2003) suggested that 

the concept of Dempster-Shafer structures and p-boxes are in fact highly related and outlined procedures for 

converting from one to the other. They also expanded methods for combining multiple DS structures or p-

boxes, for operations including: enveloping, intersection, unweighted and weighted mixtures, averaging, 

and logarithmic pooling. Moreover, they outlined the various desired properties of any method of 

combining multiple p-boxes or DS structures, and summarized which methods satisfied these properties. 

From this, they concluded that the best method for combining is enveloping, also used in this work. 

Modares et al. (2006) showed a method of dynamic analysis using finite element method for 

mechanical uncertainties defined by interval variables, which yields exact bounds on a system’s natural 

frequencies. This method utilizes the monotonic behavior of eigenvalues of symmetric matrices subject to 

non-negative definite perturbations. Zhang et al. (2010) outlined a method for extending imprecise 

probability methods to finite element analysis with p-box uncertainty in loading in static problems.   

In this work, a new method for reliable dynamic analysis of structures using p-box based imprecise 

probability is developed which establishes a framework for handling incomplete information in structural 

dynamics. Independent uncertainties in stiffness defined by p-boxes are considered. This method applies the 

method for bounding natural frequencies, developed by Modares et al. (2006), to analysis of systems with 

independent interval uncertainty for each level of p-box discretization. Using this method, the reliability and 

robustness in dynamic analysis of an uncertain system are achieved. Although this work represents p-box 

uncertainties in stiffness properties, the extension of the developed method for uncertainties in the mass 

matrix is straightforward. Numerical example that illustrates the developed algorithm is presented, as well 

as comparison to interval Monte-Carlo simulation. 

 

 

 

2. Review of Deterministic Frequency Analysis 

 

The equation of motion for an undamped system is: 
 

[M]{x} + [K]{x} = {0},      (1) 

 

where     is the global mass matrix,     is the global stiffness matrix,  x  is the displacement  ector, and 

  } is the acceleration vector. Assuming a harmonic motion for the displacement 
 

{x} { }ei tu         (2) 
 

the equation of motion becomes a generalized eigenvalue problem as: 
 

([K] ( ²)[M]){ }={0}u      (3) 
 

or: 
 

[K]{ } = ( ²)[M]{ },u u       (4) 

 

where ω is the set of circular natural frequencies of the system and {u} is the set of their corresponding 

mode shapes. 
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3. Review of Dynamic System with Independent Interval Stiffness Uncertainties 

 

Considering a dynamic system with independent interval uncertainty in material properties, the interval 

eigenvalue problem is: 
 

2( ([l ,u ])[K ]){ } = ( )[M]{ }i i i u u      (5) 
 

where, [li, ui] are the element interval of uncertainty, [K ]i is the deterministic contribution of the element 

stiffness matrix to the global structural stiffness, and  ² are the interval natural circular frequencies. 

For this system, it is proven that the solutions of two deterministic problems are sufficient to bound all 

natural frequencies (Modares et al., 2006): 
 

    
2( (u )[K ]){ }=( )[M]{ }i i maxu u       (6) 

 

    
2( (l )[K ]){ }=( )[M]{ }i i minu u       (7) 

 

 

 

4. Problem Statement 

 

In this work, a method for finite-element-based dynamic analysis of a system with independent uncertainty 

in the stiffness of each member defined by p-boxes is developed. The steps for the developed method are 

described in the next sections. 

 

4.1  P-BOX QUANTIFICATION OF INPUT UNCERTAINTY 

 

Let ( )iF x
 
and ( )iF x

 
represent the upper and lower bounds of the CDF of the stiffness for member i, 

respectively. Thus, (x)iF
 
and (x)iF

 
are the bounding functions for the p-box describing the stiffness of 

every member i (Figure 1). 

 

 
Figure 1. A general p-box. 

 

A p-box can be discretized into z intervals, each with equal probability mass of 1/z. It is worth noting 

that by conducting this transformation, it is assumed all uncertainty exists in the value of the stiffness and 

not in the cumulative probability value. Let ]1,0[
 
represent the value of the CDF functions (x )i LF

 
and 

(x )UiF . The discretization is done by selecting values of (x )i LF
 
corresponding to zq /)1( 

 
and 
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selecting values of (x )UiF
 
corresponding to zq /

 
for every member i for zq  ,…2, 1, . 

This may be expressed using the inverse functions 
1

iF


 and 
1

iF


as: 
 

1 1
x = ,iiqL

q
F

z

  
 
 

       (8) 

 

1
.x =iqU i

q
F

z

  
 
 

        (9) 

 

These bounds can be combined for each value of q and written in interval form for member i as: 
 

x =[x , x ]iq iqL iqU                 (10) 
 

with each iqx~ having a probability mass of (1/z) for Ni  ,… 2, 1,= , where N is the number of members in the 

system.  

One issue with this discretization process is that when evaluating   
1

0 1iF q


 , many common 

distributions produce infinite tails. This problem also exists when evaluating   1
1iF q z


 . Therefore, the 

tails must be truncated. Ferson et al. (2003) details the effects of truncating infinite tails and concluded that 

while the decision of where to truncate can have an effect on analysis, it is generally so small that it is 

negligible compared with the magnitude of the p-box or compared to the effect of discretizing the p-box 

even when z is sufficiently large. Thus, the infinite tails of (x )i LF
 
and (x )UiF

 
are truncated at  

 
and 

(1 )   , respectively, where (1/ )z  . Thus, for (x )i LF
 
and (x )UiF

 
with infinite tails: 

 

1

1x = ( )ii L F 


                  (11) 
 

1
x = (1 )izU iF 


                 (12) 

 

4.2   P-BOX BASED FREQUENCY ANALYSIS 

 

The monotonicity concept for natural frequencies proven by Modares et al. (2006) is used for bounding 

each p-box based eigenvalue problem (Eqs. (6) & (7)) as follows: 
 

1 2

2
1( ) 1 2( ) 2 ( )(x [K ] x [K ] x [K ]){ }=( )[M]{ }

Nq U q U N q U N Uu u                 (13) 
 

1 2

2
1( ) 1 2( ) 2 ( )(x [K ] x [K ] x [K ]){ }=( )[M]{ }q L q L N q L N L

N
u u                 (14) 

 

where iq  are independently defined as possibilities of discretization levels for element i: [1, 2,…, ]iq z . 

The results are arranged and condensed back down to z values for each L  
and U  

following procedure 

for such condensation outlined by Williamson and Downs (1990). These z intervals are then used to 

construct p-boxes for each natural frequency.  
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5. Numerical Example 

 

The numerical example obtains the natural circular frequencies of a 2D three-element truss with 3 active 

degrees of freedom, with independent uncertainty in the modulus of elasticity of each member. The 

uncertainty in each member is represented by a p-box, with lower and upper bounds following normal 

distribution with given properties: 

 
 

Figure 2. 2D truss system 

 

The structure’s properties are as follows: 
 

E1: [.95,  1.05] E   , .0194 E    

E2: [.85,  1.15] E   , .0582 E    

E3: [.90,  1.10] E   , .0388 E    
 

The infinite tails are truncated at CDF levels of   and 1  , where 005. . Figures 3a, 3b, and 3c depict 

the p-boxes as defined above for each modulus of elasticity. 

 

 
 

Figure 3a, 3b, & 3c. P-boxes E1, E2, & E3, respectively. 
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5.1   SOLUTION USING DEVELOPED METHOD 

 

The above three p-boxes are discretized into ten intervals. The results are given in the Table I in the form of 

the interval of Eq. (10). 

 
Table I. Coordinates for the discretized p-boxes of E1, E2, and E3. 

 1/E  2/E  3/E 

x1qL

 

x1qR

 

x2qL

 

x2qR

 

x3qL

 

x3qR

 0.9000 1.0251 0.7001 1.0754 0.8001 1.0503 

0.9251 1.0337 0.7754 1.1010 0.8503 1.0673 

0.9337 1.0398 0.8010 1.1195 0.8673 1.0797 

0.9398 1.0451 0.8195 1.1353 0.8797 1.0902 

0.9451 1.0500 0.8353 1.1500 0.8902 1.1000 

0.9500 1.0549 0.8500 1.1647 0.9000 1.1098 

0.9549 1.0602 0.8647 1.1805 0.9098 1.1203 

0.9602 1.0663 0.8805 1.1990 0.9203 1.1327 

0.9663 1.0749 0.8990 1.2246 0.9327 1.1497 

0.9749 1.1000 0.9246 1.2999 0.9497 1.1999 

 

 
Figures 4a, 4b, and 4c show the discretized p-boxes for each modulus of elasticity. 

 

 
 

Figure 4a, 4b, & 4c. Discretized p-box for E1, E2, & E3, respectively. 
 

 

Using Eqs. (13) and (14), lower and upper bounds on each natural frequency of the system are obtained, 

and the data is condensed to z intervals. Results are given in Table II and depicted in Figures 5a, 5b, and 5c. 
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Table II.  Condensed p-box coordinates for all natural frequencies of the system 

ω1q·L/√(E/ρ)

 

ω2q·L/√(E/ρ)

 

ω3q·L/√(E/ρ)

 
ω1qL·L/√(E/ρ)

 

ω1qU·L/√(E/ρ)

 

ω2qL·L/√(E/ρ)

 

ω2qU·L/√(E/ρ)

 

ω3qL·L/√(E/ρ)

 

ω3qU·L/√(E/ρ)

 
0.5661 0.6620 0.8911 1.0345 1.2189 1.4091 

0.5845 0.6646 0.9138 1.0395 1.2542 1.4157 

0.5915 0.6666 0.9286 1.0437 1.2672 1.4205 

0.5957 0.6684 0.9352 1.0474 1.2743 1.4251 

0.5986 0.6702 0.9399 1.0510 1.2796 1.4297 

0.6011 0.6720 0.9445 1.0545 1.2846 1.4342 

0.6035 0.6742 0.9488 1.0589 1.2891 1.4394 

0.6059 0.6767 0.9535 1.0638 1.2937 1.4463 

0.6084 0.6804 0.9577 1.0750 1.2990 1.4579 

0.6117 0.6964 0.9639 1.0935 1.3056 1.4896 

 

 

 
 

Figure 5a,5b, & 5c. Condensed p-boxes for ω1, ω2, & ω3, respectively. 

 

 

5.2   ALTERNATE SOLUTION USING INTERVAL MONTE-CARLO SIMULATION 

 

Alternatively, the problem is solved using 
410  interval Monte-Carlo simulation. One Monte-Carlo 

simulation is completed by randomly selecting a CDF value for each member in the system, where the CDF 

is bounded by the interval [ ,  1 ]  , or [.005, .995]. This CDF value is then used for its corresponding 

lower and upper values of the modulus of elasticity for each member as: 
 

1
L LE = ( )i i i iCDF     

 

1
U UE = ( )i i i iCDF     

 

where 
1
 is the quantile function. The bounding values are used in Eqs. (13) and (14) to solve for the 
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lower and upper natural frequencies. The results for lower and upper natural frequencies are sorted and 

condensed to ten discretizations. The results are summarized below in Table III. 

 

Table III. Condensed p-box coordinates from Monte-Carlo simulation for all natural frequencies 

ω1MC·L/√(E/ρ)

 

ω2MC·L/√(E/ρ)

 

ω3MC·L/√(E/ρ)

 
ω1LMC·L/√(E/ρ)

 

ω1UMC·L/√(E/ρ)

 

ω2LMC·L/√(E/ρ)

 

ω2UMC·L/√(E/ρ)

 

ω3LMC·L/√(E/ρ)

 

ω3UMC·L/√(E/ρ)

 
0.5719 0.6595 0.8969 1.0299 1.2303 1.4035 

0.5923 0.6623 0.9262 1.0361 1.2668 1.4107 

0.5962 0.6644 0.9335 1.0409 1.2745 1.4163 

0.5990 0.6663 0.9391 1.0447 1.2802 1.4208 

0.6015 0.6680 0.9437 1.0484 1.2850 1.4249 

0.6038 0.6697 0.9482 1.0517 1.2894 1.4293 

0.6060 0.6715 0.9521 1.0555 1.2938 1.4335 

0.6083 0.6736 0.9566 1.0597 1.2984 1.4388 

0.6110 0.6765 0.9617 1.0655 1.3040 1.4461 

0.6145 0.6902 0.9687 1.0885 1.3118 1.4777 

 

 

Figures 6a, 6b, and 6c show the results from both the developed method (solid lines) and the Monte-

Carlo simulation (dashed lines). As observed, the bounds on natural frequency from Monte-Carlo 

simulation are inner-bounds of the developed method.  

 

 
 

Figure 6a,6b, & 6c. Condensed p-boxes for ω1, ω2, & ω3, respectively, with Monte-Carlo results represented by dashed lines. 
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6. Conclusion 

 

A new method for dynamic analysis of structures with uncertain properties defined by independent p-boxes 

is developed. The developed method allows for uncertainty in the stiffness matrix, but can be shown to 

handle uncertainty in the mass matrix under the same framework. The developed method also allows for an 

uncertain dynamic analysis, yielding best-possible, discrete p-boxes for all natural frequencies of the 

dynamic system. The results obtained by this method are upperbounds of the results obtained by interval 

Monte-Carlo simulation procedures. 
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Abstract: General probabilistic methods for reliability assessment allow uncertainties in the planning, 

measurement, implementation and maintenance of new and existing reinforced concrete bridges to be taken 

into consideration. The implementation of probabilistic verification procedures permitted in recognised 

standards for assessing the reliability of existing reinforced concrete structures has so far only had limited 

application and needs to be optimised accordingly. The objective of this paper is to present and discuss a 

method of adapting partial safety coefficients based on recorded stochastic models representing the 

properties of existing and new structures and a possible reduction in reliability level. The method will be 

demonstrated on a typical three-span slab bridge used by Austrian Federal Railways. 
 

Keywords: Shear capacity, Existing Concrete structures; Partial Safety factors 

 

 

 

1. Introduction 

 

Due to the constant increase in traffic, the re-calculation of existing structures plays a more and more 

important role in civil engineering design work. 

One method for the efficient assessment of existing bridges, which has a high level of flexibility 

regarding the variable requirements of structures, is the probabilistic / reliability based method, which is 

becoming available in the new European design standards for engineering. However, they only have limited 

acceptance due to the additional measurements and tests needed for calculations and the definition of 

responsibility regarding residual risk. The objective of this paper is therefore (a) to demonstrate the efficient 

assessment of existing reinforced steel structures using a methodical procedure for probabilistic analysis; 

especially regarding the verification of shear capacities of reinforced concrete, (b) to explain the rules in the 

standard regulations and the opportunities to adapt the reliability level in relation to the remaining service 

life, and (c) to discuss a method of adapting partial safety coefficients of the semi-probabilistic verification 

procedure based on measured and specified stochastic models and the required reliability level (Strauss et 

al., 2008). For the design of special structures, naturally also nonlinear finite element analysis is applied and 

even called for in respective guidelines such as the upcoming German guideline for jointless bridges 

(Bundesministerium für Verkehr Bau und Stadtentwicklung 2011), which demands nonlinear design, if soil 

conditions and span length warrant it. Within this contribution linear design assumptions concerning the 

soil structure interaction of concrete frame bridges without expansion joints will be investigated. In 

particular, the linearity between temperature and structural expansion will be studied, as will be the linearity 

of the strain field in the soil body and pavement in the transition area between concrete bridge deck and soil 

dam. 
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2. Reliability of new and existing structures 

 

Austrian standard ÖNORM EN 1990 permits a division into three consequence classes (CC1, CC2 and 

CC3) for the determination of a required reliability level, see Table I columns 1 & 2. The levels are laid 

down for the objects currently being planned and are defined for the reference period of one year. 

 

Table I: Reliability index for planning new structures (JCSS, 2000; EN 1990, 2003) 

Consequence class (CC) 
Consequence 

on failure 

Reference period 1 year 

EN 1990 JCSS 

CC1 Low β = 4.2 β = 3.1–4.2 

CC2 Medium β = 4.7 β = 3.3–4.4 

CC3 High β = 5.2 β = 3.7–4.7 

 

 

In addition to defining the consequence class, the "Probabilistic Model Code" of the Joint Committee on 

Structural Safety also differentiates costs incurred through the definition of the reliability index. This is 

shown in Table I column 4, specified as the range of β. 

The assessment of existing bridges can normally be performed using probabilistic analysis (Strauss, 

2008). These analysis methods allow information to be taken into account that has been recorded from the 

existing structures after many years, or even decades, of service and enable a shortened planned service life 

to be taken into account. A shortened remaining service life or a shortened observation period is a 

persuasive argument for a reduction of the maximum values for changing influences originally applied to 

the reference period (wind force, snow load, etc.) (Petschacher, 2010). 

 

 

 

3. Reliability assessment of existing structures 

 

Assessments of the safe capacity and usability of existing structures generally lead to the following results: 
 

 Values below a minimum reliability level β  βl (l = low) regarding safe capacity and usability. 

 Values below a critical threshold of the reliability level in safe capacity and usability βl  β  βr 

(r = repair). Traffic over the structures and use of the structure must be restricted. 

 There is no reduction in the defined reliability level regarding safe capacity or usability β  βr. 
 

Limit specifications for the above mentioned reliability level are documented for new structures in Austrian 

standard ÖNORM EN 1990. For existing structures the reliability thresholds βl and βr are to be established 

based on safety-relevant and economic factors. The JCSS Model Code includes such recommendations; see 

Table I, column 4. The following suggestions are made for consequence class CC2, for example: 
 

βr ≥ 4.2   and   βl ≥ 3.3   for the reference period of one year   (1) 
 

An alternative definition of the upper and lower threshold of the reliability indices βl and βr according to 

Steenbergen et al. (2011) is: 
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βl = β – 1.5      (2) 
 

βr = β – 0.5      (3) 

 

 

 

4. Shear force verification for existing structures 

 

The design and dimensioning of new structures in line with specifications stipulated by European standards 

(ÖNORM EN 1992-2, 2007) involves the semi-probabilistic safety concept. This calculation method is 

based on partial safety factors in relation to influences and resistances, which have been calibrated 

according to probabilistic observations (Rackwitz, 2006). As mentioned in the introduction, applying the 

European standard specifications and the related partial safety concepts guarantees a reliability index in 

structural safety of β ≥ 3.8 for a reference period of 50 years and a probability of failure of pf = 10-6 for a 

reference period of one year. The objective of the following observations is the verification of the 

probabilistic-based concept mentioned in the introduction to adapt partial safety factors for existing 

structures taking into consideration the βr and βl reliability level (Moser et al., 2010). The shear resistance is 

characterised by three threshold observations that have partial interdependence in the described dimensions. 

This section deals with the limit thresholds that depend on shear force reinforcement. For the other two 

thresholds, refer to Moser et al. (2010). The measurement value of the reinforcement-specific shear force 

resistance at design level according to ÖNORM EN 1992-2 (2007) is: 
 

      
   

 
                            (4) 

 

where Asw = surface of the shear force reinforcement, s = mean value of distance between the stirrups, 

z = mean value of the inside cantilever (0.9d), fywd = rated value of the yield point of the shear 

reinforcement,  = mean value of the angle of the concrete pressure strut (in accordance with ÖNORM B 

1992-2 (2008) 31 ≤  ≤ 45), α = mean value of the angle of the lateral reinforcement. 

A probabilistic observation of shear force verification for existing structures generally allows a more 

flexible approach to existing uncertainties. If probabilistic analysis is limited to the loading of the structure 

itself g1, g2 and vertical traffic loading (ÖNORM EN 1991-2, 2004) the limit condition function works like 

this: 
 

  = ΘR  R – (ΘG  G + ΘQ  Q)     (5) 
 

Where R = resistance, ΘR = model fuzzy resistance, G = body weight, ΘG = model fuzzy own weight, 

Q = change in load, and ΘQ = model fuzzy change in load. The base variables of Eq (5) are described by 

their mean value μ, their standard deviation σ and their probability type. The effect/load models in the form 

of probability density functions (PDFs) that are contained within the limit condition function Eq. (5) can, in 

part, be deduced from standard-specific nominal value specifications. For railway load model 71 referred to 

in the following, the estimation of the mean value assumes the standard-specific nominal value of the load 

as a fractile value of 95%. The assumption of the distribution CoV = 0.10 and 0.20, for example, leads to 

the mean value of the railway load model 71 shown in Table II. 
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Table II: Mean values of railway load model 71 assuming the standard-

specific nominal value of the load as a fractile value of 95% 

Variation coefficient 
Mean value of 

concentrated load P 

Mean value of 

distributed load p 

0.10 214.59 kN 68.67 kN/m 

0.20 187.97 kN 37.59 kN/m 

 

 

4.1 INVERSE DETERMINATION OF PARTIAL SAFETY FACTORS 

 

Observing the measurement model and at the same time the limit condition functions, as shown in Figure 1 

is the basis for inverse determination of partial safety factors of the resistance and the effects. These are 

deduced in the following steps: 
 

 Development of the probabilistic limit condition function from the measurement model 

 Description of a starting dimension (e.g. geometric size) of the measurement model as a function of the 

partial safety coefficient and the sought after dimension of the measurement model. 

 Formulation of the probabilistic limit condition function depending on the partial safety factors – 

substitution of the distributed starting dimensions due to its formulation based on partial safety factors. 

 Definition of a target reliability index of the observed limit condition function 

 Iterative adjustment of the partial safety coefficient through to fulfilment of the target reliability 

specification 

 Final semi–probabilistic verification with the updated partial safety coefficients. 
 

This procedure is applied later on for determining the partial safety factors in connection with the shear 

capacity of existing reinforced concrete bridges. 

The following equation can be deduced from the maximum shear force resistance in equation (4): 
 

   

 
   

     

  
                                      (6) 

 

and with: 
 

     
   

 
                           (7) 

 

formula (6) can be simplified in the following way: 
 

       
 

  
                      (8) 

 

Through conversion we arrive at the inside cantilever as a function of the effect of the partial safety factor γs 

and the expression τyk: 
 

                    
  

    
     (9) 

 

The probabilistic limit condition function   (VR,S) of the shear force resistance of the shear reinforcement is 

thus: 
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                                  (10) 

 

with: 
 

   
   

 
                         (11) 

 

The variables fyw and s are distributed, while surface Asw and the angles α and θ are deterministic 

dimensions. The limit condition function   (VR,S) is a result of applying equation (9) to equation (10). 
 

                                 
  

    
                (12) 

 

 

 

5. Case Study: Ringstraßenbridge in Krems 

 

The design of the bridge took place based on the standards valid at the time (ÖNORM B4000-2, 1952; 

ÖNORM B4003-1, 1956; ÖNORM B4200-4, 1957). The historical verification procedure for the shear 

force resistance resulted in a fraction of the dimensions required according to the current standards and 

directives. This is generally a problem that applies to the assessment of existing railway bridges in the 

critical sectors of supports and pillars.  

Table III shows the parameters and related stochastic model for determining the shear force resistance 

of the Kremser Ringstraßenbrücke which contribute directly or indirectly to the iterative adaptation of the 

partial safety factors. 

 

5.1 ITERATIVE DETERMINATION OF PARTIAL SAFETY FACTORS 

 

Formula (12) derived above serves as the basis for iterative determination of the partial safety factors. The 

following assessments are based on an assumed CoVVQ of the variable effect of 0.10 and 0.20. For the 

iterative determination of the partial safety coefficient, the static software program FReET (Novák et al., 

2005) was used to define the limit condition functions, and, with the help of an expanded MonteCarlo 

method, the Latin Hyper Cube Sampling Method (Novák et al., 1997), it was possible to determine the 

reliability level for every step of iteration. 
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Figure 1. Ringstraßenbridge longitudinal section of bridge axis 

 

 
Table III: Stochastic model for determining the partial safety coefficient of the lateral force resistance 

of the stress reinforcement of the Kremser Ringstraßenbridge 

Characteristics PDF μ CoV Ref. 

Model correction values 

Effect LN 1 0.10 Braml, 2010 

Resistance LN 1.1 0.10 Braml, 2010 

Reinforcement     

Yield strength fy [MPa] N 436 0.05  

Stress reinforcement Asw [m²/m] Det. 5.24e-4   

Bow distance s [m] N 0.45 0.067  

Effect     

Lateral force due to structure VG [kN/m] N 30.84 0.05  

Lateral force due to payload VQ [kN/m] N 44.90 0.1  

Geometry     

Width [m] Det. 1.0   

Θ [rad] Det. 0.54   

α [rad] Det. 0.78   

 

 

Table IV: Required partial safety coefficients γG,cal and γQ,cal for the limit condition   (VR,s) and the 

target reliability level β = 4.30; βr = 3.80 and βl = 2.90; with γs = 1.15 and CoVVQ = 0.10 (0.20) 

βerf 
Reference 

period 

Partial safety factor of the effect 
βcal γG,cal = η γG γQ,cal = η γQ 

4.30 6 1.55 1.67 ≈ 4.26 (4.38) 

3.80 6 1.35 1.45 ≈ 3.72 (3.84) 

2.90 6 1.08  1.16 ≈ 2.83 (3.00) 
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The determination of the required partial safety factor for a specified minimum reliability level (e.g. 

specified in the reliability index β) took place using simultaneous change to the partial safety factors γG and 

γQ using calibration factor η. The partial safety factor of the resistance γs was kept constant. The minimum 

reliability level for a reference period of 6 years was defined as follows (Moser et al., 2010): 
 

    β = 4.30,  βr = 3.80,  βl = 2.90. 
 

This minimum reliability level produces partial safety factors shown in Table IV for a distribution in the 

effect model of CoVVQ = 0.10 and CoVVQ = 0.20. As a result, verification with γG,cal = 1.08, γQ,cal = 1.16 

means that limited operation of the bridge is possible. 

 

 

 

6. Results 

 

A reliability index of β ≈ 3.8 was determined for the limit condition   (VR,s) using the partial safety factors 

specified according to ÖNOMR EN 1992-2 and ÖNORM EN 1990 which corresponds with the reliability 

index defined in ÖNORM EN 1990 for an observation period of 50 years. 

Figure 2 shows the development of the calibration factor η for the partial safety factors γG and γQ 

compared with the required reliability level of β for a variation coefficient of the effect side of CoV = 0.10 

and 0.20. 

 

Example: The target reliability level β = 3.8 for a planned service life of 50 years yields βl = 2.8 for a 

residual service life of 12 years. For this β Figure 2 shows the calibration factor η = 0.82 for the limit 

condition   (VR,S) and thus γG,cal = 0.82 · 1.35 = 1.11 and γQ,cal = 0.82 · 1.45 = 1.19. The partial safety factors 

on the resistance side are kept as constants for this observation. 

 

 
Figure 2. Development of the reliability index β as a function of calibration factor η for the partial safety factors γG and γQ 
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7. Summary 

 

This article deals with engineering calculations of the shear capacity of existing reinforced concrete 

structures. Using the approach of inverse probabilistic calculation, we have presented a method for adapting 

the partial safety factors of the semi-probabilistic partial safety concept for a desired reliability level. The 

practical application of the method was demonstrated using an existing bridge, where during this 

optimisation and adaptation of the partial safety factors the effect side and resistance side were treated as 

variable dimensions. An extension of this method opens up the possibility of multiple simultaneous 

optimisations/adaptations in the form of Pareto-optimisation of the partial safety factors. Due to the 

calibration of the partial safety factors the semi-probabilistic verification routines specified in the standards 

and currently applied in practice can be kept so that there is no need to dispense with the opportunity to 

reduce the reliability index. 
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Variance-based sensitivity analysis
in the presence of correlated input variables

Thomas Most
Dynardo – Dynamic Software and Engineering GmbH, Weimar, Germany
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Abstract. In this paper we propose an extension of the classical Sobol’ estimator for the estimation of vari-
ance based sensitivity indices. The approach assumes a linear correlation model between the input variables
which is used to decompose the contribution of an input variable into a correlated and an uncorrelated part.
This method provides sampling matrices following the original joint probability distribution which are used
directly to compute the model output without any assumptions or approximations of the model response
function.

Keywords: Sobol’ indices, sensitivity analysis, correlation, regression

1. Introduction

In the assessment of computational engineering models sensitivity analysis has played an increasing role
during the last two decades. For probabilistic models variance based sensitivity methods are very common.
Based on the work of Sobol’ (Sobol’1993) first order indices have been extended to total indices capturing
higher order coupling effects between the input variables (Homma and Saltelli1996). Based on this early
work a large number of extensions and improvements have been developed. A precise overview of existing
variance based methods and their background is given in (Saltelli et al.2008). As stated in (Saltelli et al.2010)
the total effect sensitivity index has become a prestigious measure to quantify higher order effects of input
variables which is necessary for model simplification by variable fixing. However, the basic formulation
of the variance decomposition and the common estimation procedures require so far independent input
variables.

In practical applications often input variables are correlated, therefore, an increased interest in extend-
ing the classical methods for correlated inputs is marked in the recent years. In several investigations,
assumptions about the model output or approximations up to a certain degree are necessary (Oakley and
O’Hagan2004), (Xu and Gertner2008), (DaVeiga et al.2009). Complete model independent approaches for
the estimation of total effect indices are not available so far. In (Jacques et al.2006) classical estimators have
been used by grouping the correlated inputs which results in independent groups of parameters. However,
even this approach is not useful for more complex models where almost all variables are coupled with each
other.

In this paper we propose an extension of the classical Sobol’ estimator. The basics of this method have
been developed in (Most et al.2010), where a variable decomposition similar to (Xu and Gertner2008) was
realized. The general idea has been adapted in (Mara and Tarantola2012) for normally distributed random
variables. In our approach we assume a linear correlation model between the input variables, which is used
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to decompose the samples into a correlated and an uncorrelated part with respect to a certain variable.
This was realized in (Mara and Tarantola2012) by an orthogonalization schemes which may lead to non-
unique solution depending on the variable order. In our approach we decompose the contribution of the
input variables directly by using the correlation information of the standard normal space. This decompo-
sition results in a unique solution. For non-normal distributions the Nataf model (Nataf1962) is applied to
transform the original space and the correlation information to the standard normal space. The proposed
method finally provides modified sampling matrices following the original joint probability distribution
while keeping the samples of a certain variable unchanged. These samples are used directly to compute
the model output without any assumptions or approximations of the model response function which makes
the proposed method model independent. Additionally, reduced polynomial models are presented which are
used to estimate the variance contribution of single variables.

Alternatively to the decomposition approach, in (Most et al.2010) a reordering approach has been pro-
posed. In this method the investigated variable has been taken as the first one in the variables set for
the Cholesky decomposition in the standard normal space. With this approach the samples required for
the estimation of the sensitivity indices can be directly determined. This method has been adapted in
(Kucherenko et al.2012). In our paper we do not discuss this approach, since the implementation is much
more complicated compared to the decomposition approach.

2. Variance based sensitivity analysis

2.1. FIRST ORDER AND TOTAL EFFECT SENSITIVITY INDICES

Assuming a model with a scalar output Y as a function of a given set of m random input parameters Xi

Y = f(X1, X2, . . . , Xm), (1)

the first order sensitivity measure was introduced as (Sobol’1993)

Si =
VXi(EX∼i(Y |Xi))

V (Y )
, (2)

where V (Y ) is the unconditional variance of the model output and VXi(EX∼i(Y |Xi)) is named the variance
of conditional expectation with X∼i denoting the matrix of all factors but Xi. VXi(EX∼i(Y |Xi)) measures
the first order effect of Xi on the model output.

Since first order sensitivity indices measure only the decoupled influence of each variable an extension
for higher order coupling terms is necessary. For this purpose total effect sensitivity indices have been
introduced (Homma and Saltelli1996)

STi = 1− VX∼i(EXi(Y |X∼i))
V (Y )

, (3)

where VX∼i(EXi(Y |X∼i)) measures the first order effect of X∼i on the model output which does not
contain any effect corresponding to Xi.
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2.2. SAMPLING BASED ESTIMATES

One of the most simple procedures to estimate the first order indices is to sample a set of n samples of the
input parameter set X = [X1, X2, . . . , Xm] according to their joint probability distribution and compute for
each sample xj the model output yj . A scatter plot is obtained if the model output values are plotted against
the values of a single variable as shown in Figure 1. Then the sample values are sorted according to a single
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Figure 1. Scatter plot of a single input variable with the model output including subset averages of sorted sample subsets

input variable Xi and subdivided in a number of subsets. For each subset the average value is computed
which is equivalent to EX∼i(Y |Xi). By calculating the variance of the subset averages, an estimate of
VXi(EX∼i(Y |Xi)) is obtained, which can directly be used to estimate the first order sensitivity index. This
procedure has the advantage that it gives suitable estimates for independent and dependent input parameters.
However, an extension for the total sensitivity indices does not exist so far since a sorting concerning X∼i

seems not possible.
In order to compute the first order and total sensitivity indices using sampling methods, a matrix combina-

tion approach is very common in sensitivity analysis. In this procedure two independent sampling matrices
A and B are generated according to the joint probability density function of the input parameters and
recombined in a matrix Ci, where Ci contains the entries of matrix B except the i-th column which is taken
from A. The estimates of the sensitivity indices can be obtained following (Saltelli et al.2008) as

Ŝi =
yA

TyCi − n(ȳA)2

yA
TyA − n(ȳA)2

, ŜTi = 1− yB
TyCi − n(ȳB)2

yB
TyB − n(ȳB)2

, (4)

where yA, yB and yCi are vectors containing the model outputs of the sampling matrices and ȳA and ȳB

are the corresponding mean value estimates. Instead of the estimators in Eq. (4) other approaches exist as
discussed in (Saltelli et al.2010). However all of these methods are based on the generation of the sampling
matrices A, B and Ci. Due to the combination of independent columns of A and B the matrices Ci follow
the joint probability density function of A and B only if the input variables are independent. In case of
dependent parameters Xk and Xl the k-th and l-th columns of the matrices Ck and Cl are independent due
to the independence of A and B. Correlations between Xi and the remaining variables are lost in Ci, see the
first two plots in Figure 2. For the correlated case only a grouping of the dependent parameters according to
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(Jacques et al.2006) would lead to equivalent probability density functions, but this would limit the method
to special cases where the grouping is possible.

-4
-3
-2
-1
0
1
2
3
4

-4 -3 -2 -1 0 1 2 3 4

V
ar

ia
bl

e
X

2

Variable X1

Samples in B matrix

-4
-3
-2
-1
0
1
2
3
4

-4 -3 -2 -1 0 1 2 3 4

V
ar

ia
bl

e
X

2

Variable X1

Samples in C matrix

-4
-3
-2
-1
0
1
2
3
4

-4 -3 -2 -1 0 1 2 3 4

V
ar

ia
bl

e
X

2

Variable X1

Samples in C̃ matrix

Figure 2. Original and modified joint probability distributions of two correlated variables using the original and the extended matrix
combination approach

2.3. REGRESSION BASED ESTIMATES

In order to decrease the numerical effort of a probabilistic analysis often surrogate models are used to
approximate the model output instead of evaluating the real sophisticated model. For this purpose, the model
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output is replaced mainly by a continuous function, which can be evaluated quite fast compared to a real
model call. A very common method is polynomial regression, where the model response Y is generally
approximated by a polynomial basis function

pT
X(x) =

[
1 x1 x2 x3 . . . x2

1 x2
2 x2

3 . . . x1x2 x1x3 . . . x2x3 . . .
]

(5)

of linear or quadratic order with or without linear coupling terms. The model output yj for a given sample
xj of the input parameters X can be formulated as the sum of the approximated value ŷj and an error term
εj

y(xj) = ŷj(xj) + εj = pT
X(xj)βY + εj , (6)

where βY is a vector containing the unknown regression coefficients. These coefficients are generally esti-
mated from a given set of sampled support points by assuming independent errors with equal variance at each
point. By using a matrix notation the resulting least squares solution reads (Myers and Montgomery2002)

β̂Y = (PT
XPX)−1PT

Xy, (7)

where PX is a matrix containing the basis polynomials of the support point samples.
In order to verify the approximation model the coefficient of determination is often used

R2 = 1−
∑n

j=1(yj − ŷj)2∑n
j=1(yj − ȳ)2

, ȳ =
n∑

j=1

yj . (8)

Generally, R2 is interpreted as the fraction of the variance of the true model represented by the approxima-
tion model. This can be used to estimate total sensitivity indices based on the multivariate regression model
(Bucher2009)

ŜR
Ti

= R2
X −R2

X∼i
, (9)

where R2
X is obtained using the full parameter set to build up the regression model and R2

X∼i
is estimated

for a regression model with a reduced parameter set X∼i.
First order sensitivity indices can be estimated by using only these polynomial basis terms which be-

long to the investigated variable Xi. The resulting one-dimensional coefficient of determination is a direct
estimate of first order indices

ŜR
i = R2

Xi
. (10)

3. Correlated input variables

3.1. REPRESENTATION OF NON-NORMAL JOINT DISTRIBUTION FUNCTIONS

In probabilistic models the dependency between input variables is often modeled by a linear correlation
model based on the Pearson correlation coefficient representing pairwise linear correlations

ρ(Xi, Xj) =
E[(Xi − X̄i)(Xj − X̄j)]√

V (Xi)V (Xj)
, (11)
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with the mean values X̄i and X̄j .
In our study the Nataf model (Nataf1962) is used to generate multivariate joint distribution function of

non-normally distributed random variables. In this model the marginal distributions of the individual random
variables are transformed to standard normal densities

Zi = TXi(Xi), (12)

and the resulting multivariate distribution is assumed to be jointly normal

fZ(z) =
1√

(2π)m|CZZ|
exp

[
−1

2
zTC−1

ZZz
]
, (13)

where m is the number and CZZ is the covariance matrix of the random variables which contains in case
of standard normal variables the correlation coefficients Cij = ρ(Zi, Zj). If the correlation coefficients are
given in the standard normal space, the correlation coefficients in the original space can be obtained as
follows

ρ(Xi, Xj) =
∫ ∞

−∞

∫ ∞

−∞

xi − X̄i

σXi

xj − X̄j

σXj

fZiZj (zi, zj)dzidzj , (14)

where fZiZj (zi, zj) is a two-dimensional standard normal probability density function. Often the correlation
coefficients are given in the original space. In this case the correlation coefficients in the standard normal
space can be derived by solving Eq. (14) iteratively.

3.2. DECOMPOSITION OF INPUT VARIABLES

If input variables are correlated with each other, a single variable can be represented as the sum of a function
of the remaining inputs (correlated) and an independent (uncorrelated) part

Xi = f(X1, X2, . . . , Xi−1, Xi+1, . . . , Xm) + XU,X∼i
i = XC,X∼i

i + XU,X∼i
i . (15)

By using a linear correlation model, the correlated part of each input variable can be represented by a linear
combination of the remaining variable set X∼i

XC,X∼i
i = βXi,0 +

m∑
j=1,j 6=i

βXi,jXj . (16)

In case of standard normal and linearly correlated random variables Zi, the coefficients

ZC,Z∼i
i = βZi,0 +

m∑
j=1,j 6=i

βZi,jZj , (17)

can be directly determined from the correlation coefficients

βZi,0 = 0, βZi
= C−1

Z∼iZ∼i
ρZi

, (18)

where βZi
= [βZi,1, . . . , βZi,i−1, βZi,i+1, . . . , βZi,m] contains the coefficients belonging to Z∼i, CZ∼iZ∼i is

the correlations matrix of Z∼i and ρZi
= [ρ(Zi, Z1), . . . , ρ(Zi, Zi−1), ρ(Zi, Zi+1), . . . , ρ(Zi, Zm)] contains
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the correlation coefficients of Z∼i with respect to Zi. A derivation of Eq. (18), which is valid only in the
standard normal space, can be found in the appendix.

For a given set of discrete samples of the standard normal parameter set Z arranged in matrix M, the
uncorrelated parts of the jth column of M with respect Z∼i can be determined as follows

MU,Z∼i

(j) = M(j) −MC,Z∼i

(j) (19)

with

MC,Z∼i

(j=i) =
m∑

k=1,k 6=i

βZi,kM(k), MC,Z∼i

(j 6=i) = M(j). (20)

For later use the correlated and uncorrelated parts of a single random variable with respect to only one
other variable is introduced. The correlated part of Xj with respect to Xi can be formulated as follows

XC,Xi
j = βXi

Xj ,0 + βXi
Xj ,1Xi. (21)

In the standard normal space we obtain

ZC,Zi
j = βZi

Zj ,0 + βZi
Zj ,1Zi, βZi

Zj ,0 = 0, βZi
Zj ,i = ρ(Zi, Zj). (22)

For a given sampling matrix M the decomposition reads

MU,Zi

(j) = M(j) −MC,Zi

(j) = M(j) − ρ(Zi, Zj)M(i). (23)

In the second decomposition the corresponding ith column of MC,Zi is equal to M(i) and the values of the
ith column of MU,Xi vanish.

As discussed in (Saltelli et al.2004) the conditional variance VX∼i(EXi(Y |X∼i)) may decrease by in-
troducing dependence between Xi and X∼i. This may result in total effect indices smaller than first order
indices. Furthermore, if we use a linear correlation model and increase the absolute value of the correlation
coefficient between two input variables close to one, the total effect indices of both variables approach to
zero. For factor fixing this relation requires a step-wise fixing of a single factor and a revaluation of the
indices of the remaining variables. If only the sensitivity indices of the full model are used for factor fixing,
this may result in a mistaken removing of important variables. One possibility to overcome this, is to evaluate
the sensitivity indices on one side for the uncorrelated part of a single variable XU

i and on the other side
for this variable including all correlated portions of the other variables XC,Xi

j , j 6= i. This concept was
introduced for first order indices of linear models in (Xu and Gertner2008). In our study we introduce first
order indices SC

i and SU
i as well as total effect indices SC

Ti
and SU

Ti
for the correlated and uncorrelated parts

of a single variable Xi. Per definition SC
i is equivalent to the original first order index and SU

Ti
to the original

total effect index. The additional measures SU
i and especially SC

Ti
should give us additional information for

factor fixing without requiring a step-wise revaluation of the sensitivity indices.
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4. Estimation of sensitivity indices for correlated input variables

4.1. EXTENSION OF THE MATRIX COMBINATION APPROACH

In the original matrix combination approach presented in section 2.2 it is intended to modify a single input
variable Xi by a second random sampling set while keeping the other variables unchanged in order to add
or to remove the influence of Xi from the model.

In order to calculate the correlated first order and total effect indices, not only the samples of Xi itself,
but also all correlated parts of the remaining variables with respect to Xi have to be modified. By assuming
a linear correlation model in the standard normal space as presented in section 3.2, a decomposition of the
matrices A and B in an uncorrelated and correlated part with respect to Xi is performed. For this purpose
both matrices are transformed to the correlated standard normal space by the marginal transformations

Akl = Φ[F−1
Xl

(Akl)], Bkl = Φ[F−1
Xl

(Bkl)], (24)

where Φ(·) is cumulative distribution function of a standard normal random variable and F−1
Xl

(·) is the
inverse cumulative distribution function of Xl. By using the decomposition proposed in Eq. (23) we obtain
the columns of the correlated and uncorrelated sampling matrices as follows

AC,Zi

(j) = ρ(Zi, Zj)A(i), AU,Zi

(j) = A(j) −AC,Zi

(j) , (25)

BC,Zi

(j) = ρ(Zi, Zj)B(i), BU,Zi

(j) = B(j) −BC,Zi

(j) . (26)

Now a modified matrix C̃C
i can be obtained, which contains the uncorrelated part of B with respect to Zi

and the correlated part of A
C̃C

i = CC,Zi
i = BU,Zi + AC,Zi . (27)

Finally the entries of matrix C̃C
i are transformed to the original space by the individual marginal transfor-

mations
C̃C

i,kl = FXl
[Φ−1(C̃C

i,kl)]. (28)

Since the correlated part with respect to Xi is modified simultaneously for all variables, C̃C
i follows the

original joint probability distribution of X as shown in Figure 2.
In order to obtain the uncorrelated first order and total effect indices we use the decomposition with

respect to X∼i. For this purpose the matrices A and B are decomposed following Eq. (19)

AU,Z∼i

(j) = A(j) −AC,Z∼i

(j) , AC,Z∼i

(j=i) =
m∑

k=1,k 6=i

βZi,kA(k), AC,Z∼i

(j 6=i) = A(j), (29)

BU,Z∼i

(j) = B(j) −BC,Z∼i

(j) , BC,Z∼i

(j=i) =
m∑

k=1,k 6=i

βZi,kB(k), BC,Z∼i

(j 6=i) = B(j). (30)

The resulting C̃U
i contains the uncorrelated part of Zi from matrix A and the correlated part with respect to

Z∼i from matrix B
C̃U

i = CU,Z∼i
i = AU,Z∼i + BC,Z∼i . (31)
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Analogous to the correlated part, C̃U
i is obtained by transforming the entries of C̃U

i back to the origin space.

4.2. EXTENSION FOR REGRESSION BASED INDICES

The regression based indices presented in section 2.3 can be directly applied for correlated input variables.
However, the one-dimensional coefficient of determination is an estimate of the first order index of a single
variable including all correlated parts of the other variables. Using a matrix Z containing the support points
of the regression in the standard normal space, the first order index reads

ŜR,C
i = R2

Z,Zi
. (32)

The estimate for the total effect index given in Eq. (9) quantifies the total variance contribution of the
uncorrelated part ZU

i of variable Zi

ŜR,U
Ti

= R2
Z,Z −R2

Z,Z∼i
. (33)

The correlated part of Zi can be represented by the other variables and thus the explained variation of the
reduced model is decreased by the contribution of ZU

i only. The total effect of the variable Zi including
all correlated parts of the other variables can be estimated analogously to the matrix combination approach:
The sampling matrix Z is decomposed in a correlated and uncorrelated part with respect to Zi according to
Eq. (31). Then the uncorrelated part of the samples ZU,Zi is used for the reduced model within the estimate
of the total effect index

ŜR,C
Ti

= R2
Z,Z −R2

ZU,Zi ,Z∼i
. (34)

In order to estimate the first order index of the uncorrelated part of the variable Zi with respect to all
other variables, Eq. (19) is used to calculate the uncorrelated part of ith column of the sample matrix Z and
the corresponding first order sensitivity index is obtained

ŜR,U
i = R2

ZU,Z∼i ,Zi
. (35)

With the four measures ŜR,U
i , ŜR,C

i , ŜR,U
Ti

and ŜR,C
Ti

regression based sensitivity indices are introduced,
which give similar results as the model independent measures proposed in section 4.1, but only if the
regression model can represent the underlying investigated model. If this is not the case, e.g. if complex
nonlinearities and interactions describe the model response Y in terms of the input variables X, the poly-
nomial based measures quantify only the contribution which is represented by the basis function. The total
contribution of higher order and unexplained dependencies, which are not represented by the regression
model, can be estimated using the full regression basis

ŜUnexplained
Ti

= 1−R2
Z,Z. (36)

Since the introduced sensitivity measures investigate the influence of a single variable including all
correlated parts of the other variables, it can not be distinguished, if the influence of this variable is caused
by its contribution within the model or if it is caused by its correlation with other important variables. This
fact shall be clarified by a simple example: A purely additive model with three inputs is given

Y = β0 + β1X1 + β2X2 + β3X3. (37)
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The input variables are normally distributed, have zero mean and the covariance

Γ =

 σ2
X1

0 0
0 σ2

X2
ρσX2σX3

0 ρσX2σX3 σ2
X3

 , (38)

where ρ is the linear correlation between X2 and X3.
The first order and total effect indices of this problem can be derived analytically as follows: X3 can be

formulated with respect to X2 and vice versa as

X3 = ρ
σX3
σX2

X2 +
√

1− ρ2XU
3 ,

X2 = ρ
σX2
σX3

X3 +
√

1− ρ2XU
2 , (39)

with XU
2 and XU

3 having the same variances as X2 and X3, respectively. Since X2 and XU
3 as well as X3

and XU
2 are independent, we can calculate the variance contribution of the inputs as follows

VXC
1

(Y ) = VXU
1

(Y ) = β2
1σ2

X1
,

VXC
2

(Y ) = (β2σX2 + ρβ3σX3)
2,

VXU
2

(Y ) = (1− ρ2)β2
2σ2

X2
,

VXC
3

(Y ) = (β3σX3 + ρβ2σX2)
2,

VXU
3

(Y ) = (1− ρ2)β2
3σ2

X3
. (40)

With help of the total variance

V (Y ) = VX1(Y ) + VXC
2

(Y ) + VXU
3

(Y ) = VX1(Y ) + VXU
2

(Y ) + VXC
3

(Y ), (41)

the sensitivity indices can be determined

SC
i = SC

Ti
=

V C
Xi

(Y )
V (Y )

, SU
i = SU

Ti
=

V U
Xi

(Y )
V (Y )

. (42)

From Eq. (40) it follows, that the variance contribution of the uncorrelated parts of X2 and X3 vanish if
the correlation coefficient tends to one or minus one. On the other hand it can be seen, that if one of the
variable factors β2 or β3 is zero, the corresponding variance contribution and thus the sensitivity index of
the correlated part is not zero, due to the remaining influence of the other variable.

In order to distinguish between the variance contribution due to the correlation and the contribution by
the model parameters, an effective variance contribution is defined

V eff
Xi

(Y ) = β2
i σ2

Xi
. (43)

For the general polynomial regression case, the following procedure is proposed: First the full regression
model is build up in the standard normal space and the regression coefficients β̂ are determined. Then the
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first order effects are estimated by using only the linear and quadratic coefficients of the full model, which
belong to the investigated variable Zi,

Ŝβ
i =

VβZi
(Y )

V (Y )
, (44)

where VβZi
(Y ) is the resulting variance if only the first order regression terms of Zi are considered. Total

effects can be estimated similarly

Ŝβ
Ti

= 1−
VβZ∼i

(Y )

V (Y )
, (45)

where VβZ∼i
(Y ) is estimated by using the regression model without all coefficients, first order and inter-

action, which belong to Zi. The definition of Sβ
i and Sβ

Ti
is not following the general definition of the first

order and total effect sensitivity indices, where the variance of conditional expectation is used. Nevertheless,
this measures may be used to give additional information about the unknown underlying model.

However, for strongly correlated random variables the accuracy of the estimated regression coefficients
may be very poor. In such a case the estimated sensitivity measures Ŝβ

i and Ŝβ
Ti

may have very low accuracy.
In the first numerical example, this problem is investigated.

5. Numerical examples

5.1. ADDITIVE LINEAR MODEL

In the first example a purely additive model is investigated

Y = X1 + X2 + X3. (46)

The input variables are normally distributed, have zero mean and the covariance

Γ =

 1 0 0
0 1 2ρ
0 2ρ 4

 . (47)

Different cases with ρ = 0.0, 0.8, 0.99999,−0.8,−0.5 are investigated with the sampling based approach
and the regression based approach. The sampling based sensitivity indices are calculated using the subset
averaging and the proposed matrix recombination method with 10.000 Latin Hypercube samples. In Table I
the estimated sensitivity indices are compared to the analytical solution obtained with Eq. (40). The table
indicates a very good agreement of all estimated indices with the reference values for the uncorrelated
and the correlated cases. In the uncorrelated case, the sensitivity indices of an additive model sum up to
one. By considering correlated inputs this is not the case, since coupling terms caused by the correlations
are introduced indirectly into the model. This can result in a sum larger than one (correlated formulation
with ρ = 0.8) and also smaller than one (correlated formulation with ρ = −0.5, uncorrelated formulation
with ρ = 0.8). Interestingly the influence of a variable seems to vanish looking only on the correlated
or uncorrelated formulation of the total effect indices which is observed for variable X2 in the correlated
formulation with ρ = −0.5 and X2 and X3 in the uncorrelated formulation with ρ = 1.0. However, if both
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Table I. Sensitivity indices of the additive model assuming uncorrelated and correlated inputs

Analytical Subset Matrix combination Regression

SC
i , SC

Ti
SU

i , SU
Ti

Ŝi S̃C
i S̃C

Ti
S̃U

i S̃U
Ti

Ŝ
R,C
i

Ŝ
R,C
Ti

Ŝ
R,U
i

Ŝ
R,U
Ti

Ŝ
β
i

Ŝ
β
Ti

ρ = 0.0

X1 0.167 0.167 0.177 0.157 0.168 0.157 0.166 0.155 0.155 0.168 0.168 0.168 0.155
X2 0.167 0.167 0.177 0.154 0.164 0.153 0.163 0.168 0.168 0.169 0.168 0.168 0.168
X3 0.667 0.667 0.674 0.667 0.673 0.669 0.672 0.670 0.670 0.672 0.672 0.672 0.670

ρ = 0.8

X1 0.109 0.109 0.118 0.117 0.108 0.118 0.107 0.110 0.110 0.109 0.108 0.109 0.110
X2 0.735 0.039 0.742 0.738 0.727 0.050 0.039 0.735 0.735 0.040 0.039 0.109 0.456
X3 0.852 0.157 0.861 0.858 0.848 0.169 0.157 0.853 0.853 0.156 0.156 0.434 0.783

ρ = 0.99999

X1 0.100 0.100 0.110 0.088 0.103 0.088 0.101 0.099 0.099 0.101 0.100 0.100 0.099
X2 0.900 0.000 0.907 0.900 0.916 0.000 0.000 0.900 0.900 0.001 0.000 0.100 0.500
X3 0.900 0.000 0.907 0.900 0.916 0.000 0.000 0.900 0.900 0.001 0.000 0.401 0.800

ρ = −0.8

X1 0.357 0.357 0.368 0.361 0.359 0.359 0.359 0.362 0.362 0.354 0.353 0.353 0.362
X2 0.129 0.129 0.137 0.141 0.130 0.136 0.139 0.134 0.134 0.127 0.127 0.353 -0.788
X3 0.514 0.514 0.523 0.527 0.513 0.520 0.512 0.521 0.521 0.509 0.509 1.420 0.300

ρ = −0.5

X1 0.250 0.250 0.256 0.240 0.250 0.243 0.249 0.241 0.241 0.254 0.253 0.253 0.241
X2 0.000 0.188 0.011 0.005 0.000 0.179 0.188 0.000 0.000 0.189 0.188 0.253 -0.266
X3 0.563 0.750 0.573 0.571 0.570 0.755 0.752 0.564 0.564 0.759 0.759 1.023 0.495

the correlated and uncorrelated formulation of the total effect indices are considered, no important variable
can be misinterpreted or mistakenly removed from the model. This is not the case if either only the correlated
or the uncorrelated formulation is used.

Additionally the regression based indices by using 1000 Latin Hypercube samples as support points are
given in Table I. The estimates ŜR,U

i , ŜR,C
i , ŜR,U

Ti
and ŜR,C

Ti
agree very well with the analytical values.

The introduced measures Ŝβ
i and Ŝβ

Ti
, which analyze the variance contribution by coefficient removing, are

equivalent for the uncorrelated case. In the correlated case, the results differ in that way, that these indices
indicate how the total variance is decreased or eventually increased, if the variable Xi is removed completely
from the model formulation. For this reason negative indices or values larger as one are possible in contrast
to classical sensitivity indices. This measures should be considered as additional information in order to
detect imaginary variable importance caused only by input correlations.

However, the accuracy of the coefficient based indices Ŝβ
i and Ŝβ

Ti
may be very low for highly correlated

variables, if the regression model can not represent the true model perfectly. This situation is analyzed by
adding to the deterministic model a random noise ε which is independent of the inputs

Y = X1 + X2 + X3 + ε, (48)

where ε is a zero-mean normally distributed random variable with standard deviation σε = 0.5. In Figure 3
the standard deviation of the estimated regression coefficients of the tree inputs are shown for a set of 100
support point samples. The figure indicates an increasing error in the regression coefficients of both corre-
lated variables if the correlation coefficient is increased, while the error in the coefficient of the uncorrelated
variable is almost unchanged. This results in an inaccurate estimate of the sensitivity measures Ŝβ

i and Ŝβ
Ti
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Figure 3. Standard deviation of the regression coefficients (left) and the estimated total effect sensitivity indices of X2 (right)
dependent on the correlation for the additive model including random noise

for highly correlated variables. In Figure 3 the standard deviation of the estimated index Ŝβ
T2

is displayed
additionally. Similar to the regression coefficient itself, the accuracy of the sensitivity index decreases with
increasing correlation. Nevertheless, if the variables are correlated with ρ ≤ 0.9 the error in the estimate
seems acceptable. In contrast to the measure based on single regression coefficients, the accuracy of the
sensitivity indices estimated as the difference of the coefficient of determination of the full and a reduced
regression model is not decreased with increasing correlation. This is plotted additionally in Figure 3. Using
only 100 samples, the accuracy of the estimated regression based measures seems very good.

5.2. COUPLED NONLINEAR MODEL

In the second example a nonlinear model is investigated, which contains linear, quadratic and interaction
terms

Y = X1 + 2X2
1 + X2 + X3 + X2X3. (49)

The covariance is taken analogous to the previous example. In Figure 4 the scatter plots are shown for the
first two variables. In the figure a significant quadratic influence of X1 and a significant influence of the
coupling term X2X3 can be remarked in the uncorrelated case. If X2 and X3 are assumed to be correlated,
the scatter plot of X2 with Y indicates also a quadratic behavior, while in the model formulation only a
linear and a coupling term appears. This quadratic influence can be explained, if we rewrite Eq. (49) by
considering the decomposition of X3 analogous to Eq. (39) as follows

Y = X1 + 2X2
1 + X2 + ρ

σX3

σX2

X2 +
√

1− ρ2XU
3 + ρ

σX3

σX2

X2
2 +

√
1− ρ2X2X

U
3 . (50)

In Table II the corresponding sensitivity indices are given. The table indicates a good agreement of
the first order indices estimated with the extended matrix combination approach and the regression based
method with the indices obtained with the subset averaging. The effect seen in the scatter plots, that the influ-
ence of X2 dominated in the uncorrelated case by the coupling term and in the correlated case by quadratic
dependencies, can be observed also in the sensitivity indices. In the uncorrelated case the difference between
first order and total effect indices of X2 is more than 20%, but in the correlated case this difference decreases
significantly. This example clarifies, that the proposed measures quantifying the total effect influence give
useful information for model interpretation in the case of correlated inputs.
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Figure 4. Anthill plots of the response of the coupled nonlinear function with respect to X1 and X2 by assuming ρ = 0.0 (left)
and ρ = 0.8 (right)

Table II. Sensitivity indices of the coupled nonlinear model assuming uncorrelated and correlated
inputs

Subset Matrix combination Regression

Ŝi S̃C
i S̃C

Ti
S̃U

i S̃U
Ti

Ŝ
R,C
i

Ŝ
R,C
Ti

Ŝ
R,U
i

Ŝ
R,U
Ti

Ŝ
β
i

Ŝ
β
Ti

ρ = 0.0

X1 0.484 0.489 0.518 0.490 0.518 0.491 0.511 0.491 0.510 0.512 0.491
X2 0.070 0.036 0.256 0.034 0.259 0.060 0.292 0.059 0.291 0.058 0.274
X3 0.231 0.217 0.452 0.216 0.454 0.204 0.441 0.204 0.440 0.231 0.436

ρ = 0.8

X1 0.382 0.405 0.362 0.405 0.361 0.373 0.367 0.371 0.365 0.365 0.373
X2 0.501 0.528 0.540 0.055 0.071 0.506 0.562 0.014 0.072 0.041 0.469
X3 0.551 0.548 0.592 0.090 0.123 0.565 0.615 0.064 0.120 0.165 0.593

5.3. ISHIGAMI FUNCTION

In the final example the well-known Ishigami function (Ishigami and Homma1990) is investigated. This
function was defined for independent uniformly distributed variables

−π ≤ Xi ≤ π, i = 1, 2, 3, (51)
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as follows
Y = sin(X1) + a sin2(X2) + bX4

3 sin(X1), (52)

with a = 7.0 and b = 0.1. The analytical first order and total sensitivity indices were derived in (Homma
and Saltelli1996) and are given in Table III. The values indicate a vanishing first order influence of X3 but a
significant coupling term of X1 and X3 as indicated in the total effect indices.

In our analysis again the subset averaging and the matrix combination approach are applied using 10.000
Latin Hypercube samples. The regression based approach is not used due to the highly nonlinear functional
behavior, which can not be represented by low order polynomials. The results of the analyses assuming
uncorrelated and even correlated inputs are given additionally in Table III.

The correlation has been assumed in the second case between X1 and X3 as ρ23 = 0.5. In the Nataf
model this correlation coefficient is transformed to ρ̃23 = 0.518 in the correlated Gaussian space using
the iteration in Eq. (14). In the third case additional correlations are introduced (ρ12 = 0.3, ρ23 = 0.8,
ρ̃12 = 0.313, ρ̃23 = 0.814). For the uncorrelated case the indices obtained with the different methods agree

Table III. Sensitivity indices of the Ishigami test function assuming
uncorrelated and correlated inputs

Analytical Subset Matrix combination
Si STi

Ŝi S̃C
i S̃C

Ti
S̃U

i S̃U
Ti

ρ23 = 0.0

X1 0.314 0.557 0.324 0.330 0.570 0.330 0.570
X2 0.442 0.442 0.461 0.456 0.429 0.456 0.429
X3 0.000 0.244 0.008 0.008 0.251 0.008 0.251

ρ13 = 0.5

X1 - - 0.305 0.312 0.453 0.065 0.346
X2 - - 0.479 0.484 0.473 0.484 0.473
X3 - - 0.174 0.172 0.444 0.071 0.200

ρ12 = 0.3, ρ13 = 0.5, ρ23 = 0.8

X1 - - 0.310 0.306 0.799 0.057 0.354
X2 - - 0.576 0.559 0.785 0.022 0.454
X3 - - 0.213 0.198 0.927 0.022 0.117

very well with the theoretical values. Interestingly for the first correlated case, the first order index of X3

increases significantly due to the correlation.

5.4. CONCLUSIONS

In the presented paper an extension of the classical Sobol’ estimator for correlated input variables has been
proposed. In this method the matrix recombination is modified by changing not only the variable itself but
also its coupling terms with other variables due to the correlations. For this purpose a decomposition of the
sampling matrices in an uncorrelated and a correlated part is proposed. This decomposition is based on a
linear correlation model between the input variables. Additionally a regression based approach is presented,
which is much more efficient, if the model behavior can be represented by the regression basis. However,
attention is required in both methods in order to perform the decomposition. For non-normally distributed
inputs a transformation to the Gaussian space is necessary before decomposing the samples.
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Appendix

In the standard normal space the correlated part of a single variable Zi can be represented by the remaining
variable set Z̃ = Z∼i as follows

ZC,Z̃
i = βZi,0 +

m−1∑
j=1

βZi,jZ̃j . (53)

The intercept βZi,0 is zero, since all variables are normally distributed with zero mean. An estimate of the
coefficients βZi

can be obtained from a discrete sample matrix Z by using linear regression

β̂Zi
= (PT

Z̃
PZ̃)−1PT

Z̃
Z(i), (54)

where Z(i) is the ith column of Z and the level matrix PZ̃ of the reduced variable set contains all columns
of Z without the ith column. The entries of PT

Z̃
PZ̃ can be obtained from the reduced sample matrix Z̃ as

follows

(PT
Z̃
PZ̃)kl =

n∑
t=1

Z̃tkZ̃tl. (55)

In the case of standard normal variables, the sum in Eq. (55) can be formulated in terms of the estimator of
the correlation coefficients as follows

(PT
Z̃
PZ̃)kl = (n− 1)ρ̂(Z̃k, Z̃l). (56)

Analogously, the entries of PT
Z̃
Z(i) can be formulated as

(PT
Z̃
Z(i))k =

n∑
t=1

Z̃tkZti = (n− 1)ρ̂(Z̃k, Zi), (57)

which finally results in the estimates of the regression coefficients

β̂Zi
= (ĈZ̃Z̃)−1ρ̂Z̃,Zi

, (58)

where CZ̃Z̃ is the correlation matrix of the reduced variable set Z̃. In order to generate samples of the full
variable set Z the input correlation values have to be defined. If this is the case, the predefined values instead
of the estimators can be used and the regression coefficients βZi

can be exactly determined.
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Abstract. In this paper different strategies to search for a robust design are presented and investigated
with respect to their efficiency and applicability to time consuming numerical models. After starting with
deterministic optimization we introduce different measures to define the robustness of a design. An iter-
ative Robust Design Optimization (RDO) is proposed where deterministic optimization is combined with
variance-based robustness analysis and final reliability proof. The iterative procedure is compared to coupled
RDO approaches, where the robustness or reliability measures are calculated for each optimization design.
For such a procedure often global approximation models are used in order to enable the application for more
complex problems.

Keywords: Robustness, reliability, optimization, sensitivity analysis

1. Introduction

Due to target-oriented, automatic optimization of virtual products new design possibilities are explored.
However, highly optimized designs lead to high imperfection sensitivities and tend to loose robustness.
Often the deterministic optimum is pushed to the boundaries of the feasible design space. As a result the
optimized design, which was found by assuming deterministic model properties, may not be realizable in
a production process. For this reason it is necessary to investigate, how the optimized design is affected by
scattering model input variables, which could be e.g. geometry and material parameters, boundary conditions
and loads. The scattering inputs are modeled int this paper by means of scalar random variables having a
certain dependence between each other. Random variables have the advantage compared to other uncertainty
models, that efficient methods of the well developed probability theory can be applied.

In this paper different strategies to search for a robust design are presented and investigated with respect
to their efficiency and applicability to time consuming numerical models. After starting with deterministic
optimization we introduce different measures to define the robustness of a design. An iterative Robust
Design Optimization (RDO) is proposed where deterministic optimization is combined with variance-based
robustness analysis and final reliability proof. This procedure is state-of-the-art in Dynardo’s supported
RDO projects (Roos and Hoffmann2008),(Roos et al.2009). The iterative procedure is compared to coupled
RDO approaches, where the robustness or reliability measures are calculated for each optimization design.
For such a procedure often global approximation models are used in order to enable the application for
more complex problems. All presented methods are available in Dynardo’s optiSLang software package
(optiSLang2011), which supports a wide range of CAE solvers in order to perform a reliable optimization,
sensitivity, robustness and reliability analysis as well as Robust Design Optimization.
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2. Deterministic optimization

For deterministic single-objective optimization problems the optimization task can be formulated by a single
scalar-valued objective function

f (x1, x2, . . . , xk) → min, (1)

which is often an implicit function of the design variables. The design variables can be defined as continuous
variables with a lower and upper bound or as discrete variables which assume several discrete values. In
unconstrained optimization problems only the bounds or values of the design variables limit the optimization
space. The optimizer searches between these limits for the minimum value of the objective function f(x).

In engineering problems often additional restrictions have to be fulfilled by the optimal design. With help
of equality and inequality constraints

gi(x1, x2, . . . , xk) = 0, i = 1 . . .me, hj(x1, x2, . . . , xk) ≥ 0, j = 1 . . .mu, (2)

such restrictions can be formulated.
As optimization pre-processing a global sensitivity analysis may help to understand or to formulate

the optimization problem and to possibly reduce the number of optimization variables, which enables the
application of more efficient optimization strategies. In our analysis we perform variance based sensitivity
analysis (Saltelli et al.2008). By representing continuous optimization variables by uniform distributions,
variance based sensitivity analysis quantifies the contribution of each optimization variable to a possible
improvement of the model responses. In contrast to local derivative based sensitivity methods, the variance
based approach quantifies the contribution with respect to the defined variable ranges. Using the results of
the sensitivity analysis the number of optimization variables may be reduced and suitable start points can be
found for a following optimization.

Unfortunately, sufficiently accurate variance based methods require huge numerical effort due to the
large number of simulation runs. Therefore, often meta-models are used to represent the model responses
surrogate functions in terms of the model inputs. However, many meta-model approaches exist and it is
often not clear which one is most suitable for which problem (Roos et al.2007). Another disadvantage of
meta-modeling is its limitation to a small number of input variables. Due to the curse of dimensionality
the approximation quality decreases for all meta-model types dramatically with increasing dimension. As a
result, an enormous number of samples is necessary to represent high-dimensional problems with sufficient
accuracy. In order to overcome these problems, Dynardo developed the Metamodel of Optimal Prognosis
(Most and Will2008),(Most and Will2011). In this approach the optimal input variable subspace together
with the optimal meta-model approach are determined with help of an objective and model independent
quality measure, the Coefficient of Prognosis.

In Figure 1 the recommended flow of single-objective optimization procedure is shown: after the defini-
tion of the design variables and objective and constraint functions the design space is explored by sensitivity
analysis. The obtained variable sensitivities may help to reduce the number of design variables. The best
designs found in the sensitivity analysis could be used as start designs for the following optimization
procedure which finally will determine an optimal design.
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Definition 
inputs,   

objective, 
constraints

Sensitivity
analysis

Single-
objective

optimization

Optimal 
design

Reduced
design space,
start designs

Figure 1. Flowchart of deterministic single-objective optimization

3. Robust Design Optimization

In Robust Design optimization the optimization task is formulated under the consideration of uncertainties.
For this purpose we model the uncertainties with scalar random variables with a given distribution type and
a possible correlations. In the RDO framework the optimization variables itself (e.g. geometry parameters
of a structure) and even additional variables (e.g. material properties) may be assumed as random. This may
result in pure optimization, pure stochastic and mixed optimization-stochastic variables. Additionally to the
deterministic objective and constraint functions the robustness of a design is considered within the RDO
procedure.

A robust design may be characterized intuitively in that way, that its performance is largely unaffected by
random perturbations of the model inputs. A possible measure is the variance indicator, where the relative
variations of the critical model responses are compared to the relative variation of the input variables. If
certain model responses are limited with respect to an undesired performance, the safety margin can be
quantified as the interval between the mean value of the model response and the limit. This is shown in

Random response

pF

Limit
margin
Safety

Figure 2. Random model response with given limit value and corresponding safety margin and failure probability pF

Figure 2. The safety margin can be formulated in terms of the standard deviation of the model response.
In the variance-based robustness analysis a specific safety margin ασY , which has to be defined by the
designer, has to be proven for all critical responses

‖ylimit − Ȳ ‖ ≤ ασY . (3)

Alternatively the probability that a certain limit is exceeded can be quantified and proven to be less than an
acceptable value. This probability indicator can be evaluated by the probability-based robustness analysis,
which is called reliability analysis.
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3.1. VARIANCE-BASED ROBUSTNESS ANALYSIS

In variance-based robustness analysis the variations of the critical model responses are investigated. In our
study random sampling methods are used to generate discrete samples of the joined probability density
function of the given random variables. Based on these samples the statistical properties of the model
responses as mean value, standard deviation, quantiles and higher order stochastic moments are estimated. In
order to obtain a sufficient quality of these estimates, it is required, that the sampling scheme represents the
marginal distributions of the single random variables as well as the defined correlations between each other
with high accuracy. Some very basic stochastic methods to generate sample sets are variants of the Monte-
Carlo method. The simplest version is the so-called plain Monte-Carlo method (PMC). With this methods
the natural scatter can be modeled quite well, but the statistical uncertainty is fairly large if the sample
size is small. Therefore we utilize Latin Hypercube Sampling (LHS) with minimized correlation errors
(Hungtington and Lyrintzis1998), where the marginal distributions and the predefined input correlations are
represented with a small number of samples.

Based on the estimates of the mean value and the standard deviation the safety margin can be estimated
by using Eq. (3) for the responses where a performance limit is given. However, by using variance-based
robustness analysis only safety margins up to two sigma can be proven with a small number of samples.
For larger safety margins (e.g. six sigma) the true failure rate may be heavily vary for different distribution
types of the output. Since the distribution of the output is not exactly known, an estimate of low failure
probabilities by variance-based measures may be very inaccurate. Therefore, we recommend to prove safety
margins larger than three sigma by reliability analysis.

3.2. RELIABILITY ANALYSIS

In reliability analysis the limit state function divides the random variable space into a safe domain S = {x :
g(x) > 0} and a failure domain F = {x : g(x) ≤ 0}. The vector x denotes a position in the space spanned
by the random variable vector X = [X1, X2, . . . , Xm]. The failure probability pF is defined as the integral
of the joint probability density function fX(x) of the random variables with respect to the failure domain

pF = P [X : g(X) ≤ 0] =
∫

g(X)≤0
fX(x)dx. (4)

The computational challenge in determining the integral of Eq. (4) lies in the evaluation of the limit state
function g(x) at a specific position x. In CAE-based analyses the limit state function is generally an implicit
function of the input variables.

The most simple and robust method for the evaluation of Eq. (4) is the Monte Carlo Simulation (MCS)
where the estimated failure probability is obtained from a set of n samples xi as

p̂MCS
F =

1
n

n∑
i=1

I (g(xi)) , (5)

where the indicator function I (g(xi)) is one if g(xi) is negative or zero and zero else. MCS can represent
arbitrary types of LSFs including discontinuities and multiple design points. The disadvantage of this method
is the large number of required samples, which increases dramatically with decreasing failure probability.
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Thus for engineering problems, where we deal with small probabilities of failure, this method may be very
inefficient.

Further well-known methods are directional sampling (Bjerager1988), which can be applied for small
failure probabilities but is limited to a small number of random variables, and the First Order Reliability
Method (FORM) (Hasofer and Lind1974), which may be very efficient with respect to the number of solver
evaluations. However, FORM is limited to only one dominant failure region and to a smooth limit state
function, if gradient-based methods are used for the design point search.

In our study we investigate a global approximation technique, the Metamodel of Optimal Prognosis
(Most and Will2008), where a global or local polynomial is constructed on the samples obtained in the
variance-based robustness analysis and an adaptive approximation technique (Roos and Adam2006), (op-
tiSLang2011) where the regions around possible design points are adapted with new support points for
the approximation. The adaptive method has been proven to be very efficient for industrial problems with
nonlinear limit state functions and multiple design points (Roos and Hoffmann2008),(Roos et al.2009).

3.3. ITERATIVE ROBUST DESIGN OPTIMIZATION

Definition 
inputs

objectives
constraints

Sensitivity
analysis

Design 
failure

Update 
constraints

Deterministic
optimization

Robustness
evaluation

Optimal 
and robust 

design

Figure 3. Flowchart of the iterative Robust Design Optimization

In iterative RDO procedure deterministic optimization is utilized by considering safety factors within the
constraint conditions. These safety factors should be chosen in that way, that the robustness requirements are
fulfilled. Generally the safety factors are not known a priori. In this case a suitable initial guess is specified
and the initial deterministic optimization is performed. Additionally the robustness criteria are evaluated at
the optimal design found by the optimizers. If the robustness requirements are not fulfilled, the optimization
constraints are adjusted in a next step and the deterministic optimization procedure and the corresponding
robustness analysis are performed again. This procedure is repeated until the robustness requirements are
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fulfilled. In Figure 3 the flowchart of the iterative RDO procedure is shown. If a small probability of failure
is required a final reliability analysis is performed.

In order to fulfill the required failure probability a suitable safety margin has to been chosen. Since the
distribution of the investigated responses is unknown, this choice may be critical for the success of the
iterative RDO procedure. In Table I the safety margin is given for different distribution types at different
failure probabilities. The table indicates for pF = 10−2 a much smaller deviation between the different
distributions as for pF = 10−6. This means that for small failure probabilities the safety margin used
in the iterative RDO procedure should be taken by assuming a non-normal distribution. For example for
pF = 10−6 a safety margin of 6σ may be a good choice.

Table I. Required safety margins to assure a given failure probability
pF

Distribution type Required safety margin
pF = 10−2 pF = 10−3 pF = 10−6

Normal 2.32 3.09 4.75
Log-normal 3.37 5.70 14.90

Rayleigh 2.72 3.76 6.11
Weibull 2.67 3.66 5.88

3.4. COUPLED ROBUST DESIGN OPTIMIZATION

In the coupled RDO procedure an optimization is performed by considering robustness and reliability con-
straints directly. This means that the robustness and/or reliability measures have to been evaluated at every
optimization (nominal) design. This leads to a nested double loop with the pure optimization procedure in
the outer loop and the robustness analysis in the inner loop. This procedure may require a very large number
of solver runs, especially if the optimization is coupled with reliability analysis. Such a strategy would limit
the coupled procedure to simple and fast models. For more complex problems an improvement with respect
to the number of solver runs is necessary.

One possibility could be to use a global approximation of the model responses with respect to the op-
timization and stochastic variables. For this purpose support points have to been generated in the mixed
optimization-stochastic space which cover the possible variable values sufficiently. However, since the
approximation is not exact a final robustness or reliability proof of the obtained design should be performed.

Another possibility to reduced the numerical effort of a coupled RDO procedure is to use an estimate of
the safety margin, similar to the iterative approach, but with a reduced number of samples for the calculation
of the mean values and standard deviations. However, in this case statistical errors may be significant and
the corresponding objective and constraint function may contain additional noise. Therefore only optimiza-
tion strategies should be applied which can handle such distortions. Again a more accurate robustness or
reliability proof should by performed for the detected optimal design.
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4. Application example

In the following example the proposed methodology is applied exemplary. For this purpose the ten-bar-
truss structure shown in Figure 4 is investigated. This structure has been investigated e.g. in (Haftka and
Gürdal1992). The optimization task is to minimize the mass of the truss structure. The absolute stresses
of the each of the trusses should not exceed 30000 psi. Under the consideration of scattering cross sections
(normally distributed with coefficient of variation of 5%), scattering material properties (Young’s modulus is
log-normally distributed with 5% variation) and scattering loads (normally distributed with 10% variation)
the total probability of exceeding the stress limit in one of the trusses should be below 10−6. The cross
section areas ai are taken as continuous optimization variables with the bounds given in Figure 4.

F1 = F2 = 100000 lbf

E = 107 psi
ρ = 0.1 lbs/in3

L = 360 in
0.1 in2 ≤ ai ≤ 20 in2

Figure 4. Investigated initial truss structure

4.1. DETERMINISTIC OPTIMIZATION

In a first step a pure deterministic optimization is performed in order to find a suitable truss topology. In
the next section this optimal topology is optimized under the consideration of uncertainties. The limit of the
maximum stress is reduced by a global safety factor of 1.2 to 25000 psi. Before starting the optimization
task a sensitivity analysis is done. For this purpose 100 Latin Hypercube samples are generated uniformly
distributed in the space of the optimization variables. Each design is evaluated by a finite element solver
using geometrically linear truss elements. Using the MOP approach for sensitivity analysis the variable
importance is quantified. The MOP approach indicates highly nonlinear dependencies between the opti-
mization variables and the truss stresses as indicated in Figure 5. The number of optimization variables can
not be reduced in this example since each cross section is the most important variable with respect to the
belonging stress value.

The best design of the sensitivity analysis which fulfills the constraints is taken as start point for a
gradient-based optimization. The mass of this start design is 3369.4 lbs. After 13 iterations with total 143
solver calls the optimizer found the optimal parameter set indicated in Figure 6. The parameter values agree
excellent with the solution given in (Haftka and Gürdal1992). The results indicate, that the trusses 2,5,6 and
10 are set to its minimum value since they are not needed to carry the loads. The total mass of the optimized
structure is 1593.2 lbs which is less than 50% of the start design.
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Figure 5. Approximation function and variable sensitivities obtained with the MOP approach using 100 Latin Hypercube samples
as design exploration

Figure 6. Results of deterministic gradient-based optimization of the full truss structure

The ten-bar-truss can be reduced by removing the unimportant trusses 2,5,6 and 10 from the structure.
The stresses of the reduced structure can be simply calculated by using equilibrium equation of the forces
at each of the truss nodes. The resulting stresses are given in Figure 7. Since the structure is statically
determined the stresses in the trusses are independent of the Young’s modulus. Thus it is not necessary to
consider the Young’s modulus in the optimization or robustness analysis anymore. In Figure 8 the results of
a gradient-based optimization of the reduced truss structure are given. The figure indicates a slightly lower
mass of the structure. Furthermore the stress limit is reached in all trusses.
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stress1 =
2F2

a1

stress4 = −F2

a4

stress8 = −
√

2
F2

a8

stress3 = −F1 + F2

a3

stress7 =
√

2
F1

a7

stress9 =
√

2
F2

a9

Figure 7. Reduced truss structure with analytical stress values

Figure 8. Results of deterministic gradient-based optimization of the reduced truss structure

4.2. ITERATIVE ROBUST DESIGN OPTIMIZATION

The iterative Robust Design Optimization is performed by combining deterministic optimization using
safety factors for the constraint conditions with variance-based robustness analysis. If the robustness analysis
indicates a robust design the required failure probability is proven by reliability analysis. For this purpose the
optimized reduced truss structure shown in Figure 7 is investigated by variance-based robustness analysis.
The assumed statistical properties and distribution types of the scattering variables are used to generate 100
Latin Hypercube samples. Based on the solver evaluations the statistical properties of the truss stresses can
be obtained. In Table II the results are given for the first optimization step including following robustness
analysis. The table indicates for five of the six trusses a safety margin of about 1.75σ. Since we want to
obtain a structure with a failure probability below 10−6 a safety margin of 6σ seems to be necessary in order
to consider non-normal distributions of the output (see Table I). If we assume that the coefficient of variation
of each stress values is constant, if the mean value is changed, we can estimate the required constraint for
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Table II. Iterative Robust Design Optimization and final reliability proof of the reduced truss structure

Optimization Step 1 68 designs Constraint a1 a3 a4 a7 a8 a9 mass
25000 8.000 8.000 4.000 5.657 5.657 5.657 1584.0

Robustness Step 1 100 samples max. stress stress1 stress3 stress4 stress7 stress8 stress9
Mean value 27540 25070 -25060 -25060 25060 -25060 25060
Standard deviation 2425 2853 2105 2825 2765 2788 2827
Cov. of variation 0.088 0.114 0.084 0.113 0.110 0.111 0.113
Safety margin 1.01σ 1.73σ 2.35σ 1.75σ 1.79σ 1.77σ 1.75σ

Optimization Step 2 35 designs Constraint a1 a3 a4 a7 a8 a9 mass
18000 11.111 11.111 5.555 7.857 7.857 7.857 2200.0

Robustness Step 2 100 samples max. stress stress1 stress3 stress4 stress7 stress8 stress9
Mean value 19810 18050 -18050 -18040 18040 -18050 18040
Standard deviation 1772 2044 1552 2000 1988 2060 1991
Cov. of variation 0.089 0.113 0.086 0.111 0.110 0.114 0.110
Safety margin 5.75σ 5.85σ 7.70σ 5.98σ 6.02σ 5.80σ 6.01σ

Reliability analysis Number of solver runs Failure probability Reliability index
Directional sampling 3674 3.19 · 10−7 4.98
FORM 225 - 9.70
MOP+DS 100 (from robustness) 5.05 · 10−7 4.89
ARSM+DS 101 5.75 · 10−7 4.86

the second iteration step by an extrapolation of the mean stress value

constraintstep2 + 6 · CVstep1 · constraintstep2 ≤ 30000,

constraintstep2 = 30000/(1 + 6 · CVstep1),

which leads to a value of about 18000. The deterministic optimization is repeated with the new constraint
value and the robustness of the optimized structure is assessed again by 100 Latin Hypercube samples.
Table II indicates that the optimized structure of step 2 almost fulfills a safety margin of 6σ for all truss
stresses.

Finally the failure probability is estimated more accurately by reliability analysis. For this purpose we
investigate different methods with respect to their efficiency and accuracy. As reference solution directional
sampling is used. First the First Order Reliability Method (FORM) is applied which converges to a minor
important design point with a very low failure probability. Due to the individual stress limits in the six trusses
the combined limit state function has several kinks and design points which lead to the wrong convergence
point of FORM.

As second procedure we use a global approximation with the robustness samples as support points.
For this purpose the Metamodel of Optimal Prognosis is built with these samples and an almost linear
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Figure 9. Approximation function and variables sensitivities obtained with the MOP approach using the 100 robustness samples of
step 2 (CoP=100.00%)

dependence is indicated as shown in Figure 9. The individual stress values can be represented with very
excellent approximation quality indicated by a Coefficient of Prognosis of 100.00%. However, since only
100 robustness samples are generated with the original distributions functions, the estimation of a very
small failure probability requires an extrapolation of the approximation model, which may lead to a wrong
estimate of the failure probability. Nevertheless, the calculated failure probability given in Table II shows
good agreement with the reference from direction sampling. Since the robustness samples are available
anyhow, this procedure requires no additional solver runs and should be investigated if the MOP indicates a
good approximation quality.

The third investigated procedure is the Adaptive Response Surface Method according to (Roos and
Adam2006). This methods uses an initial sampling scheme as support points which is stretched by factor
three in order to cover a larger domain. With two additional adaption steps, where new sampling schemes
are placed around the detected important regions, the method converges to a failure probability close to
the reference solution. Since the number of solver evaluations is very small and since no extrapolation is
used in the approximation, from our viewpoint this ARSM approach is the method of choice for reliability
analysis of complex engineering problems. The proposed iterative Robust Design Optimization procedure
including the ARSM reliability proof has been successfully applied to real industrial problems in (Roos and
Hoffmann2008),(Roos et al.2009).

4.3. COUPLED ROBUST DESIGN OPTIMIZATION

In a further analysis the coupled Robust Design Optimization approach is applied. For this purpose in a
first step a global approximation model is used and in a second step direct solver runs are evaluated. The
global approximation model is built by using a uniform distribution for all optimization and stochastic
variables, where the lower and upper bounds are taken for the cross section areas as 2 in2 ≤ ai ≤ 20 in2

and for the pure stochastic forces the bounds are taken as mean value +/- 5σ. 500 Latin Hypercube samples

 

 
 
 
5th International Conference on Reliable Engineering Computing (REC 2012)

 
 
 
 
 

 
 
 
363



Thomas Most & Johannes Will

Figure 10. Approximation function and variables sensitivities obtained with the MOP approach using the 500 samples in the mixed
design-stochastic space (CoP=99.99%)

are generated within this mixed optimization-stochastic space and the Metamodel of Optimal Prognosis
is built. For all individual stress values and the mass an approximation quality better or equal 99.99%
could be reached by the quadratic Moving Least Squares approximation, which is included in the MOP
approach. In Figure 10 the approximation function and the variable sensitivities are shown exemplary. If we
compare the variable sensitivities of Figure 10 with these of Figure 9, we notice, that the pure stochastic
force variation is dominant in the local robustness problem but minor important in the mixed space. In many
other applications we observed similar results, that the pure stochastic variables are minor dominant with
respect to the optimization variables in the mixed space due to their smaller variation. This fact may lead
to an inaccurate representation of the influence of the stochastic variables in an approximation model. As a
consequence the estimated robustness measures may be inaccurate as well.

For our example we use an Evolutionary Algorithm (EA) running with the approximation model, where
for each optimization design a variance-based robustness analysis is performed by using 100 Latin hyper-
cube samples. The mass is taken as deterministic objective function and the stress constraints are formulated
with respect to the statistical measures of the robustness analysis

mean stressi + 6 · sigma stressi ≤ 30000. (6)

The results of this optimization are given in Table III. The obtained mass is almost similar to the mass ob-
tained by the iterative procedure, but some cross section areas are different. The final optimum is investigated
by a robustness analysis with direct solver calls which results in an estimated safety margin slightly larger
as 6σ for all stress values. The reliability proof reports an failure probability below the required 10−6. Again
the ARSM approach is very efficient. In the investigated example the coupled RDO approach using a global
approximation model gives satisfactory results with a relatively small number of solver runs. However, in
cases where the approximation quality is not as excellent as in our example the global approximation may
fail. In such cases the iterative approach should give the most efficient solution.
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Table III. Coupled Robust Design Optimization using a global response surface with final robustness and reliability proof

RDO on global MOP 500 support points a1 a3 a4 a7 a8 a9 mass
EA on MOP 591 nominal designs 11.306 10.303 5.640 8.049 8.131 7.980 2211.0

(100 robustness samples each)

Robustness analysis 100 samples stress1 stress3 stress4 stress7 stress8 stress9
Mean value 17730 -19470 -17770 17610 -17470 17790
Standard deviation 1961 1683 1964 1977 1958 1993
Cov. of variation 0.111 0.086 0.111 0.110 0.112 0.112
Safety margin 6.26σ 6.26σ 6.23σ 6.27σ 6.40σ 6.13σ

Reliability analysis Number of solver runs Failure probability Reliability index
Directional sampling 3366 2.26 · 10−7 5.05
ARSM+DS 84 1.24 · 10−7 5.16

Table IV. Coupled Robust Design Optimization using the direct solver with rough robustness estimates and final robustness and
reliability proof

RDO 3822 solver calls a1 a3 a4 a7 a8 a9 mass
ARSM (182 nominal designs with 11.035 10.024 5.562 7.697 7.931 7.848 2153.5

20 robustness samples each)

Robustness analysis 100 samples stress1 stress3 stress4 stress7 stress8 stress9
Mean value 18170 -20000 -18030 18420 -17880 18070
Standard deviation 2018 1716 2021 2010 2003 2020
Cov. of variation 0.111 0.086 0.112 0.109 0.112 0.112
Safety margin 5.86σ 5.83σ 5.92σ 5.76σ 6.05σ 5.91σ

Reliability analysis Number of solver runs Failure probability Reliability index
Directional sampling 4444 1.57 · 10−6 4.66
ARSM+DS 121 1.77 · 10−6 4.64

Finally the coupled RDO procedure is performed by direct solver runs. In order to limit the number of
solver evaluations the robustness analysis inside the RDO is performed using only 20 samples to estimate
the statistical properties. The final results are again verified by a more accurate robustness analysis and a
reliability proof. In Table IV the results of the direct RDO procedure are given. As optimizer an adaptive
polynomial response surface approach is used, which can handle noisy model responses (optiSLang2011).
Due to the small number of robustness samples the estimated mean values and standard deviations contain
statistical errors which may lead to noticeable solver noise. The direct RDO approach leads to a truss struc-
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ture having a smaller mass and safety margins for all stress values close to 6σ. The results of the reliability
analysis indicate a small violation of the reliability requirement. Additionally, the number of necessary
solver runs is much larger as by using the iterative procedure or the global approximation by MOP. For this
reason an application of the direct RDO approach for industrial problems is not very attractive.

5. Conclusions

In this paper Robust Design Optimization concepts have been proposed, which are applicable for complex
engineering problems, where the underlying structural model is often a very time consuming numerical
simulation model. By means of an investigated truss structure different procedures have been analyzed. First,
an iterative RDO procedure has been proposed. In this approach after each deterministic optimization the
required safety margin is checked by variance-based robustness analysis. If the safety margin is not sufficient
the deterministic optimization constraints are adapted. For a satisfactory safety margin the required failure
probability is proven finally by efficient reliability methods.

The iterative method was compared with a global response surface method built up in the mixed optimization-
stochastic space. If the approximation has very high accuracy, which was checked by the Coefficient of
Prognosis, a coupled RDO procedure applied on the response surface may lead to sufficient results. How-
ever, since the global approximation has often low accuracy and since the numerical effort with respect to
the number of solver runs is similar to the iterative procedure, we recommend the iterative procedure for
practical applications. The iterative procedure has been proven to be very efficient and accurate for real
product development in (Roos and Hoffmann2008),(Roos et al.2009).
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Haftka, R. and Z. Gürdal (1992). Elements of structural optimization, Volume 11. Springer.
Hasofer, A. and N. Lind (1974). An exact and invariant first-order reliability format. Journal of the Engineering Mechanics

Division, ASCE 100(6), 111–121.
Hungtington, D. E. and C. S. Lyrintzis (1998). Improvements to and limitations of Latin hypercube sampling. Probabilistic

Enginerring Mechanics 13, 245–253.
Most, T. and J. Will (2008). Metamodel of Optimal Prognosis - an automatic approach for variable reduction and optimal metamodel

selection. In Proc. Weimarer Optimierungs- und Stochastiktage 5.0, Weimar, Germany, November 20-21, 2008.
Most, T. and J. Will (2011). Sensitivity analysis using the Metamodel of Optimal Prognosis. In Proc. Weimarer Optimierungs- und

Stochastiktage 8.0, Weimar, Germany, November 24-25, 2011.
optiSLang (2011). The optimizing Structural Language, An Users’ Manual (Version 3.2.1 ed.). Weimar, Germany: Dynardo GmbH.
Roos, D. and U. Adam (2006). Adaptive moving least square approximation for the design reliability analysis. In Proc. Weimarer

Optimierungs- und Stochastiktage 3.0, Weimar, Germany.
Roos, D., J. Einzinger, and V. Bayer (2009). Robust design optimization applied to structural, thermal and fluid analysis including

manufacturing tolerances. In Proc. Weimarer Optimierungs- und Stochastiktage 6.0, Weimar, Germany.
Roos, D. and R. Hoffmann (2008). Successive robust design optimization of an electronic connector. In Proc. Weimarer

Optimierungs- und Stochastiktage 5.0, Weimar, Germany.
Roos, D., T. Most, J. F. Unger, and J. Will (2007). Advanced surrogate models within the robustness evaluation. In Proc. Weimarer

Optimierungs- und Stochastiktage 4.0, Weimar, Germany, November 29-30, 2007.
Saltelli, A. et al. (2008). Global Sensitivity Analysis. The Primer. Chichester, England: John Wiley & Sons, Ltd.

 

 
 
 
366

 
 
 
 
 

 
 
 
5th International Conference on Reliable Engineering Computing (REC 2012)



Nonlinear Interval Finite Elements for Structural  

Mechanics Problems 

 
Rafi L. Muhanna

1
, Robert L. Mullen

2
, and M. V. Rama Rao

3 

1
School of Civil and Environmental Engineering, Georgia Institute of Technology Atlanta, GA 30332-0355 

USA, rafi.muhanna@gtsav.gatech.edu 
2
School of Civil and Environmental Engineering, University of South Carolina, GA 30332-0355, USA 

rlm@cec.sc.edu 
3
Vasavi College of Engineering, Hyderabad - 500 031 INDIA 

dr.mvrr@gmail.com 

 
Abstract: Interval Finite Element Method (IFEM) has been developed to handle load, material, and 

geometric uncertainties that are introduced in a form of interval numbers defined by their lower and upper 

bounds. However, the scope of the previous methods was limited to linear problems. The present work 

introduces an IFEM formulation for problems involving material nonlinearity. The algorithm is based on 

the previously developed high accuracy interval solutions. Two approaches are introduced; an iterative 

method that generates successive approximations to the secant stiffness and a modified Newton-Raphson 

method based on deterministic/interval two face strategy that carries out the iteration successfully by 

identifying interval multipliers for each load throughout the iteration procedure. Examples are presented to 

illustrate the behavior of both formulations. 
 

Keywords: Finite Elements; Interval; Nonlinear; Materials. 

 

 

 

1. Introduction 

 

Structural analysis without considering uncertainty in loading or material properties leads to an incomplete 

understanding of the structural performance. Structural analysis using interval variables has been used by 

several researchers to incorporate uncertainty into structural analysis (Koyluoglu, H. U., Cakmak, A. S., and 

Nielson, S. R. K. 1995, Muhanna, R. L. and Mullen, R. L. 1995, Nakagiri S. and Yoshikawa, N. 1996, Rao, 

S. S. and Sawyer, P. 1995, Rao, S. S. and Berke, L. 1997, Rao, S.S., and Chen Li 1998, Muhanna and 

Mullen, 2001, Neumaier and Pownuk 2007). To the authors’ knowledge, applications of interval methods 

for the analysis of structures with material nonlinearity do not exist anywhere in literature. 

In this paper, we present an initial investigation into the application of interval finite element methods 

to non-linear problems of structural mechanics. In this work, we will consider deformation theory of two 

dimensional truss structures with a plasticity model for the material response. Critical to our development is 

the computation of element strains with minimal possible overestimation. Usually, derived quantities in 

Interval Finite Element Method (IFEM) such as stresses and strains have additional overestimation in 

comparison with primary quantities such as displacements. This issue has plagued displacement-based 

IFEM for quite some time. The recent development of mixed/hybrid IFEM formulation by the authors 

(Rama Rao, Mullen and Muhanna, 2010) is capable of simultaneous calculation of interval strains and 
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displacements with the same accuracy. This opened the road for further progress in new application areas 

such as nonlinear analysis. 

This work presents two approaches to the solution of interval finite elements with material nonlinearity, 

namely: the interval secant and interval modified Newton-Raphson methods. The paper is structured as 

follows. First, a short review of some interval concepts and an overview of linear IFEM are introduced. The 

interval secant and interval Newton-Raphson methods are then presented in sections 3 and 4. Examples are 

finally presented and discussed. 

 

 

 

2. Linear Interval Finite Element Method 

 

Finite element method is one of the most common numerical methods for solving differential and partial 

differential equations with enormous applications in different fields of science and engineering. Interval 

finite element methods have been developed to handle the analysis of systems for which uncertain 

parameters are described as intervals. A variety of solution techniques have been proposed for IFEM. A 

comprehensive review of these techniques can be found in (Muhanna et al., 2007, Zhang, 2005, and Rama 

Rao, Mullen and Muhanna, 2010). Interval analysis concerns the numerical computations involving interval 

numbers. All interval quantities will be introduced in non-italic boldface font. The four elementary 

operations of real arithmetic, namely addition (+), subtraction (−), multiplication (×) and division (÷) can 

be extended to intervals. Operations o },,,{  over interval numbers x and y are defined by the general 

rule (Moore, 1966; Neumaier, 1990) 
 

 },,,,{)]max(),[min(     for   yxyxyx  (1) 
 

in which x and y denote generic elements x x and y y. Software and hardware support for interval 

computation are available such as (Sun microsystems, 2002; Knüppel, 1994, and INTLAB,1999). For a 

real-valued function f (x1,…,xn), the interval extension of f ( ) is obtained by replacing each real variable xi 

by an interval variable xi and each real operation by its corresponding interval arithmetic operation. From 

the fundamental property of inclusion isotonicity (Moore, 1966), the range of the function f (x1,…, xn) can 

be rigorously bounded by its interval extension function 
 

 },..,|),..,({),..,( 1111 nnnn xxxxff xxxx   (2) 

 

Equation (2) indicates that f (x1,…,xn) contains the range of  f (x1,…,xn) for all xi xi. A natural idea to 

implement interval FEM is to apply the interval extension to the deterministic FE formulation. 

Unfortunately, such a naïve use of interval analysis in FEM yields meaningless and overly wide results 

(Muhanna and Mullen, 2001; Dessombz et al., 2001). The reason is that in interval arithmetic each 

occurrence of an interval variable is treated as a different, independent variable. It is critical to the 

formulation of the interval FEM that one identifies the dependence between the interval variables and 

prevents the overestimation of the interval width of the results. In this paper, an element-by-element (EBE) 

technique is utilized for element assembly (Muhanna and Mullen, 2001; Zhang, 2005). The elements are 

detached so that there are no connections between elements, avoiding element coupling. The Lagrange 

multiplier method is then employed to impose constraints to ensure the compatibility. Then a mixed/hybrid 
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formulation is incorporated to simultaneously calculate the interval strains and displacements (Rama Rao, 

Mullen and Muhanna, 2010). This linear formulation results in the interval linear system of equations that 

has the following structure: 

 

 (K + B D A) u = a + F b, (3) 
 

with interval quantities in D and b only. The term (K + B D A) represents the interval structural stiffness 

matrix and the a + F b  term, the structural loading. Any interval solver can be used to solve Eq. (3), 

however, the following iterative scheme that is developed by Neumaier (Neumaier and Pownuk, 2007) is 

superior for large uncertainty, defining: 
 

 
1)(:  ABDKC 0  (4) 

 

where D0 is chosen in a manner that ensures its invertability (often D0 is selected as the midpoint of D), the 

solution u can be written as: 
 

 dbu )()()( CBCFCa   (5) 
 

To obtain a solution with tight interval enclosure we define two auxiliary interval quantities, 
 

 
,)( 0 vDd

uv





D

A
 (6) 

 

which, given an initial estimate for u, we iterate as follows: 
 

 ,){(,})()(){
1

0

11 kk

cc

kkkk D     ACBACFACa dvDdvdbv 


 (7) 

 

until the enclosures converge, from which the desired solution u can be obtained in a straightforward 

manner. 

In this paper the above mentioned iterative enclosure has been used for the solution of the linear 

interval system of Equation (3). The solution includes displacements, strains, and forces simultaneously 

with the same high level of accuracy. 

 

 

 

3. Interval Secant Method 

 

The first method chosen for solving the system of non-linear interval equations resulting from the interval 

finite element method is the secant method (Cook, 2002). Given a constitutive relationship, the secant 

method is an iterative approach that predicts the value of the secant modulus corresponding to a certain 

level of loading. If load uncertainty is given as an interval value, the resulting element strain will also be an 

interval quantity. This will lead to an interval value for the secant modulus with the bounds on secant 

modulus calculated from the bounds on the element strain. In the present work, we will introduce an 
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iterative algorithm that allows the prediction of the interval secant modulus and calculates relevant 

quantities such as stresses, strains, and displacements for nonlinear material problems  

To illustrate the approach, we will assume that for each element in the structure the constitutive 

relationship is defined as a cubic function as shown below:  

 

 ,3 ba   (8) 

 

as shown in Figure 1, where σ, ε, a, and b are stress, strain, and constants respectively. The iteration process 

starts by taking the initial value of the secant modulus at zero strain. In subsequent iterations, a secant 

modulus is calculated from the current element strain using Eq. (8) as 
 

 ,
)(

)(
)(

i

i
iEs




  (9) 

 

where Es(i), σ(i), and ε(i) are the secant modulus, stress, and strain at iteration i respectively. The iterations 

continue until convergence with respect to the secant modulus is achieved. However, if the load is given as 

an interval value, the resulting secant modulus will also be an interval quantity.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 1. Stress-strain relationship, secant method 

 

A direct calculation of the interval secant modulus from Eq. (9) will lead to an overestimation, however, 

considering the physics of the problem we can confirm that the lower and upper bounds of the stress in a 

given element correspond to lower and upper bounds of the strain respectively. Considering this 

dependency, the interval form of Equation (8) can be introduced as  
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The IFEM formulation presented in section 2 (Rama Rao, Mullen and Muhanna, 2010) provides the strains 

along with displacements and forces. Solution of conventional interval finite elements provides interval 

bounds of displacements, the calculations of strains from displacements result in significant overestimation. 

In the current formulation, the strains are not calculated from displacements but are obtained 

simultaneously with the displacements and forces, thus avoiding any additional overestimation. These sharp 

bounds on interval strains thus obtained are used in the following iterative algorithm for calculating the 

updated interval values of the secants. 
 

3.1.  ALGORITHM FOR SECANT UPDATE  

 

The following notations are used: 

K : interval stiffness matrix 

P : interval load vector 

U : solution vector, includes stain and stress vectors 

ε: : current strain  

σ : current stress 

inf: : infimum 

sup: : supremum 

Es : current secant 

Et0 : initial secant modulus 

 

for count = 1: countmax 

Kc(U) U = P  

U = K
-1 

(U) P : Obtain solution based on algorithm given in section 2. 

for e = 1: number of elements 

max (σ) = a × sup(ε) + b × (sup(ε))
3 

max(Es) = max (σ ) / sup (ε (e)) 

min (σ) = a × inf(ε) + b × (inf(ε))
3 

min(Es) = min (σ ) / inf (ε (e)) 

Es (e) = infsup (min (Es), max (Es)) 

end : of loop on elements 

 Kc: update K with the new values of Es 

end : of loop on count 

 

For the stopping criterion the sum of the L1 norms of the following relative change of the secant lower and 

upper bounds is required to be less than a specified small value 
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4. Interval Modified Newton-Raphson Method 

 

Newton-Raphson method and modified Newton-Raphson method are iterative methods to find the relation 

of load versus displacement based on a given constitutive relationship, or within the context of finite 

elements, to solve the following nonlinear system of equations 
 

 ,)( PUUK   (12) 
 

where K, U, and P are the stiffness matrix, the displacement vector, and the load vector, respectively. 

Modified Newton-Raphson method in finite element applications uses incremental tangent stiffness at 

each loading level to predict the displacement as summation of a number of incremental solutions using the 

out of balance load for each increment. For each increment (iteration) the balance of forces at each node is 

checked until equilibrium is attained that represents the convergence for that specific load level. 

If the applied load is given as an interval value, the internal forces at each node will be intervals, 

checking the equilibrium at each node will represent a significant challenge. As a matter of fact, the 

dependency of internal forces on the applied load will result in an overestimation that will not allow 

equilibrium to be checked properly at each node. In the next section we will introduce a formulation in 

which we try to delay the use of interval multipliers as much as possible in a way that nodal equilibrium can 

be checked. 

 

4.1.  FORMULATION OF INTERVAL NEWTON-RAPHSON METHOD  

 

The formulation of interval finite element introduced in a recent work by the authors (Rama Rao, Mullen 

and Muhanna, 2010), provides a solution vector that includes displacements, internal forces, and strains of 

the system. Using the tangent stiffness, Kt, in each of the iterations will convert the system of equations in 

Equation (12) to a linear system of equations of the form 
 

 ,PU tK  (13) 

 

this equation can be reintroduced in the form 
 

 ,dU MKt   (14) 

 

where M is a matrix with dimensions (No. degrees of freedom × number of loads) and d is a vector of load 

interval multipliers, (Mullen and Muhanna 1999). The solution of Equation (14) can be given in the 

following form 
 

 ,1
dU MKt

  (15) 

 

or 

 ,1dU M  (15a) 
 

where M1 is a deterministic matrix with the dimensions (No. degrees of freedom × number of loads). The 

entries of this matrix are the system solution introduced per each load, or the solution Load-By-Load 

(LBL). For the clarity of formulation we will assume only two applied loads. This assumption will not 
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impose any restriction on the generality of the formulation. Since we order the unknowns in U as first 

displacements then element forces, ending with element strains, the entries of last rows of matrix M1 are 

element strains introduced LBL and have the form 
 

 ,

21

2221

1211























nn

sM








 (16) 

 

where εij is the strain of the i
th
 element due to the j

th
 load. Truss structures will be considered for the rest of 

the paper, such consideration should not limit the generality of the formulation. 

 In Newton-Raphson iteration and for a given load level, using the tangent stiffness will result in a 

vector of internal forces different from the vector of applied forces and equilibrium will not be satisfied. 

The difference between the two vectors is used to compute the residual response until convergence, or 

equilibrium is attained. This will require the computation of the internal force vector and the comparison 

with the applied load vector for each of the iterations. In the current interval formulation, as mentioned 

above, we will try to delay operations on intervals as much as possible. 

 If we consider the nonlinear constitutive relationship in Equation (8) the internal force for any element 

can be given as 
 

 ,)( 3

iiiiii AbaAF    (17) 

 

where Ai is the cross-sectional area of the i
th
 element. Substituting for strains from equation (16) and 

including load interval multipliers in Equation (15), we get 
 

     ,}][{ 3

2

1

21

2

1

21 iiiiii A  b  aF 


















d

d

d

d
  (17) 

 

or 
 

 ,)]33()([ 2

2

12

2

1

2

21

2

21

3

2

3

2

3

1

3

12211 iiiiiiiiii AbaF dddddddd    (18) 

 

 If n elements meet at node m, the x global component of resultant of element forces can be obtained as 
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and both components can be introduced in the following form 
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or 
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and the vector of internal forces, after including all nodes, can be introduced in the form 
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where m is the total number of nodes in the system. Interval internal force vector in Equation (22) is 

introduced as a product of two separate parts; deterministic and interval. The interval part represents the 

original load multipliers. This form will allow the comparison of the deterministic values of the applied 

load (matrix M in Equation (13)) with the deterministic values of the internal forces during the iteration 

procedure. If we reintroduce Equation (22) in the form 
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and compare with Equation (13) for the case of two loads 
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The ‘out of balance’ force vector can now be introduced as  
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 To complete the iteration and update procedure we will introduce what is called deterministic/interval 

strategy. This strategy is based on introducing a deterministic out of balance Load-By-Load matrix in the 

form 
 

 
      

MMMMMMMM 321)( 
 (24) 

and providing a deterministic solution in the form 
 

 
      

MKUM  1
 (25) 

where the entries of δUM are the deterministic solution for a given iteration introduced LBL. The solution 

will be used to update the deterministic LBL element strains as follows 
 

 
      

UMsMsMs 
 (26) 

where δUMs is a matrix of the dimension (number of elements × number of loads). This matrix is the 

bottom part of δUM that contains incremental values of element strains listed LBL. The updated value of 

Ms is used to update the values of internal forces. 

 On the interval side the incremental solution will be obtained from 
 

 
      

K FU  1
 (26) 

and the interval solution update is  
 

 
      

UUU 
 (27) 

 Crucial to the quality of the solution given in Equation (27) is the evaluation of δF used in Equation 

(26). For example, if we consider the x component of internal forces at node m as in Equation (20), the ‘out 

of balance’ force can be given as 
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 The objective here is to obtain the tightest possible enclosure for δFmx. Due to the multiple occurrences 

of d1 and d2 in (28), a direct evaluation of the function will lead to overestimation due to what is called 

interval dependency. Special treatment is required to obtain a tight enclosure. This is done by using 

inclusion isotonicity property of Interval arithmetic (Moore et, all, 2009, Neumaier 1990).  

 In other words, given a function f = f (x1,…, xn) of several variables, the precise range of values taken 

by f as xi varies through given intervals xi is introduced in the form 
 

 
      

},,:),,({),,( 1111 nnnn xxxxff xxxx  
 (29)

Usually, centered forms are used to reduce overestimation due to dependency of the enclosure of f (Moore 
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1979, Neumaier 1990). In the present work, the boundary value form (Neumaier, 1990) is used to evaluate 

the enclosure of function given in Equation (24). The following boundary value form has been suggested by 

Professor Neumaier during private communication for an enclosure of the function in Equation (28) 
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 (30) 

taking the intersection of the two results computed: 

a. with lower bounds in place of d01 and d02 

b. with upper bounds in place of d01 and d02 

 

4.2.  STOPPING CRITERIA 
 

Two stopping criteria can be used. The first criterion is deterministic and it is straightforward requiring that  
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 (31) 

where δ is a small specified value. The second criterion is the new containment stopping criterion, which is 

intrinsic to interval arithmetic. In the deterministic version of modified Newton-Raphson method, the usual 

stopping criterion is to continue the iteration procedure until the resisting internal forces are equal to the 

applied loads at each node. In the interval version, the applied loads and internal resisting forces are both 

intervals and the goal of the iteration is that the interval resisting forces to evolve until become equal to the 

applied ones. Due to dependency and resulting overestimation it is very difficult to capture such moment of 

equality between the interval applied loads and interval internal forces. As a matter of fact, during the 

iteration procedure, the difference between the values of interval internal forces and interval applied loads 

continues to become smaller converging from one side until a certain stage where one bound of the interval 

internal forces switches side and contains the interval applied load. A verification of the results of the 

iteration when the containment occurs shows that the correct solution is indeed obtained. To observe that 

‘the solution is reached when the evolved interval internal resisting forces contain the interval applied 

loads’ makes a complete engineering sense. Figure 2 illustrates the containment stopping criterions 

presented in terms of stress-strain instead of load-displacement. 

 

 

 

5 Example Problems 

 

Two example problems are chosen to illustrate the applicability of the present interval approach to handle 

material nonlinearity in case of truss problems. These examples are chosen to demonstrate the ability of the  
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current approach to obtain sharp bounds to the displacements and forces even in the presence of large 

uncertainties and large number of interval variables. It is assumed that for each element in the structure the 

constitutive relationship is given in the following cubic functional form for both examples 

 

 ,10 36.13   E  (32) 
 

where E is the modulus of elasticity. This relationship is shown in the Figure 3. 

 

 
Figure 3. Stress-strain relationship given in Equation (32) 
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Figure 2. Stress-strain relationship, Modified Newton-Raphson method. a) before containment, b) after containment 
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The two example problems are solved for various levels of interval widths of the loads centered at their 

nominal values. All interval variables are assumed to vary independently. Solution procedures outlined in 

sections 3 and 4 are based on the current values of member strains ε. These strains can be obtained using 

three different approaches viz. solution using modified Newton-Raphson method, the secant method and 

combinatorial approach. The first and second approaches compute member strains with same level of 

accuracy as displacements. In the third approach, member strains are computed combinatorially in each 

iteration.  

 

The first example chosen is a five bar truss (Rama Rao, Mullen and Muhanna, 2011) as shown in Figure 4. 

The truss is subjected to a nominal point load of 200 kN at the node 2 in the horizontal direction to the right 

and a nominal point load of 200 kN at the node 3 in the vertically downward direction. The Young’s 

modulus of each element is Ei = 2  10
11 

N/m
2
, i = 1,5 while the cross sectional area is 1.0 × 10

-4
 m

2
.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tables I, II and III show the computed values of selected displacements (horizontal displacement U2 at 

node 2 and vertical displacement V3 at node 3) and selected strains (strains ε1 and ε3 in elements 1 and 3) 

using the above approaches. Load uncertainties considered in Tables I, II and III are 1%, 10% and 25% 

(± 0.5%, ± 5% and ± 12.5% respectively about the mean value of load). Overestimation involved in results 

using the modified Newton-Raphson approach and secant approach is evaluated by comparing the 

corresponding solutions obtained with the combinatorial approach. Percentage error in the lower and upper 

bounds of the present solution is computed with reference to the corresponding bounds of the combinatorial 

solution. It is observed from these tables that error in bounds is quite small for displacements and strains 

(U2, V3, ε1 and ε3).  

It is observed that the errors in strains (secondary unknowns) are numerically comparable with the error 

of displacements (primary unknowns). Thus, the present approach succeeds in obtaining the same level of 

sharpness for primary and derived quantities. This observation holds true at larger values of uncertainty as it 

will be seen in Tables II and III. 

  

200 kN 

Figure 4. Five bar truss 
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Table I  Five bar truss − displacements for 1% uncertainty the load 

Method U2  101 (m) V3  102 (m) 1  103 3  102 

 Lower Upper Lower Upper Lower Upper Lower Upper 

Combinatorial 1.30644 1.32011 -6.92295 -6.84845 6.77652 6.84633 -1.38459 -1.36969 

Secant 1.30643 1.32012 -6.92303 -6.84833 6.77554 6.84730 -1.38460 -1.36966 

Error% 0.0008 0.0008 0.0012 0.0018 0.0145 0.0142 0.0007 0.0022 

Newton 1.30541 1.32113 -6.93144 -6.83991 6.76784 6.85500 -1.38628 -1.36798 

Error% 0.0784     0.0774 0.1227     0.1247 0.128    0.127 0.123    0.125 

 

 
Table II  Five bar truss − displacements for 10% uncertainty the load 

Method U2  101 (m) V3  102 (m) 1  103 3  102 

 Lower Upper Lower Upper Lower Upper Lower Upper 

Combinatorial 1.24516 1.38184 -7.26069 -6.51559 6.46303 7.16125 -1.45214 -1.30312 

Secant 1.24475 1.38195 -7.26160 -6.51138 6.45189 7.17150 -1.45232 -1.30227 

Error% 0.0329 0.0080 0.0125 0.0646 0.1724 0.1431 0.0124 0.0652 

Newton 1.23489 1.39212 -7.34664 -6.43065 6.37602 7.24826 -1.46932 -1.28613 

Error% 0.8247 0.7444 1.1838 1.3036 1.346 1.215 1.184 1.304 

 

 
Table III  Five bar truss − displacements for 25% uncertainty the load 

Method U2  101 (m) V3  102 (m) 1  103 3  102 

 Lower Upper Lower Upper Lower Upper Lower Upper 

Combinatorial 1.14376 1.48561 -7.83351 -5.96876 5.94287 7.68894 -1.56670 -1.19375 

Secant 1.14159 1.48600 -7.83605 -5.94566 5.90929 7.71708 -1.56721 -1.18913 

Error% 0.1897 0.0263 0.0324 0.3870 0.5650 0.3660 0.0326 0.3870 

Newton 1.11797 1.51263 -8.05715 -5.75784 5.72444 7.91333 -1.61143 -1.15156 

Error% 2.2544     1.8189 2.8550     3.5337 3.675    2.918 2.855    3.534    

 

 

Figure 5 shows the computed interval values of horizontal displacement U2 at node 2. The figure depicts 

the variation of the widths of the modified Newton-Raphson, the secant and the combinatorial approaches 

with the variation of load from its mean value. It is observed from this figure that the solutions computed 

using tangent and secant approaches enclose the combinatorial solution at all values of variation from 

0 percent to 25 percent. A similar behavior is observed in the plot for variation of width of vertical 

displacement V3 at node 3 in Figure 6. Figure 7 and 8 show the variation of strains in members 1 and 3 with 

the variation of uncertainty of load. It is observed from these figures that the present solution using 

modified Newton-Raphson approach and secant approach enclose the combinatorial solution at all levels 

of uncertainty. 
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Figure 5. Five bar truss – variation of horizontal displacement at node 2 with uncertainty of load 

 

 

 

 
 
Figure 6. Five bar truss – variation of vertical displacement of node 3 with uncertainty of load 
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Figure 7. Five bar truss – variation of strain in member 1 with uncertainty of load 

 

 

 

 

 
 
Figure 8. Five bar truss – variation of strain in member 3 with uncertainty of load 
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Figure 9 Fifteen-bar truss 
 

The fifteen bar truss shown in Figure 9 is subjected to a horizontal point load P1 = 150 kN acting to the 

right and vertical point load of P2 = 250 kN acting downwards applied at the joints 3 and 5 respectively. 

Cross section areas of elements 1, 2, 3, 13, 14 and 15 are 10.0  10
-5

 m
2
 while for the rest of the elements is 

the cross sectional area is 6.0  10
-5

 m
2
. The deterministic value of Young’s modulus of each element is 

Ei = 2  10
11

 N/m
2
, i = 1, 2 ,…15. Results are computed using combinatorial approach, secant modulus 

approach and modified Newton-Raphson approach. Tables IV and V present the selected values of 

displacements and strains at load uncertainties of 1% and 10% respectively. It is observed from these tables 

that the displacements and strains computed using the modified Newton-Raphson approach and secant 

modulus approach are sharply enclosing the corresponding values computed using combinatorial solution at 

all levels of uncertainty. Figures 10 and 11 shows the plot of strain in members 2 and 8 computed for 

various levels of uncertainty from 0% to 10%. Figures 12 and 13 show the plots of horizontal displacement 

at node 3 and vertical displacement at node 5 respectively, computed for various levels of uncertainty from 

0% to 10% .It is observed in all these figures that the solution computed using secant modulus approach as 

well as modified Newton-Raphson approach enclose the combinatorial solution at all levels of uncertainty.  

 
Table IV  Fifteen bar truss – Selected values of displacements and strains  for 1% uncertainty in load 

Method U3 (m) V5  101 (m) 2  103 8  102 

 Lower Upper Lower Upper Lower Upper Lower Upper 

Combinatorial 1.38087 1.39857 -3.52317 -3.48189 -6.29427 -6.17663 1.25047 1.26541 

Secant 1.38079 1.39863 -3.52323 -3.48179 -6.29427 -6.17662 1.25026 1.26561 

Error% 0.0058 0.0043 0.0017 0.0029 0.000 0.0002 0.0168 0.0002 

Newton 1.37204 1.40475 -3.53113 -3.47009 -6.37471 -6.09618 1.24730 1.26716 

Error% 0.6395 0.4419 0.2259 0.3389 1.2780 1.3025 0.2535 0.1383 

 

 
Table V  Fifteen bar truss – Selected values of displacements and strains  for 10% uncertainty in load 

Method U3 (m) V5  101 (m) 2  103 8  102 

 Lower Upper Lower Upper Lower Upper Lower Upper 

Combinatorial 1.30352 1.48091 -3.71321 -3.29977 -6.82498 -5.64853 1.18457 1.33427 

Secant 1.29957 1.48158 -3.71391 -3.29394 -6.82499 -5.64678 1.18055 1.33637 

Error% 0.3030 0.0452 0.0189 0.1767 0.0001 0.0310 0.3394 0.1574 

Newton 1.22645 1.55402 -3.80985 -3.19791 -7.63374 -4.84061 1.15888 1.35789 

Error% 5.9125 4.9368 2.6026 3.0869 11.8500 14.3032 2.1687 1.7703 
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Figure 10. Fifteen bar truss – Variation of strain in member 2 with uncertainty of load  

 

 

 
 
Figure 11. Fifteen bar truss – Variation of strain in member 8 with uncertainty of load  
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Figure 12. Fifteen bar truss – Variation of horizontal displacement at node 3 with uncertainty of load  

 

 

 
 
Figure 13. Fifteen bar truss – Variation of vertical displacement at node 5 with uncertainty of load  
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Conclusion 

 

A Non-linear Interval Finite Element Method (NIFEM) for structural analysis is presented. Uncertainty in 

the applied load is represented as interval numbers and material nonlinearity is considered. The presented 

methods are an interval extension of the well known modified Newton-Raphson and the secant methods. 

Example problems illustrate the application of the methods to truss problems with large uncertainties. 

A new containment stopping criterion, which is intrinsic for intervals, has been introduced. The 

computational cost of the extension to interval numbers in both methods is comparable to the additional 

cost associated with introducing interval values into linear problems (Muhanna, et al., 2007). Further study 

of non-linear interval finite elements methods for the refinement for different nonlinear material models is 

still needed to provide a more complete understanding of nonlinear interval finite element methods.  
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Abstract: In order to improve a design of structure, it is important to know the actual load condition of 

failed structure. We develop an estimation method of loading conditions based on images of failed 

structures and an FEM analysis model. Preparing a database that consists of deformation data of the 

structure corresponding to various load conditions, our system is able to estimate the load conditions that 

caused structure failure based on the processed images of failed structure samples. Adopting elasto-plastic 

model of the structure, the magnitude of the load having caused the failure is also estimated in addition to 

the position and orientation of the critical load. We adopt the EM algorithm to obtain the distribution of the 

critical load. An optimal design problem that takes account of the distribution of the estimated critical load 

condition is formulated as a minimization problem with a multi-objective function; the stiffness and the 

structural weight are also adopted as the evaluation items that make up the objective function. The particle 

swarm optimization (PSO) is adopted as the optimization algorithm. The approach is applied to crane-hook. 

The result of estimated critical load distribution and the optimal design based on the load distribution are 

demonstrated. 
 

Keywords: load estimation; optimal design; database; finite element analysis; EM algorithm; crane-hook. 

 

 

 

1. Introduction 

 

Avoiding failure of structure system is one of the most important missions for design engineer of structures. 

In order to improve an existing structure so that it does not fail, it is important to know the load condition 

that causes structure failure. Generally, the load condition is identified by integrating the information 

obtained from the sensor devices; continuous monitoring is essential. However, almost all structures 

themselves have no information about the load conditions during their service life. In this case, several 

failure detection methods proposed in the past are not applicable (Quek et al., 2009; Lam and Ng, 2009). It 

is necessary to estimate the load condition by means of another approach. We develop a load estimation 

system; this system is applicable to the failed structures having permanent deformation. The system inputs 

the digital images of failed structures and outputs the estimated probability of the load conditions that 

caused the failure. The information from the sensor devices is not required. We deal with the failed crane-

hooks as a concrete example. 

Crane-hook is one of the most useful equipments for suspension work. Recently, excavators having a 
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crane-hook are widely used in construction work sites. One reason is that there are work sites where the 

crane trucks for suspension work are not available because of the narrowness of the working site; an 

excavator has superior to a crane truck in general. Another reason is that such an excavator is convenient 

because they can perform the conventional digging tasks as well as the hanging works mentioned above. 

Figure 1 shows a sample of excavator with crane-hook and the close-up image of its bucket part where the 

crane-hook is attached. 

Though it has such a convenience, there are cases that the crane-hooks are damaged during some kind 

of hanging works. Figure 2 shows a typical crane-hook and its damaged sample to be repaired. This type of 

hook can be used to suspend objects whose weight is up to 2.9t. In Fig. 2, we can see that the locking 

apparatus, called latch, is left open. From the view point of safety, such failure must be avoided. 

Improvement of the performance and the service life is important; the real conditions of such suspension 

tasks in practical environment are, however, still unclear. Therefore, the identification of the cause of 

failure is one of the key issues for the safety improvement.  

Our previous work (Muromaki et al., 2012) gives the estimation of such load conditions in the form of 

probability distribution. In the study, however, we focused only on the estimation of the load applied 

position and the direction. We did not estimate the load magnitude. This is because the analysis model is 

based on the linear deformation theory and the analysis results do not well reflect the significant magnitude 

of the applied load that causes the permanent deformation as shown in Fig. 2. In the current study, the 

analysis model is improved so as to be applicable for the permanent deformation. By adding the 

information of the load magnitude, the failure estimation result becomes more meaningful. 

In addition to the load estimation approach, we discuss an optimal design taking account of the 

estimated result. In order to improve the performance of crane-hook, we formulate the multi-objective 

optimization problem considering the structural weight and the stiffness. The evaluation of stiffness is 

performed in terms of the estimated load conditions. The optimization problem is solved by using the 

particle swarm optimization (PSO). 

The outline of this paper is as follows. In section 2, we construct an FEM model of crane-hook and 

introduce the Load-Deformation (L-D) database. This database is prepared by using the FEM model; it is 

constructed as a collection of the applied load conditions and the corresponding deformed node positions. In 

section 3, we explain the image processing procedure to detect the feature points from the failed crane-hook 

images. In section 4, we develop the identification method of load condition based on our evaluation 

criterion. We introduce the EM algorithm for the arrangement of the identification results. In section 5, we 

apply our estimation approach to the actual failed crane-hooks. The estimation results are represented by the 

form of probability distribution. In section 6, we deal with a design approach that is based on estimated load 

condition obtained by means of examination of the failed structures. Some concluding remarks are 

expressed in section 7. 

 

 

 

2. Crane-hook Model and Load-deformation Database 

 

2.1.  CRANE-HOOK MODEL 

 

We construct a finite element model of the crane-hook based on one of its actual designs. Figure 3 shows 

the design drawing of the crane-hook adopted as the reference. Its cross-sectional shapes are illustrated by  
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Figure 1. Excavator with crane-hook and its close-up. 

 

                                       
Figure 2. Typical crane-hook and failed sample. 

 

 

the shaded area at two positions. One is the lowest center position “D” where the load is applied in the 

typical suspension work. The other is the position “C” where the largest stress occurs in the typical work. 

This area is usually called “critical section”. These cross-sectional shapes, called “T shape”, have been 

achieved by expert engineers empirically. Figure 4 shows the conceptual finite element model based on one 

dimensional beam element and the constructed model of crane-hook based on the actual design shown in 

Fig. 3. As indicated in Fig. 4, the latch part is omitted in the adopted model because it does not contribute to 

support the applied load. Each element is constructed by dN  layered as shown in Fig. 4(b). The height of 

cross-section is indicated by the variable “ h ”. The height of each layer is assigned evenly. The width of 

each layer is specified by “ ib ” ( i ,,1 dN ). By changing these widths ib , we can represent various 

cross-sectional shapes. The analysis model is constructed of eN  elements. 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. Design drawing of crane-hook. 
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Figure 4. FE model based on 1-D beam element and constructed model referring the design drawing. 

 

In the linear elastic deformation analysis, the equilibrium equation is obtained by means of the 

conventional analysis approach and expressed as 
 

KUF                                                                                        (1) 
 

where F , K  and U  are the external force vector, the stiffness matrix and the displacement vector. Given a 

specified external force vector and boundary conditions, the corresponding deformation of the structure is 

calculated on the basis of Eq. (1). In order to adapt the FEM model to the permanent deformation, we 

introduce an elasto-plastic deformation analysis. In our analysis, the stress-strain relationship of the material 

is approximated by a piecewise linear function as shown in Fig. 5. In this figure, 1E  is the Young’s 

modulus, 2E  is the tangent modulus and  is the yield stress. The dashed line indicates the relationship in 

the unloading process; the tangent modulus is assumed to be equal to the Young’s modulus 1E . In order to 

calculate the displacement of finite element model, we utilize the incremental solution scheme (Crisfield, 

1991). The incremental formulation is expressed as 
 

UKF  t                                                                                (2) 
 

where F , tK  and U  are the incremental force vector, the tangent stiffness matrix and the incremental 

displacement vector, respectively. The tangent stiffness matrix tK  takes over the role of the stiffness matrix 

in elastic analysis. It relates small change in force to small change in displacement. The matrix tK  takes the 

form 
 

K0KUKK  )(),( ttt                                                             (3) 
 

where K  is the elastic stiffness matrix used in the linear elastic analysis as Eq. (1). The total displacement 

is computed by the sum of the incremental displacements. 
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j

jUU                                                                                 (4) 

 

In the assessment process of the yielding, we utilize the layered approach (Owen and Hinton, 1980). In this 

approach the beam element is subdivided into layers, as shown in Fig. 4. A layer element is determined to 

be in yield state as a whole in the case that the central stress of the layer reaches the material yield stress. 

The stiffness values of the elements are determined according to the relationship shown in Fig. 5. 

 
Figure 5. Adopted stress-strain relationship model. 

 

2.2.  ESTIMATION OF PHYSICAL PARAMETERS 

 

As shown in Fig. 5, the stress-strain relationship has the three parameters: Young’s modulus 1E , tangent 

modulus 2E  and yield stress  , which must be determined. We estimate them based on experimental data. 

The stretch experiment of crane-hooks conducted is as follows. A load is applied at the point “D” of crane-

hook shown in Fig. 3. We measure the distance between points “B” and “E” at various load magnitude and 

calculate the enlargement of the distance. Figure 6 shows the obtained experimental result. The ordinate and 

the abscissa represent the magnitude of load [kN] and the enlargement of distance between point “B” and 

“E” [mm], respectively. On the basis of the obtained data, the plastic deformation begins to be observed at a 

load around 120 [kN]. The nominal load of the crane-hook dealt with in this study is 29 [kN], thus we can 

see that the nominal load is included in the elastic deformation area. In order to determine the material 

parameters based on the experimental data, we formulate a minimum square error problem as follows: 
 

,,torespectwith)ˆ(Minimize 21
2 EEyy

i
ii                                            (5) 

 

In the above equation, iy  is the enlargement between “B” and “E” for the i th load magnitude in the result 

of stretch experiment. The symbol iŷ  indicates the enlargement obtained by the FEM analysis for the same 

load magnitude. Table I shows the range of these parameters and the results of the error-minimization. The 

results are obtained by the exhaustive search and are shown in the lowest row. In the following, we utilize 

these estimated values for the FEM analysis. 
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Figure 6. Relation between applied load and enlargement of displacement. 

 

Table I. Range of parameters and results of error-minimization 

 
1E  [GPa] 

2E [GPa]    [MPa] 

range 180 ~ 280 0.1 ~ 50 100 ~ 400 

estimated 260 1 200 

 

 

2.3.  CONSTRUCTION OF L-D DATABASE 

 

The Load-Deformation (L-D) database is a collection of data; the various load conditions and the 

corresponding information of deformation are recorded. In the current study, the L-D database is designed 

to have the following information obtained by the FEM analysis: 

 analysis number 

 applied load condition on the FEM model 

 load applied node 

 load magnitude 

 load direction 

 deformed node positions 

We explain the contents of L-D database concretely. Figure 7 shows the load applied nodes and load 

directions. The FEM model consists of 42 elements and 43 nodes. The load applied nodes are 9 nodes from 

21th node to 37th node; the list of node is ]37,35,33,31,29,27,25,23,21[ . The load direction is considered 

7 direction patterns from 180  (leftward) to 0  (rightward); 90  corresponds to the vertical direction. 

These direction vectors are defined in a global coordinate system. The load magnitude is prepared from 

20[kN] to 140[kN] with an interval of 20[kN]. The ratio of these magnitudes to the nominal load is from 

0.69 to 4.82. The load magnitude is 7 patterns and the list is [20, 40, 60, 80, 100, 120, 14 ] [kN]. The pattern 

of all combination is 441 and all calculation results are recorded in the L-D database as the form of 

deformed node positions. The estimation of the load condition is performed based on the deformed node 

positions in the L-D database. 
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Figure 7. Load conditions; load applied nodes and load directions. 

 

 

 

3. Feature Points Detection from Crane-hook Images 

 

In this section, we explain the detection process of hook deformation from the failed hook image. The 

deformation of a failed crane-hook is represented based on the feature points detected from the failed image. 

The selection of feature points is performed by means of the digital image processing. This section consists 

of two parts. In the former part, we introduce the procedure of image processing used in this study. The 

outline of crane-hook is obtained from the failed hook image. In the latter part, we discuss the detection 

algorithm of feature points. The feature points are identified based on the obtained outline image. 

 

3.1.  PREPROCESSING OF CRANE-HOOK IMAGE 

 

The digital image of a failed hook is processed to obtain its shape outline. Figure 8(a) shows a typical 

example of failed hook image. This figure is displayed with a 256 step gray scale. Figure 8(b) is obtained 

by applying the digital image processing to Fig. 8(a). If there are some line gaps, we modify the outline 

through manual operations. Figure 8(c) shows the outline image without the latch part. The removing of 

latch part and the interpolation of line gap is performed by manual operations. In Fig. 8(c), the tip-end and 

the base positions are indicated by the circle and the arrow, respectively. The details are explained in our 

previous work (2012).  

 

3.2.  DETECTION PROCESS OF FEATURE POINTS 

 

The detection process of feature points is consists of two steps. The first step is the determination of 

boundary line between the inner area and the outer area. The second step is the selection of the feature 

points on the boundary line. As the preparation of the first step, the outline is divided into two parts; one is 

the inner outline and the other is the outer outline. By following the outline from the tip-end point, the inner 

outline at the upper side and the outer outline at the lower side are determined. In order to determine the  
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(a) Gray scale image                             (b) Filtered outline image              (c) Outline image (without latch part) 

 

Figure 8. Processed images. 

 

boundary line, we utilize the dilation process of the outlines. In each cycle of dilation process, the same 

label that distinguishes between the inner area and the outer area is assigned to the adjacent pixels of the 

outlines. Figure 9(a) shows the result of 5 cycles of dilation process. The outer outline is represented darker 

and the inner outline is represented lighter. By repeating the dilation process until the inner and outer areas 

collide, the boundary between the inner area and the outer area is obtained. Figure 9(b) shows the boundary 

line obtained by the dilation process. The feature points are detected on this boundary line. The boundary 

line is divided into fN  sections evenly. The division points are selected as the feature points and they are 

represented by the symbol ‘ ’ in Fig. 9(c). 

 

 
 

 

 

 

 

 

 

 

 
(a) Dilation of outline                 (b) Boundary of inner and outer area           (c) Detected feature points             

 

Figure 9. Detection process of feature points. 

 

 

 

4. Identification Method of Load Condition  

 

The load condition of a failed crane-hook is identified by using the L-D database. In this section, we explain 

the criterion used in the identification process. In the latter part, we introduce the EM algorithm that is used 

in the load estimation. 
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4.1.  GEOMETRIC MOMENT 

 

Generally, the coordinate systems used in the FEM analysis do not necessarily coincide with the 

coordinates used in the image processing. The shape of crane-hook should be expressed in a shape 

representation that is insensitive to the coordinate transformation. In this study, we turn our attention to the 

geometric moment of the shape. The geometric moment plays important role in object recognition and 

shape analysis (Ghorbel et al, 2005). The shape of hook can be described quantitatively by using 

geometrical moments, such as the mean, variance, and higher-order moments. The mean corresponds to the 

geometrical center of the shape. nth moments are expressed as 
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                                              (6) 

 

where p  and q  are degrees of power. The pair of ix  and iy  represents the coordinates of the deformed 

node positions in the L-D database or those of the feature points in the failed hook image. These values are 

normalized in terms of the base length of crane-hook. The constant M is the number of FE nodes or the 

feature points on the boundary line. The quantities x  and y  are calculated as follows: 
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We represent the information of geometric moment as a vector form. The geometric moment vector is 

defined as 
 

  Tnmmm 00110 m .                                                            (8) 
 

The moment vector obtained from the node positions in the L-D database is represented as ‘ )(iLD
m ’, where 

the superscript (i) indicates the analysis number in the L-D database. The moment vector obtained from the 

feature points based on a failed hook image is represented as m
IM

. 

 

4.2.  IDENTIFICATION PROCESS OF LOAD CONDITION 

 

The data search process in the L-D database is performed based on the following evaluation function: 
 

)()(
)()(

mmWmm
IMiLDTIMiLDe                                                  (9) 

 

where W is the weighting factor matrix. This function evaluates the similarity of the geometric moment 

between the deformed node positions and the feature points of the failed hook image. In this study, we 

evaluate the geometric moment up to the 3rd order. The weighting factor matrix W is expressed as 
 

 1.01.01.01.01111010diagW .                                           (10) 
 

We attach importance to the lower order moment; these values are determined empirically. The 

 

 
 
 
5th International Conference on Reliable Engineering Computing (REC 2012)

 
 
 
 
 

 
 
 
395



 T. Muromaki et. al. 

identification process is expressed as the following minimization problem: 
 

,   respect towith Minimize  ie                                              (11) 
 

where i  is the analysis number of the L-D database. By finding the solution, we can know the applied load 

condition, that is, the load applied node, the load magnitude and the load direction. 

 

4.3.  EM ALGORITHM 

 

A variety of load conditions can be obtained from the estimation process of load condition. In addition to 

the variety of load conditions, the quality of the estimation process can be uneven. In order to discuss the 

variety and the uncertainty together, we summarize the estimated results in the form of statistical 

representation. The representation is implemented in the form of probability distribution. In the 

implementation process, we utilize the EM algorithm (McLachan and Krishnan, 1997). EM (Expectation 

Maximization) is an iterative optimization method to estimate some unknown parameters Θ  from the given 

measurement data χ . However, we are not given some “hidden” nuisance variables G , which need to be 

integrated out. We maximize the posterior probability of the parameters Θ  given the data χ , marginalizing 

over G : 
 





G

χGΘΘ )|,(maxarg* P                                                                 (12) 

 

We can search for a maximum of )|,( χGΘP  by means of the following algorithm: 

      1. step E: calculate )|,( old
χGΘP  

      2. step M:  



G

χGΘχGΘΘ )|,(ln)|,(maxarg oldnew PP  

In the current study, the probability density functions of the random variables are assumed to be a mixture 

of Gaussian distribution. This probability function consists of a linear combination of Gaussian distributions 

and is expressed as 
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where Vμ,,k  and D  are the mixture weights, the mean, the variance and a number of dimension, 

respectively. The parameter vector Θ  is denoted by  kkk VμΘ ,, . In this case, the EM algorithm is 

represented as follows: 

      1. initialize the parameters, kk μ,  and kV  

      2. step E: calculate 
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(15) 

 

      3. step M: calculate 
 

 

(16) 
 

 

(17) 

 

 

(18) 
 

After the convergence of this algorithm, we can determine the probability distribution of load condition. 

 

 

 

5. Estimation Results 

 

5.1.  IDENTIFICATION OF LOAD CONDITION USING STRETCH TEST IMAGE 

 

In order to confirm the effectiveness of the implemented estimation approach, we apply the method to a 

deformed hook image obtained by means of the stretch experiment. Figure 10(a) shows the initial state 

image of crane-hook. Figure 10(b) shows the deformed state image. A downward load (140 [kN]) is applied 

around the point ‘D’. We can see that the contact point around the tip-end moves slightly leftward. Figure 

10(c) shows the outline image of deformed hook. The latch part is excluded by manual operations. The 

feature points are detected from this image and the geometrical moment of this image is calculated based on 

the feature points. The solution of the minimization problem (11) is searched in the L-D database. The 

estimated load condition is shown in Fig. 11. 

Comparing the estimated result with the actual applied load, the load applied point and the load 

direction of the estimated result shift leftward and the load magnitude is smaller than the applied load. 

Because of the width of loading device, the estimation problem has some difficulty for the proper 

identification of load condition. It should be noted that each of the estimated results is expressed to have the 

uncertainty to this level. 

 

5.2.  SAMPLE RESULT OF LOAD ESTIMATION 

 

In this part, we show a sample result of load identification. We use the failed hook shown in Fig. 8(a). The 

detected feature points are shown in Fig. 9(c). The identification result is shown in Fig. 12. The load applied 

position shifts rightward from the lower center. The load magnitude is three times greater than the nominal 

load. The load direction shifts rightward. The obtained result indicates that great rightward force is placed 

on the rightward position from the lower center. 
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(a) Initial state                                       (b) Deformed hook                     (c) Outline image of deformed hook             

 

Figure 10. Crane-hook images of stretch experiment. 

 

 

 

 

 

                                                                                            load applied node: 27 

                                                                                            load magnitude: 100 [kN] 

                                                                                            load direction: 
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Figure 11. Estimated loading condition using the stretch experiment image in Fig. 10. 

 

 

 

 

                                                                                            load applied node: 35 

                                                                                            load magnitude: 100 [kN] 

                                                                                            load direction: 
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Figure 12. Estimated loading condition using failed hook image ( Fig. 8(a) ). 
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5.3.  IDENTIFICATION RESULT USING EM ALGORITHM 

 

We apply the identification method to 12 failed samples. The probability distribution is obtained from the 

identified load conditions. In the current study, the number of samples is not enough to estimate the 

probability distribution on 3 load components (the load applied node, the load magnitude and the load 

direction) simultaneously. In this study, the probability distribution of each load component is treated 

independently. The probability distribution of each load component is expressed by a mixture of Gaussian 

distribution individually. 
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(c) Load direction                            
 

Figure 13. Probability distribution of the mixture Gaussian distribution for each load component. 

 

Figure 13 shows the obtained results. Figure 13(a) is the distribution of load applied node. The abscissa 

indicates the node number. This graph has two peaks. One is sharp peak around node 31 and the other is 
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dull curve around node 35. The distribution of load applied node has high probability at the two positions 

and the highest probability occurs at 31th node. Figure 13(b) is the distribution of load magnitude.  

The abscissa indicates the load magnitude. This graph has one peak at 120[kN]. This value is 4 times 

greater than the nominal load of this hook. Figure 13(c) is the distribution of load angle. The abscissa 

indicates the load angle. This graph has a mild peak between 50  and 100 . The load direction tends to 

concentrate around downward direction. In the current study, because the load component is treated 

independently, we cannot show a correlation among the load components. Combining the individual results, 

we can see that a great load is applied at rightward position from lower center and the load direction is 

downward. 

Figure 14 shows the estimated load applied position and the load direction. We illustrate the probability 

by gray-scale level based on the obtained probability distribution shown in Fig. 13(a) and (c). The high 

probability area is represented darkly, whereas the low probability area is represented lightly. The darkest 

region and arrow in Fig. 14 is the most probable area and the direction when crane-hooks are failed. 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 14. Estimated load applied position and load direction. 

 

 

 

6. Optimal Design 

 

6.1.  DESIGN VARIABLES AND THEIR PARAMETRIC REPRESENTATION 

 

In this study, the design variables of crane-hook are the parameters of cross-section of beam elements. As 

shown in Fig. 4, the parameters are the height and layer widths. These design variables are represented as 

functions of the local coordinate s  attached at the center line of hook, as )0()(),( Lssbsh i  , where L  

is the length of the contour line. The coordinate s  is indicated in Fig. 15. The start point of s  is the base 

point “A” and the end point is the tip point “E”. In the followings, )(sh  and )(sbi are called the shape 

functions. 

We represent such shape functions as linear combination of the Gaussian function. The shape functions 

are then expressed as 
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where   is the scaling factor,   and   are the location of the peak and the standard deviation. The 

constants hN  and bN  are the number of Gaussian functions representing h  and ib , respectively. By 

introducing this representation, the shape functions )(sh  and )(sbi  are represented in terms of the 

coefficients ),,1(,, h
h
j

h
j

h
j Nj   and ),,1(,, b
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j Njiii  . 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 15. Local curvilinear coordinate s . 

 

 

6.2.  SETTING OF CRITERIA AND FORMULATION OF OPTIMIZATION PROBLEM 

 

We explain the formulation of criteria that evaluate the goodness of crane-hook design. In order to improve 

the performance of crane-hook, we employ the following criteria: 

 structural weight 

 structural stiffness 

The first criterion is selected for achievement of lightweight. The lightweight is important for the saving of 

material cost and the compactness. The structural weight 1J  is formulated as 
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where   is the material density, iA  is the cross-sectional area of i -th element and il  is the element length. 

The second criterion is selected for the evaluation of the robustness of structure against unspecified 

multiple load conditions. For this evaluation, we adopt the ratio between the norm of the global 

0s
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displacement vector and the norm of the possible load vector. The robustness of the structure is evaluated in 

terms of the maximum value of the ratio. The possible load vector is represented by F
~

. This vector 

specifies the possible load applied points and respective components based on the estimation result. We 

utilize the estimation result of the load applied node discussed in the previous section. The maximum ratio 

is expressed as 
 

F

U

F
~max

0
~


                                                                              (22) 
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~
v                                                         (23) 

 

where   represents the vector norm and K  is the elastic stiffness matrix in Eq. (1). The global force 

vector F  is associated with the possible load vector F
~

 by the weight factor matrix vB . The component 

value of the matrix vB  is specified according to the probability distribution of load applied node shown in 

Fig. 13(a). The maximum ratio is rewritten as the following form. 
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The magnitude of F
~

 is normalized to be 1. Here, instead of searching the maximum value directly, we 

utilize the matrix norm. According to the maximum principle of the eigenvalue, the maximum value of this 

function is calculated as the matrix norm induced by the Euclidean vector norm 
2

 (Roger and Charles, 

1985). The second criterion is formulated as 
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This criterion represents a displacement-force ratio and the unit is [m/N]. 

      We formulate the criteria to be minimized in the above. For this multi-objective optimization problem 

with the two items, an integrated evaluation function is introduced in terms of the weighting factors. The 

multi-objective optimal design problem of the crane-hook is then expressed as follows: 
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the evaluation item values for normalization. We adopt the FEM model of crane-hook shown in Fig. 4, 
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called “reference design”, for this normalization. The values 1J  and 2J  are calculated for the reference 

design. The coefficients 1  and 2  are the weighting factors for the criteria. We conduct the optimal 

designs under the various combinations of the weighting factors. In the constraint conditions, LL bh ,  and 

UU bh ,  are the lower and upper bounds of the height and width. 

 

6.3.  SETTING OF PARAMETERS FOR NUMERICAL CALCULATION 

 

The optimization problem (26) is solved by means of the particle swarm optimization (PSO). The PSO is 

one of the population-based stochastic optimization techniques and has been successfully applied in many 

research and application areas (Behera and Choukiker, 2010; Mauro et.al., 2009). In the PSO, we need to 

specify the number of particles and the number of iterations. These parameters are shown in Table II(a). 

The values of the material parameters 21, EE  and   are same as the determined values in section 2.2. The 

parameters of finite element model are shown in Table II(b). The constants in Eq. (26) are specified in 

Table II(c). The evaluation item values obtained based on the reference design are as follows: 

 structural weight 1J : 2.660 [kg] 

 structural stiffness 2J : 1.4083 10
-7

 [m/N]. 

The adopted weighting factors in Eq. (26) are specified as 
 

  )2,1(00.1,95.0,90.0,,10.0,05.0,0.0  ii  .                                         (27) 
 

Table II. Parameters for numerical calculation 

 Item Symbol Value 

(a) Finite element model Material density   7.87 [g/cm
3
] 

 Number of elements 
eN  40 

 Number of layers 
dN  10 

(b) Optimization problem Number of Gaussian 
bh NN ,  4 

 Lower bound of size 
LL bh ,  5 [mm] 

 Upper bound of size 
UU bh ,  40 [mm] 

(c) PSO Number of particles  1000 

 Number of iteration  100 

 

 

6.4.  OBTAINED OPTIMAL DESIGNS 

 

Figure 16 shows the distribution of the criterion function values of the solution of the optimization problem 

(26). The abscissa shows the structural weight 1

~
J  and the ordinate shows the structural stiffness 2

~
J . Each 

item value indicates the ratio to the value of reference design. It can be seen that the Pareto line is 

constructed by the obtained solutions. From the results in this figure, there is a trade-off relationship among 

the evaluation items. Respective shapes concerning to the solutions (A) and (B) on the Pareto line in Fig.16 

are shown in Fig. 17. The evaluation item values are indicated in the caption. In Fig. 17(a) and (b), the left 
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part shows the height distribution of the elements. In the following, we call this part as “hook shape”. The 

right part shows the selected cross-section of the design solution; the upper is the section of the point “C” 

(17th element) and the lower is that of the lowest center point “D” (29th element). The top and bottom of 

the section shape correspond to the inner and outer surfaces of the hook, respectively. These two are 

important sections in the practical design scene. 

The following features are observed for the obtained hook shape: 

 hook shape becomes thinner toward the tip point “E” from the lowest center point “D” 

 thickness of region around the point “B” is greater than any other region 

If the attached importance on “the structural weight 1J ” is larger, the first feature becomes more 

remarkable. Because the stresses on the surface of hook between the load applied point and the tip point 

“E” are equals 0, this part has no contribution to the strength. Tapering off around the tip point “E” is a 

rational shape. In both solutions, the thickest region is not the point “C” (critical section) but also around 

the point “B”. Because we specify the weight factor matrix vB  based on the estimation result, the possible 

load applied node is shifted rightward. As a result of this formulation, the most critical area shifts from the 

point “C” to the upward point “B”. 

We discuss the feature of the cross-sectional shape. The section of the point “C” is the rectangular 

shape. If we attach importance to the weighting factor 1 , the cross-sectional shape of the point “C” 

becomes thinner toward the bottom. The stress in the lower part is smaller than that of the upper part; thus 

the tapering off shape is good for the lightweight. At the point “D”, the width of section around the center 

part is thinner than both end side (upper and lower). In order to keep high stiffness in the unspecified load 

cases, it is better to thicken the bottom than to thicken the middle part. 
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Figure 16. Distribution of objective function values for respective weighting factors. 
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       (a) Hook shape and sections of solution (A)          (b) Hook shape and sections of solution (B) 
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Figure 17. Obtained designs of crane-hook. 

 

The key points obtained from the observation of the solutions are as follows: 

 hook shape is tapering off from the lowest center point 

 the region around the point “B” is thicker than any other area 

 cross-sectional shape of the point “C” is rectangular 

 tapering-off shape of hook becomes conspicuous as the importance is attached to the lightweight 

 

 

 

7. Conclusion 

The estimation of load condition and the optimal design of crane-hook are presented and discussed. The 

objective of the estimation is to find out the load condition when crane-hooks are failed. In order to adapt 

the FEM model to the permanent deformation, we implement elasto-plastic deformation analysis. The 

Load-Deformation database that has the pairs of the applied load condition for the FEM model and their 

deformed node positions is constructed. The feature points are detected on the failed hook image in order to 

compare those feature points with the deformed node positions recorded in the L-D database. The applied 

load condition corresponding to the failed crane-hook image is then obtained by using a difference-

minimization approach. The identified loading conditions summarized individually in the form of the 

mixture Gaussian distribution. In the parameter estimation process on the distribution, we utilize the EM 

algorithm. The result is that the load applied position lies between the lowest center point and the tip-end, 

the load magnitude is four times larger than the nominal load and the load direction is the downward. 

In order to obtain a high-quality design, we formulate the multi-objective optimization problem taking 

account of the estimated results. The evaluation items are the structural weight and the structural stiffness. 

In the representation of the design variables, we utilize the Gaussian functions. The multi-objective problem 

is converted into the single objective problem by introducing the weighting factors. This problem is solved 

by means of the PSO. The obtained crane-hook shapes have a tapered shape similar to those of actual crane-
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hook designs. However, there are different features on the crane-hook shape. The thickest area of the 

obtained shape shifts upper part than that of the actual design. The cross-sections do not have a T-shape that 

is implemented in the actual design but have “a rectangular shape” or “an hourglass shape”. By introducing 

the Gaussian function to represent the design variables, we can reduce the number of design variables and 

represent the shape functions effectively. 

In this study, the components of load condition are estimated individually. This is because the number 

of failed samples is not enough to calculate the correlation among the load components. Taking the 

correlation into account, the failure estimation result becomes more meaningful. This is our future work. 
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Abstract: A procedure for deriving in explicit approximate form the frequency response function (FRF) of 

linear discretized structures with uncertain stiffness properties is presented. The proposed procedure is 

based on the following main steps: i) to perform the spectral decomposition of the deviation of the stiffness 

matrix (with respect to its nominal value) so as to obtain a sum of rank-one matrices, each one associated to 

a single uncertain parameter; ii) to project the equations of motion in the modal subspace; iii) to introduce a 

novel series expansion of the FRF in the modal subspace which provides an approximate, but explicit, 

expression of the FRF of structural systems with uncertain parameters. The potential of the proposed series 

expansion are demonstrated in the context of the so-called improved interval analysis by determining the 

range of the modulus of the FRF of structures with uncertain-but-bounded parameters.  

 

Keywords: Frequency response function; Uncertain parameters; Spectral decomposition; Improved interval 

analysis. 

 

 

 

1. Introduction 

 

In Structural Dynamics, the frequency response function (FRF), also called transfer function, is a complex 

function able to provide information about the behavior of a structure over a range of frequencies. For 

instance, the frequency domain response of a single-degree-of-freedom system (SDOF), i.e. an oscillator, is 

evaluated simply multiplying the FRF by the Fourier transform of the forcing function. For multi-DOF 

structural systems the FRF describes the relationship between a local excitation applied at one location on 

the structure and the resulting response at another and/or the same location. The frequency domain 

approach often gives information useful for structural design purposes that cannot be alternatively caught 

by the time domain approach. Moreover, it is sometimes more convenient to perform the analysis in the 

frequency domain; as an example, for structures with frequency dependent parameters or subjected to 

stationary random processes and so on. Indeed, in all these cases the evaluation of the FRF is required. 

In practical engineering problems, material properties, geometry and boundary conditions of a structure 

may experience fluctuations, due to measurement and manufacturing errors or other factors, which may 

significantly affect the response. The uncertainties are usually described following two contrasting points of 

view, known as probabilistic and non-probabilistic approaches. The probabilistic approach requires a 

wealth of data, often unavailable, to define the probability distribution density of the uncertain structural 
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parameters. If available information is fragmentary or incomplete, non-probabilistic approaches, such as 

convex models, fuzzy set theory or interval models (Elishakoff and Ohsaki, 2010), can be alternatively 

applied. 

Among non-probabilistic approaches, the interval model turns out to be the most suitable approach 

when only the upper and lower bounds of a non-deterministic property are well defined. Indeed, this model 

is derived from the interval analysis (Moore, 1966; Alefeld and Herzberger, 1983; Moore et al., 2009) in 

which the number is treated as an interval variable ranging between its lower and upper bounds. 

Unfortunately, the “ordinary” interval analysis (Moore, 1966) suffers from the so-called dependency 

phenomenon (Muhanna and Mullen, 2001; Moens and Vandepitte, 2005; Moore et al., 2009) which often 

leads to an overestimation of the interval width that could be catastrophic from an engineering point of 

view. This occurs when an expression contains multiple instances of one or more interval variables. Indeed, 

the ordinary interval arithmetic operations erroneously assume that the operand interval numbers are 

independent. To limit the catastrophic effects of the dependency phenomenon, the so-called generalized 

interval analysis (Hansen, 1975) and the affine arithmetic (Comba and Stolfi, 1993; Stolfi and De 

Figueiredo, 2003) have been introduced in the literature. In these formulations, each intermediate result is 

represented by a linear function with a small remainder interval (Nedialkov et al., 2004). 

In the framework of probabilistic approaches, the FRF has been evaluated by Falsone and Ferro (2005, 

2007) in explicit form by taking into account the properties of the natural deformation modes of the finite 

element discretized structure. In a non-probabilistic context, Moens and Vandepitte (2004) proposed a 

numerical procedure to efficiently calculate close outer approximations on the envelope FRF of structures 

with interval uncertainties. The FRF of systems with uncertain-but-bounded parameters was also evaluated 

by Manson (2005) employing both the complex interval analysis and the complex affine arithmetic. 

In this paper, an alternative approach for the evaluation of the FRF of discretized structures with 

uncertain stiffness properties is presented. The proposed procedure requires the following preliminary steps: 

i) the spectral decomposition of the deviation of the stiffness matrix (with respect to its nominal value) to 

obtain a sum of rank-one matrices, each one associated to a single uncertain parameter; ii) the modal 

analysis to project the equations of motion in the modal subspace. In a second stage, a novel series 

expansion of the modal FRF, named Rational Series Expansion (RSE), which provides an approximate, but 

explicit, expression of the FRF of structural systems with uncertain parameters, is derived. Finally, the 

proposed series expansion together with the so-called improved interval analysis presented by Muscolino 

and Sofi (2011) is used to obtain the range of the modulus of the FRFs of structures with uncertain-but-

bounded parameters.  

Numerical applications performed on a truss structure and a portal frame with uncertain Young’s 

moduli of the material have demonstrated the accuracy of the proposed explicit approximation of the FRF.  

 

 

 

2. Preliminary concepts 

 

2.1.  EQUATIONS OF MOTION 

 

Let us consider a quiescent n-DOF linear structural system with uncertain stiffness properties subjected to 

the forcing vector f(t). The equations of motion can be cast in the form: 
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where M and C are the nn mass and damping matrices of the structure;  = [1, 2,..., r]
T
 is the vector 

collecting the r dimensionless uncertain parameters i; u(,t) is the vector of nodal displacements and a dot 

over a variable denotes differentiation with respect to time t.  

It is worth noting that the relationship between the stiffness matrix, K(), and the vector  is often 

linear or, by applying a suitable variable transformation, it is always possible to make the stiffness matrix 

depend linearly on the new variables. Based on this concept, the stiffness matrix K() is herein expressed 

as a linear function of the uncertain properties, i.e.: 
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K K K Ki
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where K0 is the nominal value of the stiffness matrix, which is a positive definite symmetric matrix of order 

nn, Ki is a semi-positive definite symmetric matrix of order nn and rank pi and i is the i-th 

dimensionless uncertain parameter. In structural engineering problems, the fluctuating properties can be 

reasonably assumed to satisfy the condition i < 1, with the symbol  denoting absolute value. 

In the framework of the traditional modal analysis, the solution of the equations of motion (1) may be 

pursued by introducing the following coordinate transformation: 
 

0( , ) ( , )  u qt t  (4) 

 

where q(,t) is the vector gathering the first m modal coordinates qj(,t) (j = 1,2,..., m ≤ n); 0 is the modal 

matrix, of order nm, pertaining to the nominal configuration in which K0 = K(0). Specifically, the modal 

matrix 0, collecting the first m eigenvectors normalized with respect to the mass matrix M, is evaluated as 

solution of the following eigenproblem: 
 

2 Τ

0 0 0 0 0 0;     K M M Im  (5) 

 

where Im denotes the identity matrix of order m; 0
2
 = 0

T
K00 is the spectral matrix of the nominal 

structural system, say a diagonal matrix listing the squares of the natural circular frequencies of the 

structure, ω0,i, for the nominal values of the uncertain parameters; the apex T means transpose matrix. By 

applying the coordinate transformation (4), the equations of motion (1) can be projected in the modal space: 
 

2( , ) ( , ) ( ) ( , ) ( )t t t t  q q q p     
 

(6) 

 

where 2
() = 0

T
K()0;  = 0

T
C0 is the generalised damping matrix, which for classically damped 

systems is a diagonal one; p(t) = 0
Tf(t) is the modal forcing vector. Notice that by virtue of the 

decomposition (2) of the stiffness matrix, the following relationship holds: 
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2 T T T 2 2

0 0 0 0 0 0 0 0

1 1

( ) ( )            
 

     K K K
r r

i i i i

i i  

(7) 

 

where 
 

2 T

0 0   Ki i  
(8) 

 

is not a diagonal matrix. 

 

2.2.  FREQUENCY DOMAIN RESPONSE 

 

In some cases, such as for structures with frequency dependent parameters or in presence of stochastic 

stationary excitations, it is more convenient to perform the analysis in the so-called frequency domain.  

In the context of the frequency domain analysis, it is assumed that the loading is periodic and has been 

resolved into its discrete harmonic components by Fourier transformation. The corresponding harmonic 

components of the structural response can be derived by performing the Fourier transform of both sides of 

Eq. (6) (or Eq.(1)) obtaining the following set of algebraic frequency dependent equations: 
 

2 2i ( ) ( , ) ( )           I Q Pm  
(9) 

 

where Q(,ω) and P(ω) are the vectors collecting the Fourier transforms of q(,t) and p(t), respectively. The 

modal frequency response vector Q(,ω), solution of Eq.(9), can be expressed as follows: 
 

( , ) ( , ) ( )   Q H P

 

(10) 
 

where 
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1

2 2 1 2

0

1
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r

m i i
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(11) 

 

is the modal frequency response function (FRF) matrix (referred to also as transfer function matrix) whose 

expression has been derived taking into account Eq. (7) and introducing the FRF matrix of the nominal 

structural system, given by: 
 

1
2 2

0 0( ) i .   


     H Im  
(12) 

 

It is worth noting that the FRF matrix H(,ω) is not diagonal, while for classically damped systems the 

matrix H0(ω) is a diagonal one.  

Once the modal frequency response Q(,ω) is evaluated, the frequency response U(,ω) in the nodal 

space can be obtained by performing the Fourier Transform of Eq.(4), i.e.: 
 

0( , ) ( , ).   U Q  (13) 
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To avoid the inversion of the parametric frequency dependent matrix in Eq.(11), the Neumann series 

expansion can be adopted which leads to the following expression: 
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 (14) 

 

The convergence of this series expansion is guaranteed if and only if the least square norm of the matrix in 

square brackets is less than one. In the next section, an alternative series expansion of the modal FRF 

matrix for structural systems with uncertain parameters is proposed. 

 

 

 

3. Proposed explicit form of the FRF matrix 

 

3.1.  SPECTRAL DECOMPOSITION OF THE STIFFNESS MATRIX 

 

As well known, in structural engineering the stiffness matrix is always a positive definite matrix. In the 

previous section, the stiffness matrix has been assumed to depend on r dimensionless uncertain parameters 

satisfying the conditions i < 1, i.e. K = K(). Furthermore, the stiffness matrix has been decomposed 

according to Eq.(2), where K0 is a positive definite symmetric matrix of order nn, while Ki is a semi-

positive symmetric matrix of order nn and rank pi. As an example, in the case of truss structures and 

shear-type frames, the matrices Ki have rank pi = 1. Instead, for flexible frames the matrix Ki has rank pi = 3 

and so on. The foregoing property can be exploited to perform the spectral decomposition (referred to also 

as eigendecomposition) of the matrices Ki. To this aim, the following eigenproblems have to be solved: 
 

     
0 ,    ( 1,2,..., ;  1,2,..., )   K Ki i i i ii r p  (15) 

 

where i
() denote the eigenvalues which are real positive numbers, while i

() are the associated 

eigenvectors. Due to the semi-positivity of the matrix Ki, among the n eigenvalues of the i-th eigenproblem 

in Eq. (15) only ip  < n eigenvalues are different from zero. As an example, in the case of truss structures 

and shear-type frames only one eigenvalue different from zero is found for each uncertain parameter; for 

flexible frames, each eigenproblem (15) yields three eigenvalues different from zero and so on.  

By imposing that the eigenvectors i
() satisfy the orthonormalization condition: 
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the following relationship holds:  
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Then, after very simple algebra, by applying the previously described spectral decomposition, the 

matrix Ki can be written as: 
 

                 T TT

0 0 0 0

1 1

     
 

   K K K K K v  v
i ip p

i i i i i i i i i i

 

(18) 

 

where 
 

   
0 .v Ki i  (19) 

 

Substituting Eq.(18) into Eq. (2), the stiffness matrix K() can be expressed as the superposition of 

i 1


r

ip p  changes of rank-one, i.e.:  
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(20) 

 

Finally, upon introducing the spectral decomposition of the stiffness matrix given by Eq.(20) into Eq. 

(7), the matrix 
2
(), appearing in the FRF matrix (11), takes the following form: 

 

     T2 T 2 2 2
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where 
 

     T2

1




 w  w
ip

i i i i

 

(22) 

 

with 
 

   T

0 0 . w Ki i
 (23) 

 

3.2.  APPROXIMATE MODAL FRF MATRIX FOR TRUSS STRUCTURES WITH UNCERTAIN PARAMETERS 

 

In order to illustrate the proposed procedure for the derivation of an explicit approximate form of the FRF 

matrix, the simplest case of truss structures is first examined. In particular, recalling that for truss structures 

the i-th eigenproblem in Eq. (15) gives only one eigenvalue different from zero, i.e. pi = 1, I = i
(1)

 and 

i = i
(1)

, the spectral decomposition of the matrix Ki outlined in the previous section reduces to: 
 

TK v vi i i i  (24) 

 

where vi = vi
(1)

. Accordingly, the matrix i
2
() in Eq. (22) takes the following form: 
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where wi = wi
(1)

. By substituting Eq. (25) into Eq. (14), the Neumann series expansion of the modal FRF 

matrix can be rewritten as: 
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In order to improve the convergence, the terms into square brackets in Eq.(26) are herein rewritten in 

explicit form obtaining the following expression of the FRF matrix, named Rational Series Expansion 

(RSE): 
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where only the first four terms have been retained and the following complex quantities have been 

introduced: 
 

T T
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(28) 
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Equation (27) holds if and only if the following conditions are satisfied: 
 

( ) <1;     ( ) <1;     i i i j j ijd d  (30) 

 

where the symbol  denotes the modulus of .  

Moreover, if s << 1, the approximate modal FRF matrix can be accurately evaluated by retaining 

only first-order terms of the RSE in Eq.(27), i.e.: 
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1
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(31) 

 

It has to be emphasized that Eqs. (27) and (31) provide with different levels of accuracy closed form 

expressions of the modal FRF matrix of truss structures with uncertain parameters. This remarkable result 

can be exploited to derive explicit solutions for the frequency domain response of truss structures with 

fluctuating parameters. 

 
3.3.  APPROXIMATE MODAL FRF MATRIX FOR THE MOST GENERAL CASE OF DISCRETIZED STRUCTURES 

 

In this section, an approximate closed form expression of the FRF matrix for the most general case of 

discretized structural systems is derived by applying the procedure described above for truss structures. 

Specifically, taking into account that in this case the i-th eigenproblem in Eq. (15) gives pi eigenvalues 

different from zero, the spectral decomposition of the stiffness matrix leads to Eq. (22) for the matrix i
2
. 

Substituting this expression into Eq.(14) and rewriting the terms of the Neumann series expansion 

according to Eq.(27), the modal FRF matrix can be approximated in explicit form by the following RSE: 
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where 
 

       T T

0 0 0( ) ( ) ;         ( ) ( ) ( );      w H w B H w  w Hi i i i i ib
 

(33) 

 

       T T

0 0 0( ) ( ) ;  ( ) ( ) ( );     w H w  B H w  w H
m m

ij m i j ij m i jb

 

(34) 

 

       T T

0 0 0( ) ( ) ;     ( ) ( ) ( )     w H w  B H w  w H
m n n

jkmn j k ik n i kb

 

(35) 

 

are complex quantities. Obviously, Eq.(32) holds if and only if the following conditions are satisfied: 
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If the uncertain parameters satisfy the condition s << 1, an accurate approximation of the modal FRF 

matrix can be obtained by retaining only first-order terms of the RSE in Eq.(32), i.e.: 
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Equations (32) and (37) represent closed form expressions which approximate with different accuracy 

the modal FRF matrix of discretized structures with uncertain parameters. Such expressions are very useful 

to investigate the effects of the fluctuating properties on the frequency domain response of discretized 

structures, since the response can be derived in explicit form as well.  

 

 

 

4. Uncertain-but-bounded parameters 

 

4.1.  PRELIMINARY DEFINITIONS: REAL AND COMPLEX INTERVAL VARIABLES 

 

In this section, the r uncertain structural parameters i (i = 1,2,…,r) introduced in the above formulation are 

assumed independent and are modeled as interval variables. Then, according to the “ordinary” interval 

analysis (Moore, 1966; Alefeld and Herzberger, 1983; Neumaier, 1990; Moore et al., 2009), denoting by  

the set of all closed real interval numbers, the bounded set-interval vector of real numbers 

[ , ]   I r , such that     , can be introduced. The apex I characterizes the interval variables, 

while   and   denote the vectors collecting the lower and upper bounds of the i-th uncertain parameter 

  I

i
, say  i

 and  i
.  

Unfortunately, the “ordinary” interval analysis suffers from the so-called dependency phenomenon 

(Muhanna and Mullen, 2001; Moens and Vandepitte, 2005; Moore et al., 2009) which often leads to an 

overestimation of the interval width that could be catastrophic from an engineering point of view. This 

occurs when an expression contains multiple instances of one or more interval variables. To limit the 

catastrophic effects of the dependency phenomenon, the so-called generalized interval analysis (Hansen, 

1975) and affine arithmetic (Comba and Stolfi, 1993; Stolfi and De Figueiredo, 2003) have been introduced 

in the literature. In these formulations, each intermediate result is represented by a linear function with a 

small remainder interval (Nedialkov et al., 2004). According to the philosophy of the affine arithmetic, 

Muscolino and Sofi (2011) proposed the so-called improved interval analysis based on the definition of the 

extra symmetric unitary interval (EUI) variable ˆ [ 1, 1] Ie , ( 1,2, , )i r . The EUI is defined in such a 

way that the following properties hold: 
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i j i ie e i j e e  (39) 

where the subscript i means that the EUI variable is associated to the i-th uncertain-but-bounded parameter. 

In the previous equations, [1,1] = 1 is the so-called unitary thin interval. It is useful to remember that a thin 

interval occurs when    and it is defined as  ,  I
, so that  . Then, introducing the midpoint 

value (or mean), 
0, i

, and the deviation amplitude (or radius),  i
, of the i-th real interval variable  I

i
: 

 

 
 
 
5th International Conference on Reliable Engineering Computing (REC 2012)

 
 
 
 
 

 
 
 
415



 G. Muscolino, R.Santoro, A.Sofi 

   0,

1 1
;     ,

2 2
        i i i i i i

 (40) 

 

the following affine form definition can be adopted: 
 

 0,
ˆ ,    1,2,..., .    I I

i i i ie i r
 

(41) 

 

In the case of complex interval variables, within the framework of the affine arithmetic, Manson (2005) 

proposed an approach which allows to take into account the dependency between the real and imaginary 

components of the complex variables. Conversely, the “ordinary” complex interval analysis assumes that 

the real and imaginary components are independent. According to the philosophy of the affine arithmetic, a 

complex interval variable i I I I

i i iz x y  is herein defined as: 
 

   0, 0, 0,
ˆ ˆi i       I I I

i i i i i i i i iz z z e x y x y e
 

(42) 

 

where i 1   denotes the imaginary unit; 
0,ix  and 

0,iy  are the midpoint values (or means) and  ix  and 

 iy  are the deviation amplitude (or radius) of the real and imaginary part of the complex interval variable, 

respectively, given by: 
 

       0, 0,

1 1 1 1
; ; ; .

2 2 2 2
i i i i i i i i i i i ix x x y y y x x x y y y        

 
(43) 

 

4.2.  INTERVAL STIFFNESS MATRIX 

 

In structural engineering, the uncertain-but-bounded parameters can be reasonably assumed to posses 

symmetric deviation amplitude     i i i
, so that the generic interval variable, according to the 

improved interval analysis, can be written in affine form as: 
 

ˆ    I

i i ie  (44) 

 

being 0,i = 0 and i > 0. 

Then, following the interval formalism above introduced, the stiffness matrix K() can be expressed as 

a linear function of the interval variables, i.e.: 
 

 0 0

1

ˆ( ) ( ) ,     ,     


      K K K K K
r

I I

i i i

i

e

 

(45) 

 

where the matrices K0 and Ki, of order nn, have been defined in Eq. (3) and i is the dimensionless 

fluctuation of the i-th uncertain parameter. Furthermore, by virtue of the decomposition (45) of the stiffness 

matrix, the following relationship holds: 
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 2 T T 2 2

0 0 0 0 0 0

1 1

ˆ ˆ( ) ,     ,            
 

        K K
r r

I I I

i i i i i i

i i

e e  (46) 

 

where i
2
 is the matrix defined in Eq.(8).  

 

4.3.  APPROXIMATE INTERVAL MODAL FRF MATRIX 

 

In order to simplify interval computations, the attention is herein focused on small deviation amplitudes of 

the uncertain-but-bounded parameters, i.e. i  1. Under this assumption, based on the RSE in Eq.(37) the 

interval modal FRF matrix, in the most general case of discretized structural systems with uncertain-but-

bounded stiffness properties, can be expressed in the following approximate explicit form: 
 

 

   0

1 1

ˆ
( , ) ( ) ( ),     ,

ˆ1 ( )

 
  

  
    

 


   


H H B

ip Ir
Ii i i

iI
i i i i i

e

e b
 

(47) 

 

where bi() and Bi() are the complex functions defined in Eq.(33). Alternatively, the matrix H(,) can 

be rewritten in a more suitable affine form, as follows: 
 

   0 0,

1 1

ˆ( , ) ( ) ( ) ( ) ( ),    ,        
 

    H H B
ipr

I I

i i i i

i

a a e  (48) 

 

where a0,i() and ai() are complex functions describing the midpoint and the deviation amplitude of the 

i-th term in Eq.(47), given, respectively, by: 

 

  
  

 

  

2

0, 2 2

( )
( ) ; ( ) .

1 ( ) 1 ( )

    
 

     

 
  

   

i i i
i i

i i

i i i i i i

b
a a

b b
 

(49) 

 

Equation (48) can be recast in the following form: 
 

 0( , ) ( ) ( , ),     ,          H N N
I

 (50) 

 

where N0() and ( , )N  are the midpoint and the deviation matrices of the modal FRF defined in the 

context of the proposed RSE, respectively, as: 
 

0 0 0,

1 1

( ) ( ) ( ) ( );   
 

 N H B
ipr

i i

i

a  (51) 
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1 1

ˆ( , ) ( ) ( ),     , .      
 

    N B
ipr

I I

i i i

i

a e  (52) 

 

4.4.  BOUNDS OF THE MODULUS OF THE NODAL INTERVAL FRF 

 

The aim of this section is to determine the range of the modulus of the nodal interval FRFs of linear 

discretized structures with uncertain-but-bounded parameters. Once the modal FRF matrix is known, the 

square modulus of the FRF of the p-th DOF of the structural system can be defined as: 
 

 
2

Τ Τ

0, 0, 0, 0,( , ) ( , ) ( , ) ,     ,              *
H H

I

N,pp p p p pH
 

(53) 

 

where 
Τ

0, p  is the p-th row of the modal matrix 0 solution of the eigenproblem (5). Substituting Eq. (50) 

into Eq. (53), the following relationship is obtained: 
 

 
2

Τ * Τ

0, 0 0, 0, 0 0,( , ) ( ) ( , ) ( ) ( , ) ,     , .                        
*

N N N N
I

N,pp p p p pH
 
(54) 

 

Aiming to evaluate the upper bound and the lower bound of the modulus of HN,pp(,), Eq. (54) is 

rewritten as: 
 

 
2 2 2

( , ) mid ( ) dev ( , ) ,     ,          I

N,pp N,pp N,ppH H H
 

(55) 

 

where the symbols mid
2
 and dev

2
 denote the midpoint and the deviation of the square modulus of the 

interval nodal FRF defined in Eq.(54). 

In order to simplify interval computations, higher-order terms are neglected, namely the term 
Τ Τ

0, 0, 0, 0,( , ) ( , )       *
N Np p p p  in Eq. (54) is disregarded. According to this approximation, the 

midpoint and the deviation functions introduced in Eq.(55) can be written as: 
 

2
Τ * Τ

0, 0 0, 0, 0 0,mid ( ) ( ) ( ) ;      N NN,pp p p p pH

 

(56) 

 

2
Τ * Τ Τ Τ

0, 0 0, 0, 0, 0, 0, 0, 0 0,dev ( , ) ( ) ( , ) ( , ) ( ) ,   

                                                                                                                 

              

  

   

 

*
N N N NN,pp p p p p p p p p

I

H

 ,
 (57) 

 

where N0() and N(,) are the midpoint and the deviation matrices introduced in Eqs.(51) and (52). 

The lower bound, 
2

( )N,ppH , and the upper bound, 
2

( )N,ppH , of the square modulus of the nodal 

FRF of the p-th DOF can be evaluated, according to the philosophy of the affine arithmetic, as the 

minimum and maximum of the various combinations, i.e.: 
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22 2

( ) mid ( ) ( ) ;   N,pp N,pp N,ppH H H

 

(58) 

 
22 2

( ) mid ( ) ( ) .   N,pp N,pp N,ppH H H  (59) 

 

In the previous equations the function 
2

( ) N,ppH  is obtained upon substituting the matrix ( , )N , 

defined in Eq.(52), into Eq.(57) and then deriving the maximum of the deviation 
2

dev ( , )N,ppH  

according to the main properties of the interval analysis, i.e.:  
 

2
Τ * Τ * * Τ

0, 0 0, 0, 0, 0, 0 0,

1 1

( ) ( ) ( ) ( ) ( ) ( ) ( ) .           
 

      N B B N
ipr

N,pp p p p i i i i p p p

i

H a a  (60) 

 

Notice that the function in square brackets is a real function and that the symbol  means absolute value. 

Obviously, the lower bound and the upper bound, ( )N,ppH  and ( )N,ppH , of the modulus of the nodal 

FRF of the p-th DOF can be obtained straightforwardly by taking the square root of Eqs. (58) and (59). 

 

 

 

5. Numerical applications 

 

5.1. TRUSS STRUCTURE WITH UNCERTAIN YOUNG’S MODULI 

 

The first numerical application concerns the 24-bar truss structure depicted in Fig. 1. The Young’s moduli 

of r = 7 bars are taken as uncertain parameters with fluctuations i < 1 around the nominal value 

E0 = 2.110
8
 kN/m

2
, i.e. Ei = E0 (1+i), (i = 18, 19,..., 24). The cross-sectional areas of the bars are set 

equal to Ai = 5  10
-4

 m
2
 while the lengths Li (i = 1, 2,..., 24) can be deduced from Fig.1 where L = 3 m. 

Furthermore, each node possesses a lumped mass M = 500 Kg. Only the first m = 8 vibrations modes are 

retained in the modal analysis and the modal damping ratio has been assumed equal to  = 0.05 for all the 

modes. 

In Fig. 2, the exact FRF of the first modal coordinate, H11(,), evaluated performing the inversion of 

the matrix into square brackets in Eq.(11) for i =  = 0.05, (i = 18, 19,..., 24) is compared with the 

corresponding approximate FRF obtained by applying the proposed RSE (Eq.(27)). Notice that a good 

matching of the exact FRF is achieved by retaining only the first-order terms in the RSE.  

Figure 3 displays an analogous comparison for larger parameter fluctuations, say i =  = 0.1. As 

expected, in this case the proposed RSE truncated to first-order terms is less accurate, especially in the 

frequency range around the fundamental frequency of the system. Including second-order terms allows to 

improve the accuracy, as shown in the enlargement in Fig 3b.  
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Figure 1. Truss structure with uncertain Young’s moduli.  

 

 
Figure 2. FRF of the first modal coordinate H11(,): a) comparison between the exact FRF and the proposed RSE truncated to 

first-order terms; b) enlargement showing the convergence of the RSE close to the fundamental frequency of the structure 

( = 0.05).  

 

In order to demonstrate the capability of the proposed explicit approximation of the FRF matrix to handle 

different uncertainty models, the fluctuating Young’s moduli of the bars are now treated as interval 

variables i.e. 
0

ˆ(1 )   I

i i iE E e , (i = 18, 19,..., 24), with symmetric deviations i =  = 0.05.  
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Figure 3. FRF of the first modal coordinate H11(,): a) comparison between the exact FRF and the proposed RSE truncated to 

second-order terms; b) enlargement showing the convergence of the RSE close to the fundamental frequency of the structure 

( = 0.1).  

 

 

In Figs.4 and 5, the upper bound and the lower bound of the modulus of the FRF of the nodal displacements 

u1 and u13 of the truss (see Fig. 1), obtained by applying the proposed RSE truncated to first-order terms (see 

Eqs. (58) and (59)), are contrasted with the exact bounds. The latter are obtained following the philosophy 

of the vertex method (Muhanna and Mullen, 2001; Moens and Vandepitte, 2005), namely evaluating the 

modulus of the FRF for all the combinations of the bounds of the uncertain parameters and then taking at 

each frequency  the maximum and minimum value among all the moduli of the FRF so obtained. Notice 

that the proposed estimates of the upper bound and lower bound of both HN,11(,) and HN,1313(,) are 

very close to the exact ones. 

 

 ,11NH 

a

Exact
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Figure 4. Comparison between the exact and proposed a) upper bound and b) lower bound of the modulus of the FRF of the nodal 

displacement u1 ( = 0.05). 
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Proposed
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Proposed

0.05 
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 ,1313NH 

Exact

Proposed

0.05 

b  
Figure 5. Comparison between the exact and proposed a) upper bound and b) lower bound of the modulus of the FRF of the nodal 

displacement u13 ( = 0.05). 

 

 

5.2. FLEXIBLE FRAME WITH UNCERTAIN YOUNG’S MODULI 

 

As second application, a portal frame with uncertain Young’s moduli is considered (see Fig. 6). It is 

assumed that the elastic moduli of the beam and columns exhibit fluctuations i < 1 around the nominal 

value E0 = 2.8510
7
 kN/m

2
, i.e. Ei = E0 (1+i), (i = 1, 2, 3). The geometrical properties of the portal frame 

are indicated in Fig.6, where b = 0.30 m, h = 0.60 m, L = 3 m and H = 2 m. Furthermore, each node 

possesses a lumped mass M=500 Kg. The modal damping ratio is set equal to  = 0.05. 

 

 
Figure 6. Portal frame with uncertain Young’s moduli. 

 

Figure 7 displays the comparison between the exact and approximate FRFs of the first modal coordinate, 

H11(,), for i = = 0.05, (i = 1, 2, 3). The convergence of the RSE can be detected by inspection of the 

enlargement in Fig. 6b, where different approximations obtained retaining terms up to the third-order are 

reported. It can be seen that the proposed RSE truncated to the third-order provides an accurate 

approximation of the FRF close to the fundamental frequency of the structure. The results pertaining to 
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larger parameter fluctuations, i = = 0.10, shown in Figure 8, demonstrate the accuracy of the proposed 

RSE even for high uncertainty levels. Obviously, in this case higher-order terms of the RSE play an 

increasing important role.  

 

 
Figure 7. FRF of the first modal coordinate H11(,): a) comparison between the exact FRF and the proposed RSE truncated to 

third-order terms; b) enlargement showing the convergence of the RSE close to the fundamental frequency of the structure 

 ( = 0.05).  

 

 
Figure 8. FRF of the first modal coordinate H11(,): a) comparison between the exact FRF and the proposed RSE truncated to 

fourth-order terms; b) enlargement showing the convergence of the RSE close to the fundamental frequency of the structure 

( = 0.10).  

 

Finally, the fluctuating Young’s moduli of the beam and columns are modelled as uncertain-but-bounded 

parameters i.e. 
0

ˆ(1 )   I

i i iE E e , (i = 1, 2, 3), with symmetric deviations i =  = 0.05. Figure 9 

displays the comparison between the upper bound and the lower bound of the modulus of the FRF of the 

nodal displacement u1, HN,11(,), obtained by applying the proposed RSE truncated to first-order terms 

(see Eqs. (58) and (59)), and the exact bounds evaluated following the philosophy of the vertex method. It 
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can be observed that also in the case of flexible frames the RSE provides accurate estimates of the upper 

bound and the lower bound of the modulus of the FRF. 

 

 
Figure 9. Comparison between the exact and proposed (a) upper bound and (b) lower bound of the modulus of the FRF of the nodal 

displacement u1 ( = 0.05). 

 

 

 

6. Concluding remarks 

 

The evaluation of the frequency response function (FRF) matrix of linear structures with uncertain stiffness 

properties has been addressed. Specifically, a procedure for deriving the FRF matrix in explicit approximate 

form has been presented. The proposed method relies on the spectral decomposition of the deviation of the 

stiffness matrix (with respect to its nominal value) which allows to obtain a sum of rank-one matrices, each 

one associated to a single uncertain parameter. Then, the equations of motion are projected in the modal 

subspace and, after some algebra, the Neumann series expansion of the FRF matrix is rewritten in an 

alternative explicit form, herein called Rational Series Expansion (RSE). The proposed RSE represents a 

useful tool for performing the frequency domain analysis of linear structures with uncertain parameters 

since it enables one to derive closed form expressions of the response and then investigate the effects of the 

fluctuating parameters. The latter can be modeled resorting either to probabilistic or non-probabilistic 

approaches depending on the available information on their variability. 

The accuracy of the proposed RSE has been assessed by analyzing a truss structure and a portal frame 

with uncertain Young’s moduli. Numerical results have shown that the estimates of the FRF provided by 

the RSE are very close to the exact ones even for large fluctuations of the uncertain parameters. The 

versatility of the proposed RSE has been demonstrated by modeling the fluctuating Young’s moduli as 

uncertain-but-bounded parameters. The estimates of the upper bound and lower bound of the modulus of 

the FRF derived by applying the RSE in conjunction with the so-called improved interval analysis have 

been shown to be in good agreement with the exact bounds evaluated following the philosophy of the vertex 

method. 
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Abstract: The paper presents a complex methodology for statistical and reliability analyses of concrete 

structures. It describes the virtual simulation concept and tools used on the way from assessment of 

experimental results to reliability analysis. The methodology is represented by consequent steps starting by 

material parameters identification based on artificial neural networks and finite element modelling. The aim 

is finally to perform advanced reliability assessment using appropriate stochastic finite element model. 

Software tools are briefly described. Selected examples of application illustrate the applicability of the 

approach. 
 

Keywords: Reliability, concrete, inverse analysis, artificial neural networks, nonlinear analysis, fracture 

mechanics, simulation. 

 

 

 

1. Introduction 

 

Reliable computing for reliability assessment requires combination of advanced techniques to treat both 

nonlinearity and uncertainty. A large number of efficient stochastic analysis methods have been developed 

during last years. The common feature of all methods is the fact that they require a repetitive evaluation 

(simulations) of the response or limit state functions. The development of reliability methods is from the 

historical perspective certainly a struggle to decrease an excessive number of simulations. In spite of the 

increasing capabilities of computer hardware using a large number of simulations is still a problem when 

dealing with computationally demanding tasks and small-sample simulation is needed. 

 The objective of the contribution is to present methods and software for efficient statistical, sensitivity 

and reliability assessment implemented in FReET software (Novák et al. 2011). The attention is given to 

those techniques that are developed for analyses of computationally intensive problems like nonlinear FEM. 

Sensitivity analysis is based on nonparametric rank-order correlation. Statistical correlation is imposed by 

the simulated annealing. As software development is performed in a complex project and system for 

reliability assessment of concrete structures SIMSOFT, the full role of software FReET will be also shortly 

described – including degradation module FReET-D and methodology for inverse analysis and 

identification.  

 The paper presents briefly a complex methodology for statistical, reliability and risk analyses of 

concrete structures. But the methodology is valid generally, not only for concrete structures. It describes the 

virtual simulation concept and tool used on the way from assessment of experimental results to reliability 

analysis. The whole approach is based on small-sample randomization of nonlinear fracture mechanics 

finite element analysis of reinforced concrete structures. Efficient techniques of both nonlinear numerical 

analysis of concrete structures and stochastic simulation methods have been combined in order to offer an 
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advanced tool for assessment of realistic behaviour of concrete structures from reliability and risk points of 

view. 

 

 

 

2. Methodology 

 

The stochastic response requires repeated analyses of the structure with stochastic input parameters, which 

reflects randomness and uncertainties in the input values. The system uses the nonlinear computer 

simulation for realistic prediction of structural response and its resistance. Nonlinear fracture mechanics 

simulation utilizes state of art techniques including: damage mechanics, fracture mechanics and plasticity 

material models, smeared crack approach - fictitious crack, crack band method, softening of concrete in 

both tension and compression, combination of nonlinear concrete behavior with discrete and smeared 

reinforcement in reinforced concrete and pre-stressed structures. As the nonlinear structural analysis is 

computationally very demanding, a suitable technique of statistical sampling should be utilized, which 

allows relatively small number of simulations. Final results are: statistical characteristics of response 

(stresses, deflections, crack width etc.), information on dominating and non-dominating variables 

(sensitivity analysis) and estimation of reliability using reliability index and theoretical failure probability). 

In order to use appropriate parameters of material laws in the computational model, an inverse analysis 

based on experiments in a laboratory or in situ has to be performed. A suitable technique for the inverse 

analysis is the stratified sampling scheme for the modeling of uncertain model parameters combined with 

artificial neural networks.  

 The procedure can be outlined as follows: 
 

 experiment (laboratory, in situ); 

 development of a deterministic computational model to capture the experiment; 

 inverse analysis to obtain parameters of the computational model; 

 deterministic computational model of a structure; 

 stochastic model of a structure; 

 statistical, sensitivity and reliability analyses of a structure. 

 

 

 

3. Key soft computing methods 

 

3.1. MATERIAL PARAMETERS IDENTIFICATION 

 

The basic step for efficient nonlinear FEM modeling is to solve the inverse problem: “Which material 

model parameters should be used to capture the experiment well?” The recently proposed identification 

strategy is based on a coupling of the stratified sampling in the nonlinear fracture mechanics analysis and in 

the artificial neural network (Novák & Lehký 2006). The fundamental scheme of the approach is shown in 

Fig. 1; the neural network is trained by the values of the load-deflection curve and the values of identified 

parameters (considered to be random variables) in a repeated stochastic way – the preparation of a training 

set for a neural network uses stratified simulation. A multiple calculation of a deterministic computational 
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model using random realizations of model parameters is performed resulting in a “bundle” of load-

deflection curves (usually overlapping the experimental curve). Realizations of the load-deflection curves 

serve as a basis for the training of an appropriate artificial neural network. Such training can be called 

stochastic training due to the stochastic origin of the load-deflection curves. After the training procedure, 

the neural network is ready for the key task: to select the material model parameters which can capture the 

experimental load-deflection curve as closely as possible.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Scheme of inverse analysis. 

 

 

3.2. UNCERTAINTIES SIMULATION 

 

For time-intensive calculations such as those involving nonlinear fracture mechanics of concrete, small-

sample simulation techniques based on stratified sampling of the Monte Carlo type represent a rational 

compromise between feasibility and accuracy. Therefore, Latin hypercube sampling (LHS) was selected as 

a key fundamental technique. 

 The method belongs to the category of stratified simulation methods (e.g. Mc Kay & Conover 1979, 

Novák et. al 1998). It is a special type of Monte Carlo simulation which uses the stratification of the 

theoretical probability distribution function of input random variables. It requires a relatively small (tens or 

hundreds) number of simulations (repetitive calculations of the structural response) to estimate the 

requested statistics of the response.  

 The basic feature of LHS is that the probability distribution functions for all random variables are 

divided into NSim equivalent intervals (NSim is the number of simulations); the values from the intervals are 

then used in the simulation process (random selection, middle of interval or mean value). This means that 

the range of the probability distribution function of each random variable is divided into intervals of equal 

probability. The samples are chosen directly from the distribution function based on an inverse 

transformation of the distribution function.   
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 It has been proved that the best LHS strategy, which simulates the means and variances very well, is the 

approach suggested e.g. by Keramat & Kielbasa (1997) or Huntington & Lyrintzis (1998). The sample of 

each interval is chosen as the mean (Fig. 2): 
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where fi is the PDF of variable Xi, and the integration limits are: 
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 A robust technique for imposing statistical correlation based on the stochastic method of optimization, 

called simulated annealing, has been proposed recently by Vořechovský & Novák (2009). The imposition 

of the prescribed correlation matrix into the sampling scheme can be understood as an optimization 

problem. 

 

 
 
Figure 2.  Illustration of sampling. 

 

 

3.3. RELIABILITY ANALYSIS 

 

In cases when we are constrained by a small number of simulations (tens, hundreds) it can be difficult to 

estimate the failure probability. The following approaches are therefore utilized here; they are 
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approximately ordered from elementary (an extremely small number of simulations, inaccurate) to more 

advanced techniques: 
 

 Cornell´s reliability index – the calculation of a reliability index from the estimation of the statistical 

characteristics of the safety margin; 

 curve-fitting approaches – based on the selection of the most suitable probability distribution of the 

safety margin; 

 FORM approximation (Hasofer-Lind´s index); 

 importance sampling techniques; 

 response surface methods. 
 

These approaches are well known in reliability literature, and also the provision of all details is beyond the 

aim of this paper. In spite of the fact that the calculation of the failure probability (and/or reliability index) 

using some of these techniques does not always belong to the category of very accurate reliability 

techniques (the first three in the list), they represent a feasible alternative in many practical cases. 

 

 

 

4. Software tools 

 

4.1. SARA – COMPLEX SOLUTION 

 

The authors combined efficient techniques of both nonlinear numerical analysis of engineering structures 

and stochastic methods to offer an advanced tool for the reliability assessment of concrete structures. 

Within the framework of this complex system attention is also paid to the modeling of degradation 

phenomena, such as carbonation of concrete, corrosion of reinforcement, chloride attack, etc. The 

combination of all parts (structural analysis, reliability assessment, inverse analysis and degradation 

modeling) is presented together as the SARA software. The recently developed version of the SARA 

software is called RLACS or SARA Science; its structure is similar to the SARA system, but it incorporates 

an extended version of the ATENA NLFEM software: ATENA Science. 

 A representation of the program combination within SARA software is presented in Fig. 3. It includes: 

SARA (Bergmeister et al. 2004, Pukl et al. 2003a,b; Strauss et al. 2008; Novák et al. 2005) – a software 

shell which controls the communication between following individual programs: ATENA (Červenka et al. 

2007) – FEM nonlinear analysis of concrete structures; FReET (Novák et al. 2011) – the probabilistic 

engine based on  LHS simulation; DLNNET (Lehký 2011; Novák & Lehký 2006) – artificial neural 

network software; FReET-D (Teplý et al. 2011) – degradation module based on FReET. The fundamental 

version of ATENA is called ATENA Engineering; its native GUI is directly integrated into the SARA 

system as shown in Fig. 3. Recent development of ATENA represents ATENA Science package. Within the 

reliability analysis it is controlled by RLACS Studio through special commands in ATENA input files.  

 

4.2. FREET – UNCERTAINTIES SIMULATION 

 

The probabilistic software FReET (Novák et al. 2011) allows simulations of uncertainties of the analyzed 

problem basically at random variables level (typically in civil/mechanical engineering – material properties,  
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Figure 3. The program combination within SARA software. 

 

loading, geometrical imperfections, environment). The attention is given to those techniques that are 

developed for analyses of computationally intensive problems; nonlinear FEM analysis being a typical 

example. Stratified simulation technique Latin hypercube sampling (LHS) is used in order to keep the 

number of required simulations at an acceptable level (Novák et al. 1998). This technique can be used for 

both random variables’ and random fields’ levels. 

 Statistical correlation is efficiently imposed by the stochastic optimization technique – the simulated 

annealing (Vořechovský & Novák 2009). Sensitivity analysis is based on nonparametric rank-order 

correlation coefficients and may serve e.g. for model reduction in subsequent analyses. State-of-the-art 

probabilistic algorithms are implemented to compute the probabilistic response and reliability generally, 

including durability limit states.  

 

4.3. FREET-D – DEGRADATION SIMULATION 

 

There are many predictive computational models for degradation modelling mainly carbonation of concrete, 

chloride ingress and corrosion of reinforcement at different sophistication levels. Frequently, heuristic 

models are employed using more or less simplified approaches and data. Common feature of all these 

models is that input data are very uncertain. There is a software implementation where all relatively well-

known models are summarized within the framework of unified software environment. It is called FReET-

D where a combination of analytical models and simulation techniques has been amalgamated to form 

specialized software for assessing the potential degradation of newly designed as well as existing concrete 

structures (Teplý et al. 2011, 2012; Veselý et al. 2010). Models implemented (mainly simple-to-use “point-

in-space” probabilistic models) for carbonation, chloride ingress, corrosion of reinforcement and others 

which may serve directly in the durability assessment of concrete structures in the form of a durability limit 

states, i.e. the assessment of service life and the level of the relevant reliability measure. Several features 

are offered including parametric studies and Bayesian updating. Altogether, 32 models are implemented as 

pre-defined dynamic-link library functions. FReET-D actually represents a specialized module of FReET 

software (Novák et al. 2011), mentioned above. 
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4.4. ATENA – NONLINEAR SIMULATION 

 

The ATENA software (Červenka et al. 2002, 2007) was developed for realistic simulation of reinforced 

concrete structures. It is based on the finite element method with non-linear material models, and utilized 

for analysis of beams and girders, plates and shells, bridges, tunnels, dams, composite structures, 

strengthening, structural details, fastenings, fibre reinforced structures and masonry structures etc.  

 The ATENA software consists of calculating core ensuring the non-linear numerical analysis, and a 

user-friendly graphical interface for an efficient communication between end-user and program core. The 

numerical core covers the finite element technology, non-linear material models and non-linear solution. 

The non-linear material models are based on the orthotropic damage theory and special concrete-related 

theory of plasticity. As one of the main features the non-linear fracture mechanics is employed for concrete 

cracking in tension. Based on the fracture energy approach the tensile cracks are modeled as smeared 

material damage which enables utilization of the continuum mechanics even for the damaged material. 

Objectivity of the solution is ensured using crack band method. The material law exhibits softening after 

reaching the tensile strength. The behavior of concrete in compression is defined by special theory of 

plasticity (three-parameter model), with non-associated plastic flow rule and softening. This material model 

for concrete can successfully reproduce also other important effect, such as volume change under plastic 

compression or compressive confinement. The native graphical user-interface supports all the specifics of 

reinforced concrete, e.g. input of discrete reinforcing bars, or evaluation of crack patterns in the damaged 

structural model.  

 The new ATENA software class ATENA Science (www.cervenka.cz) enables time-dependent 

(dynamic, fatigue) and temperature-dependent (fire resistance) nonlinear analysis of complex concrete 

structures. In the last version the ATENA Science is equipped with a new user friendly interface shell called 

ATENA Studio. 

 

 

 

5. Examples of application 

 

The complex methodology and software has been applied mainly for reliability analysis of concrete bridges, 

e.g. Pukl et al. 2003ab, Lehký et al. 2010, Podroužek et al. 2010, Strauss et al. 2008. Detailed description of 

particular application for deteriorated bridge structure can be found in fib bulletin 62 Structural concrete, 

section 9.19., that example can be regarded as the most elaborated one. 

 The interesting application is analysis of facade panels made of alternative FRC-material. As it 

represents a new facade system utilizing a new composite material which exhibits a large variability, 

computational analysis was desirable to address reliability issues connected with this special structure 

(Keršner et al. 1997). 

 A 3D FEM computational model has been developed using ATENA 3D Engineering nonlinear fracture 

mechanics software (Červenka et al. 2007). Wind intake was simulated by continuous loading. The 

Newton-Raphson solution method with a loading increment step of 1 kN/m
2
 provided a non-linear solution 

to obtain ultimate load, cracks at final stage are depicted in Fig. 4. A 3D cementitious material model was 

used with material parameters identified by identification technique based on artificial neural networks. All 

of the input basic random variables involved and the particular set of their statistical parameters (mean 
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value, COV, probability distribution function (PDF)) are summarized in Table I for both the reference panel 

(R) and the degraded panel (D).  

 Statistical simulations were performed using parameters from Table 1, the resulting bundle of l–d 

curves is shown in Fig. 5 and ultimate load statistics were evaluated. Action of load – wind intake was 

considered deterministic at several levels up to 20 kN/m
2
. The theoretical failure probability – the 

probability that the panel will not resist the load (wind intake) was calculated using mathematical model of 

a PDF. The results of this reliability study are shown in Fig. 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.Cracks at failure of panel. 

 

 

 

Table I.  Basic random variables of fibre-reinforced concrete. 
 

Variable Unit Mean   COV  PDF 

Modulus of 

elasticity 
GPa 

10.1 R 0.195 
Rayleigh 

 

7.8 D 0.199 Weibull min  

Compressive 

strength 
MPa 

53.5 R 0.250 Log-normal  

31.5 D 0.250 Log-normal  

Tensile 

strength 
MPa 

6.50 R 0.250 Weibull min  

3.81 D 0.250 Weibull min  

Fracture 

energy 
J/m2 

816.2 R 0.383 Weibull max  

195.8 D 0.418 Log-normal  
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Figure 5.  Random l–d curves – the reference facade panel. 

 

 

 
 

Figure 6.  Theoretical failure probabilities for different levels of load – wind intake. 

 

 

 

6. Conclusions 

 

Virtual simulation concept and tools used on the way from assessment of experimental results to reliability 

analysis are briefly presented. The advanced methods for nonlinear, stochastic, reliability and degradation 

analysis were integrated into software package usable for complex reliability assessment of engineering 
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structures, which enables realistic simulation of the structural behaviour, damage and failure accounting 

uncertainties of input parameters, nonlinear material response and material deterioration. The presented 

tools and methods have been used in numerous practical applications of analysis, design, and life time 

assessment of concrete bridges, buildings, tunnels, power plants and other civil engineering structures.  
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Abstract: This paper contributes to the structural reliability problem by presenting a novel approach that 

enables for identification of stochastic oscillatory processes as a critical input for given mechanical models. 

Identification development follows a transparent image processing paradigm completely independent of 

state-of-the-art structural dynamics, aiming at delivering a simple and wide purpose method. Validation of 

the proposed importance sampling strategy is based on multi-scale clusters of realizations of digitally 

generated non-stationary stochastic processes. Good agreement with the reference pure Monte Carlo results 

indicates a significant potential in reducing the computational task of first passage probabilities estimation, 

an important feature in the field of e.g. probabilistic seismic design or risk assessment generally. 
 

Keywords: Stochastic process, Critical excitation, Reliability analysis, Importance sampling, Image 

processing, Pattern recognition, Identification problem 

 

 

 

1. Introduction 

 

The necessity for adopting probabilistic design concepts has become imperative among the structural static 

problems (Ang and Tang, 1990; Haldar and Mahadevan, 2000; Melchers 2001). On the other hand, 

structural dynamics is still far from practical utilizations of such concepts despite cheap contemporary 

computational costs. Among the main reasons is the uncertain nature of environmental loading that has to 

be modelled as a time-varying phenomena, represented in this paper by non-stationary stochastic oscillatory 

process as an analogy to earthquake event.  

 It is a well accepted fact that structures respond in a very uncertain manner to different ground motion 

events while there is very limited a priori knowledge on the structural behaviour. Same applying for 

models, an implication is the necessity to perform the structural analysis for each realization of the event 

separately, which makes the Monte-Carlo based reliability analysis computationally unfeasible for realistic 

assumptions, i.e. small probabilities and large sample sizes.  

 There have been several recent attempts to avoid such reliability problem in its full form. Moustafa 

(2011) proposed a framework for deriving optimal earthquake loads expressed as a Fourier series. More 

widely, critical excitation methodologists propose to identify critical frequency content of ground motions 

maximizing the mean earthquake energy input rate to structures, for details see e.g. (Takewaki, 2006). From 

a different perspective, Barbato et al. (2011) approximates the first passage problem by formulating exact 

closed form solutions for the spectral characteristics of random processes. Macke et al. (2002) presents an 

importance sampling technique for randomly excited dynamical systems. 

 The author of this paper attempt to, unlike the above, maintain the up-to-date most conceptually correct 

fully probabilistic concept (Ang and Tang, 2007) while reducing the number of required analyses by means 

of the proposed identification framework. It is based on a non-traditional assumption that there exists a 

 

5th International Conference on Reliable Engineering Computing (REC 2012) 
Edited by M. Vořechovský, V. Sadílek, S. Seitl, V. Veselý, R. L. Muhanna and R. L. Mullen 
Copyright © 2012 BUT FCE, Institute of Structural Mechanics 
ISBN 978-80-214-4507-9. Published by Ing. Vladislav Pokorný − LITERA

 
 
 
 
 

 
 
 
439



Jan Podrouzek 

finite set of rules capable of classifying synthetic samples of stochastic processes according to their 

importance as a critical input for given mechanical model. Whether such set of rules could be formulated 

for arbitrary system remains an open problem for further research. 

 

 

 

2. Development 

 

The identification strategy development follows a transparent image processing paradigm completely 

independent of state-of-the-art structural dynamics, thus representing a non-traditional option in the field. 

Reason behind such premise is experimental, aiming at delivering simple and wide-purpose method. The 

goal can be formulated as follows: find the critical realization (ST,Crit) of a stochastic process (S) from a 

target sample set ST under defined critical response (Cr) criteria. 

Proposed STS strategy steps: 

1) Construct a training sample set St of size St << ST. 

2) Solve the mechanical model (i.e. carry out a structural dynamic analysis): St -> Cr, usually 

extremely computationally expensive, therefore the size of St should be as small as possible. 

3) Select a proper graphical representation G of St (in time domain), which should serve for automatic 

feature extraction in the next step. There are two general options maintaining the physicality of  

St -> G St, transformation of St into evolutionary spectra (Priestley, 1965) or wavelet-vector 

coefficients based scalogram (Wolfram, 2011), both as 2D graphical arrays. The computational 

complexity of this task should be minimized, therefore small resolution is desired. 

4) Find a finite set of rules R such that consistently maps R(G St) -> Cr, Narrow the search domain by 

ignoring pixels with constant or random-behaviour. Include pixels into R for which the difference 

of state values between upper and lower 5
th
 percentile of the ranked G St : Cr  is maximized. 

5) Obtain ST,Crit by applying R -> ST. 

 In the broader context one should use the STS strategy to limit the number of necessary executions of 

numerical analysis of the mechanical model. It is assumed that mechanisms behind rules extracted from 

reasonably small samples are applicable to arbitrarily larger sample. Clearly, whenever using a black-box 

type of approach, there is a risk of extracting mechanisms that apply only to the training sample if its 

sample size is too small or in cases of “statistical bad luck”. The determination of minimal size of a training 

set should be based on a requirement for STS’s predictive confidence. 

 

  
 

Figure 1. Graphical representation (G) of L1 (left) and L2 (right) in a form of Wavelet Scalogram and visualized detected keypoints 

(R) using their scale (radius of the circle), orientation and contrast sign (colour).  
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As stated before, the proposed STS strategy aims at general and automated feature extraction. It should 

be noted here however that rare instances where experienced when visual comparison of the ranked 

scalograms G itself enabled for formulation of identification rule R by comparing the number of regions 

with steep contrast gradient, i.e. image keypoints. For such feature a number of standardized algorithms 

exists, e.g. implemented SURF (Herbert et al 2008), numerically robust against translation, rotation and 

scale changes. Such approach can be interpreted as assessment of localized of energy in the time domain 

and proved to be consistent for configurations of SDOF oscillators loaded by stationary or amplitude 

modulated processes. In such instances a low number of detected keypoints indicates a critical process, i.e. 

G has minimal scatter of excitation energy, for example see Fig. 2. 
 

   

   
 

Figure 2. Number of fitted oriented ellipses (based on SURF) as a performance indicator, upper row: 3 ranked maximum and 

(lower row) 3 ranked minimum response.  

 

The most general non-physical version of STS utilizes several pixels of small-resolution Wavelet 

Scalograms image for composition of R and R(G St) -> Cr mapping (step 4) based on a stochastic sensitivity 

analysis, returning pixels with state values that varies systematically according to the ranked small sample 

training sets, see Fig. 3.  

The sensitive pixels are usually in clusters forming a line (indicating a dominant scale) and/or points 

(Fig. 3). Regardless of the attractiveness of emerging questions on physical connections of these clusters to 

the mechanical models (and dominant frequencies), such debates will not be detailed here due to the limited 

scope of the paper. 
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Figure 3. Left: Array of pixels (rescaled) according to their behaviour, darker the colour, more sensitive the pixel is to the ranked 

Gs, lighter colours indicates random or invariant behaviour; right: corresponding position of the sensitive pixel at the wavelet 

scalogram.  

 

 

 

3. Acceleration and Structural Models 

 

For validation of STS method four distinct combinations of two models (M1 and M2) and loadings (L1 and 

L2) are considered. The mechanical models represent a single degree of freedom (SDOF) damped linear 

oscillator (M1) and nonlinear seismically isolated SDOF on a friction pendulum system (M2) subjected to 

an earthquake loading F(t) = −m a(t). Here a(t) is the ground acceleration described as (L1) an amplitude 

modulated random process 
 

                    (1) 
 

where e(t) is the amplitude modulating function given by 
 

                                                     (2) 
 

and b(t) denotes the stationary zero-mean Gaussian random process with power spectral density  
 

         
   

   
      

 

   
     

 
    

   
   

      (3) 

 

and as (L2) an amplitude and frequency modulated random process whose objective is to reproduce the 

general frequency variation characteristics of the acceleration record from the 1964 Niigata earthquake 

(Shinozuka, 1991) described by the Bogdanhoff-Goldberg-Bernard (1961) envelope function 
 

                                         (4) 
 

and Clough-Penzien acceleration spectrum with parameters                 as functions of time: 
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           (8) 

 

where parameters a1 = 0.68, a2 = 0.25 and σ = 100. 

 The nonlinear mechanical model M2 represents a building (SDOF) combined with a friction based 

seismic isolation (friction pendulum system) device that introduces another mechanical degree of freedom 

as well as an internal variable representing plastic slip z. The implementation was adopted from (Bucher, 

2010) and will not be detailed in this paper. The structural data for both M1 and M2 are provided in Table I, 

random realizations of L1 and L2 and response characteristics are depicted at Fig. 2. 

 
Table I. Mechanical models and structural data 

M1 M2 

 

m  

k 

c 

400 kg 

80000 KN/m 

120  

 

m0 

m1 

k0 

k00 

k1 

6080 kg 

79770 kg 

42372 KN/m 

2629 KN/m 

62500 kN/m 

 

 

Critical response criterion was formulated either as absolute values of top displacement of mass most 

distant from the application of seismic load or as given percentile of the mean-square values of the 

displacements. The former criterion led to better identification performance and therefore was adopted.  

 

 

 

4. Identification Results 

 

Development and testing of the STS on multiple scales and process-model scenarios showed that it is 

difficult, perhaps impossible, to formulate a general identification rule of physical interpretability, a fact 

that corresponds with the structural dynamics paradigm. One of such attempts led to the formulation of R 

incorporating the image keypoints as a way of quantifying the energy scatter in the loading process. 

Therefore, soft computing techniques were deployed in search for general black-box type method. The 

presented state of STS was tested on large number of clusters composed from a total of 4.2 × 10
4
 

realizations of Kt and Ni process in combination with various mechanical models. The stochastic 

simulations revealed the existence of R for every tested process-model scenario. Results presented in Fig. 5 

were chosen to demonstrate the variability of performance and do not represent the best nor worst analyzed 

process-model instances. 
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Figure 4. Example of realizations: left column top down: L1 process, M1 and M2 response to L1; right column top down: L2 

process, SDOF response to L2, FPS response to L2 (note the abrupt change of frequency content at 5.5 sec); time at horizontal axes, 

acceleration/displacement on vertical axes. 

 

The performance index was defined according to the following integral 
 

         
 

 
                                                                              (9) 

 

where PDFmin/max states for the probability distribution function fitted to the ranked minimum/maximum set, 

growing isolation of these functions indicates better performance (see Fig. 6). The integration range 

corresponds to the admissible value of the G pixels. 
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Figure 5. Performance index P as a function of sample size n, left to right: KtM1, KtM2, NiM1, NiM2; dashed line represents the 

Normal distribution PDFs fitted to 21 joined min and max sets for sample size n = 2.1 × 104; Note the PDFs spacing effect on 

performance index. 

 

   
 

Figure 6. Ranked sets PDF {min, max} Isolation growth with increasing sample size n = {100,500,1000}; KtM2 realizations. 

 

 

 

5. Importance Sampling 

  

Following a successful formulation and validation of R according to the proposed STS, the importance 

sampling strategy is based on applying R to the full (original) set of realizations of stochastic processes and 

sorting the functional values of this product. Finally, the first n realizations corresponding to the ranked set 

are determined as critical input for numerical models. The determination of n depends on the required 

Importance Sampling confidence, e.g. in the presented case study (KtM2 model-process scenario) n = 10, 

i.e. 1% of the full set (1000), see figures 7 and 8.  
The importance sampling test scenario, as described above, proved to be a consistent measure for 

reducing the 1000 sample set to a smaller set while maintaining the same critical response characteristics. 

The STS utilized 100 sample training set (10%) and the consequent importance sampling required 

additional 10 analyses (1%), therefore reducing the computational task by 89%. The additional 1% ensured 

that the important sample (most critical response) was captured by over 91% (within 21 test runs). Note the 

effect of emergent 2
nd

 branch STS artefact from Cr distribution plot according to ranked R product. The 

inverse of the same plot (fig. 7) does not exhibit such effect, representing the amount of unaccounted 

information by STS. This is partly due to (i) incorporating only one sensitive point and (ii) ambiguous  

Cr -> Rp identifier based RGB channels. The performance of STS could be enhanced by including multiple 

 

 
 
 
5th International Conference on Reliable Engineering Computing (REC 2012)

 
 
 
 
 

 
 
 
445



Jan Podrouzek 

sensitive points with cross-correlations (i) and by modifying the R products by labels (e.g. random binary 

sequencing) or by enhancing the colour depth to ensure uniqueness (ii).  
 

  

Figure 7. Left: Inverse property of ranked critical response (Cr points) and the R product (both Rescaled to (0,1) vs. sample size 

1000, Sti); here for illustration n = 10 and corresponding critical input markers “x”, others “o”. Right: Percentage of necessary/full 

computational task as a function of Cr ranked maxima (required/full volume) for 2 colour channels (RGB). 

 

 

 
 

Figure 8. Rescaled distribution of Cr points (gray cloud) according to ranked R product (black line) from individual realizations Sti; 

21 repeated runs; particular realization in red points; note the emergent 2nd branch STS artefact. 

 

The effect of unaccounted information does not only exhibit itself via the 2
nd

 branch, but clearly also by the 

inability to always capture the single Cr maximum, as one might observe on the comparison plot at Fig. 9. 

Here the goal was to determine the probability of exceeding a critical displacement threshold ulim at 

different sample size scales and compare it against reference pure Monte Carlo values. In terms of accuracy 

the maximum reached deviation between the MC reference and SST value was 15%, however, in terms of 
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computational efficiency the STS based importance sampling utilized only 4.6% of the MC computational 

cost, i.e. 0.6% for feature extraction and the remaining 4% for running the n realizations corresponding to 

the Pr ranked sets. This result indicates that there is significant potential in the application of the STS 

approach to the estimation of first passage probabilities. Nevertheless, the accuracy in its present form is not 

comparable to established simulation techniques. Due to its substantial computational advantage, however, 

the present approach will be suitable especially for reliability-based design optimization in which the 

reliability analysis has to be repeated frequently. 
 

 
 

Figure 9. Determination of probability of exceeding a critical displacement threshold ulim at different sample size scales: 

Comparison of pure Monte Carlo method (100% computational costs) and STS based importance sampling at 4.6% of 

computational cost. 

 

 

 

6. Discussion and Conclusion  

 

A novel Small Training Set strategy proposed by the author enables for identification of critical stochastic 

oscillatory processes with respect to given mechanical model. Such process is understood here as an 

environmental load acting on a structural system. From a design point of view, it is essential to understand 

what particular realization of such process has the critical impact on the structure. Traditionally, it is 

understood that each individual dynamical system has a very unique response to various stochastic loads. 

Therefore, for Monte-Carlo-based structural reliability considerations, all realizations of the stochastic load 

must be executed individually, making the task computationally unfeasible for realistic failure probabilities, 

since no sampling technique capable of reducing such task is available up to current date. 

 Motivated by the latter statement, an importance sampling strategy is formulated such that it reduces 

the size of the computational task without sacrificing any of the properties of fully probabilistic approach. 

As demonstrated on the numerical examples, the identification is feasible with varying performance 

according to the type of process-model scenario. As one may observe at Fig. 5, there is no relationship 

between the complexity of the process or model and the performance index. 

 

 
 
 
5th International Conference on Reliable Engineering Computing (REC 2012)

 
 
 
 
 

 
 
 
447



Jan Podrouzek 

 Positively tested for both stationary and non-stationary processes, linear and non-linear mechanical 

models, an important implication is that the proposed STS strategy moves the fully probabilistic approach 

within the context of dynamical systems one step closer to the engineering practitioners, motivated by the 

ever-growing demand for performance-based design. Besides from the engineering community, STS may 

be a useful technique in the context of environmental sciences, such as water resources, solving analogous 

problems, e.g. realistic critical precipitation scenarios. 

 Further research will focus on possible extensions and improvements regarding the accuracy of the first 

passage probabilities as well as the treatment of more complex engineering models including structural 

dynamics and hydrology. 
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Abstract: The current codes include three load combination methods: Permanent loads are always 

combined dependently. A permanent and a variable load are combined dependently or independently and 

two variable loads semi-dependently or dependently.  

However, if the loads are simultaneous, i.e. the loads are active at the same time with one on the other, 

they are combined dependently. If the loads are not active at the same time, the distributions can be altered 

in a way the loads are simultaneous i.e. loads are always combined dependently in the structural design.  

The dependent load combination results in higher safety factors, G, Q, M, and combination factors, 

0, than the ones obtained semi-dependently and independently. 

The dependent load combination is reliable, it is simple and it requires little calculation work.  
 

Keywords: load combination, code, design 

 

 

 

1. Introduction 

 

The load combination is one of the key issues of the structural design and the design codes, (EN 1990, 

2002; ISO 2394, 1996). A uniform theory of the load combination is missing. The dominant hypothesis is 

that the loads are combined independently if the loads are independent and dependently if the loads are 

dependent. However, the permanent loads are independent, but combined always in current codes 

dependently. The permanent load and the variable load are often considered independent and combined 

sometimes independently and sometimes dependently but these loads are dependent during the normal 

service time, 50 years, and must therefore be combined dependently. The one-year loads are independent 

but simultaneous and must be combined dependently i.e. by accumulation, too. The variable loads are 

combined semi-dependently but these loads should be combined dependently after the distributions are 

altered in a way the loads are simultaneous. This paper explains that loads are always combined 

dependently in the structural design which results in higher safety, G, Q, M, and combination factors, 0, 

than the ones in the current codes. 

 

1.1. SYMBOLS 

 

Symbols in this paper are mainly the same as used in the eurocode: 

G Permanent load 

Q Variable load 

 Safety factor  

 Mean 

 Deviation 
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 Reliability index, Pf = (-),  is standardised cumulative normal function 

Pf Failure probability, in the eurocode Pf = 1/15400, =   

V Coefficient of variation V =  / 

dp Design point value, the cumulative distribution value at the design point 

ds Duration of part time load, e.g. snow load 

dw Duration of full time load, e.g. wind or imposed load

 

1.2. TERMS 

 

Some essential terms in this paper are: 

Simultaneous – semi-simultaneous – non-simultaneous loads  

Two loads are simultaneous during a reference time, if the loads are active during this time with one 

on the other. These loads may be dependent or independent but combined always dependently 

without combination or reduction factors which would result in a load vanish. However, the 

combination of two variable loads may include a combination factor induced by a distribution 

conversion.  

The loads are non-simultaneous if the loads are not active at the reference time and semi-

simultaneous if not simultaneous or non-simultaneous.  

Permanent loads with each other and a permanent load and a variable load are always simultaneous. 

Variable loads are normally semi-simultaneous but the distributions can be altered in a way these 

loads are simultaneous.  

Dependent – semi-dependent – independent loads   

Two loads are dependent if the loads at the same fractiles occur at the same time.   

If one load of the two loads to be combined is a variable load, the loads may be equally dependent – 

semi-dependent – independent at the same time. The reason is that the load distribution of the 

variable load is defined to be the maximum load during one year. When time increases, several 

distributions and loads become available for the combination. At the infinite time there are infinite 

combination options and all dependent options (dependent – semi-dependent – independent) are 

equally possible.   

Two individual simultaneous loads are independent but when time increases and/or number of loads 

increase, the loads become dependent.   

When the distributions of the loads are fixed to the active time of both loads with one on the other 

and when time or number of loads increase while one load is selected the other load becomes 

automatically defined, too, as the loads occur at the same fractile at the same time. Due to this 

relation, the loads are dependent. A permanent and a variable load are dependent during one year 

only at low fractiles, 0.02 or less, i.e. the loads are semi-dependent and virtually independent, but 

these loads become more dependent when time increases, e.g. they are dependent up to fractile ca 

0.98 in 50 years i.e. these loads are virtually fully dependent during the normal service time of 

structures, 50 years.  

Two variable loads are similarly dependent, too, when the distributions are altered in a way both 
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loads are active at the same time with one on the other.   

The dependence of the simultaneous loads may be explicit and physical i.e. the actual loads occur at 

the same time, e.g. the permanent and the variable load during 50 years.  

The dependence of the simultaneous loads may also be implicit i.e. the individual loads are 

independent but a group of loads include at least one dependent load pair and the group acts 

dependently, e.g. imposed and permanent loads of a multi storey house.  

The semi-dependent loads are normally dependent at low fractiles.   

Two loads are independent if the loads do not occur at the same time at the same fractile.  

Dependent – semi-dependent – independent load combination  

Two loads are combined dependently by adding up the distributions by fractiles i.e. a load X with an 

item xi in fractile i and a load Y with an item yi in fractile i is combined dependently to obtain the 

combination load XY with an item xyi in fractile i by adding up xi and yi, i.e. xyi = xi + yi (Poutanen, 

2011). If the Monte Carlo simulation is used to combine the loads, in the dependent combination one 

seed number is used. If the convolution equation is used to combine the loads, the deviation of the 

combination load is fixed in a way the combination distribution crosses the crossing point of the 

partial distributions (Poutanen, 2011). In the dependent combination, the action of a new load in the 

combination is independent of other loads in the load combination.  

The semi-dependent combination is an imprecise abstraction. Several semi-dependent combination 

methods exist, e.g. Turkstra’s method where one load has the maximum deterministic value 

corresponding to the target reliability and the other load has a random value. The semi-dependent 

combination should lie between the dependent and independent combination. This is normally true at 

least at high fractiles.   

In the independent combination, the loads are combined randomly e.g. by using the convolution 

equation or by using the Ferry Borges – Castanheta’s method or by using the Monte Carlo simulation 

and two seed numbers. In the independent combination, the action of the new combination load 

depends on the earlier loads of the combination.   

The current terms dependent and independent combination are misleading as in the independent 

combination the partial loads are independent but the combination load is dependent of the partial 

loads and in the dependent combination vice versa. Therefore it would be clearer to use terms random 

and accumulation summation.  

The rule of the maximum load combination  

A basic rule of the structural design is that the loads must be combined to obtain the maximum load. 

According to this rule, all loads should be combined dependently as the dependent combination 

results in the highest load. However, this rule is currently applied only to load combination 

alternatives with equal occurrence probability. Therefore this rule is not always applied as the 

independent or the semi-dependent combinations are considered more probable.  

The permanent load and the variable load may be combined dependently, semi-dependently or 

independently. A new finding is that all these combination options are virtually equally possible 

during 50 years and therefore the maximum load combination rule must be applied i.e. these loads 

must be combined dependently. A further argument for the dependent combination is that even the 
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independent one year loads must be combined by accumulation. Variable loads are dependent, too if 

the distributions apply to the same time, and these loads are combined dependently.   

Two permanent loads are independent but combined dependently.  

 

1.3. ASSUMPTIONS, LIMITATIONS 

 

The assumptions of the eurocode (EN 1990, 2002) are applied except for the load combination.  

The variability and error induced by the code uncertainty, robustness, design, execution, use, 

degradation and wear out are excluded here. 

 

 

 

2. Load combination in current codes 

 

Loads are combined in the current codes in three ways: 

 Permanent loads are always combined dependently.  

 A permanent and a variable load are combined in the failure state sometimes dependently and 

sometimes independently but in the serviceability state always dependently.  

 Two variable loads are always combined semi-dependently if these loads are the first and the second 

load in the load combination, but always dependently if the loads are third, fourth etc. load in the load 

combination. 

The eurocode (EN 1990, 2002) includes three options to combine the permanent and the variable load, 6.10, 

6.10a,b and 6.10a,mod. The first one is dependent and the others are independent. The Finnish eurocode is 

based on 6.10a,mod.  

 

 

 

3. Load vanish 

 

In the dependent load combination, no load vanishes. The loads are added up as such without any 

reductions or combination factors which would result in a load vanish. 

In the semi-dependent and in the independent load combination a part of the load disappears in the 

combination. When two variable loads are combined semi-dependently a combination factor 0 ≈ 0.6…0.8 

is applied, which results in a load vanish of ca 0…20 %.  

When a permanent and a variable load is combined independently, a load vanish of ca 0…10 % occurs, 

which is realized in the material safety factor M. 

We may deduce the independent load combinations wrong due to the load vanish: Assume a material 

(or a structure) has the survival probability S and the resistance 1 for the permanent load G alone and the 

variable load Q load alone. Now, if the material is loaded by 0.5G and 0.5Q and the loads are combined 

independently, the material has the resistance of ca 1.1
1
 and if combined dependently, the resistance is 1. 

The independent combination is not viable. It is impossible that the effect of one load decreases if the other 

                                                      
1
 In the eurocode more precisely 1.0646, VG,normal = 0.09147, VQ,gumbel = 0.4,  = 3.826. 
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load is present as there is no link between the loads. The semi-dependent load combination is wrong for the 

same reason. 

 

 

 

4. Simultaneous loads are combined dependently 

 

Next examples are presented which show that simultaneous loads are combined dependently. The target 

survival probability is 0.98
2
, G = 1, Q = 1 and the material is ideal with no variation VM = 0, M = 1.  

 

4.1. COMBINATION OF PERMANENT LOADS 

 

Permanent loads are simultaneous with each other. Permanent loads are independent, but these loads are 

combined dependently in all codes. This is correct as the independent and the semi-dependent load 

combinations are unrealistic: Assume a multi-storey house with the total design permanent load 1 on n 

floors. Now, if the number of floors n increases and the total permanent load remains and the total design 

load must remain, but the independent and the semi-dependent combination result in a decreased load.  

 

4.2. COMBINATION OF PERMANENT AND VARIABLE LOADS 

 

Structural design codes include a permanent load distribution G which defines the probability for the load 

not to reach the design point value. Accordingly, the variable load distribution Q defines an analogous 

probability for the variable load during one year. These distributions are independent and if combined, the 

combination distribution applies the random combination of the loads. The loads are combined in the 

structural design definitely, i.e. by accumulation and dependently. 

A further reason for the dependent combination is that the permanent and the variable loads are 

dependent during the normal service time of structures: The probability of the variable load not to reach the 

design point value in one year is a low probability Pf1 (0.02 in the eurocode). When time increases this 

probability increases, e.g. in t years it is 1 – (1 - Pf1)
t
. We find that each fractile value of the Q distribution is 

associated to a fixed time. When the time is long, G and Q are fully dependent as all fractile values of G 

distribution occur at the same time as the corresponding fractile values of Q distribution. Due to this 

relation, G and Q must be combined dependently, i.e. by the accumulation summation.  

 

4.3. COMBINATION OF VARIABLE LOADS 

 

Two variable loads are combined almost analogously to the combination of the permanent and the variable 

load i.e. dependently when the distributions are first converted to the same time and simultaneous. In this 

combination, assumptions must be made about the basic characteristics of the variable loads. In my article 

(Poutanen, 2012) I assume that two kinds of variable loads exist: full time and part time loads, Figure 1. 

Each variable load has its characteristic duration dw and ds.  

This variable load combination model is approximate: It is assumed that the load has a constant value 

through its duration i.e. the gradual increase and decrease of the load in the beginning and at the end is 

                                                      
2
 In this example the characteristic permanent load is the 0.98-value for the permanent load, in the eurocode it is the 0.5-value.  
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ignored. Further, appropriate load duration data, ds and dw, is lacking. However, this model allows us to 

make applicable conclusions by setting a range in the load durations. 

When the wind load and the snow load is combined according to this model, the wind load distribution 

is converted to the time of the snow load and thereafter the loads are added up as such without any 

reductions, combination factors etc. In this combination, the snow load has no combination factor 0 = 1, as 

the snow load distribution defined to one year is equal as the distribution defined to the winter. The wind 

load has a combination factor 0 which is caused by the distribution conversion. Individual wind and snow 

loads are independent but combined dependently. These loads become dependent when time and number of 

loads increase. Ca 50 snow-wind-load pairs are virtually fully dependent during 50 years.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. The variable load model, the part time load, upper Figure and full time load, lower Figure. The loads f are gumbel 

distributed and have a constant value within periods ds and dw.  

 

We can change a distribution assigned to one year to n years by using an equation (EN 1990, 2002):  

  n    1  
n

      (1) 

where 

1 reliability during one year, survival probability and the cumulative distribution value at the design 

point, in the eurocode 1 = 4.7 

n reliability at time n  

n time (in years) 

In the eurocode the variable load distribution FG(x, , ) is gumbel and the target 50-year reliability value 

50 is 3.826, where the parameters, , , can be solved  = 0.2613,  = 0.1045. When the distribution is 

changed to time n, in years, the distribution must be multiplied by factor kQn, which can be solved from 

equation: 

d
w

 

d
s
 

f 

f 

t (years) n n+1 n+2 
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FG 1  k Qn  k Qn    50 

n

50

     (2) 

Table 1 includes kQn – values for certain times n calculated from equation 2. The kQn – value is the load 

combination factor 0, which is applied in the loads. Depending on the character of the loads the 

combination factor is applied in a fixed load, or in the lesser load. 

 
 Table 1. kQn –values calculated for certain times n.  

Time n (load duration)  kQn 

0.01 second 0.32 

0.1 second 0.34 

1 second 0.37 

1 minute 0.41 

10 minutes 0.45 

1 hour 0.49 

10 hours 0.53 

1 day 0.56 

1 week 0.61 

2 weeks 0.63 

1 month 0.66 

2 months 0.68 

3 months 0.70 

6 months 0.73 

1 year 1 

 

According to this load combination model, the snow load never has a combination factor, 0 = 1. A load or 

a sum of loads, combined to the snow load has a theoretical combination factor 0 = 0.63...0.73 if the snow 

load lasts for 2 weeks...6 months. The code factor should be little higher to take into account the uncertainty 

of the model, ca 0 = 0.8. If we assume that the live load and the imposed load lasts for 10 minutes...10 

hours, these loads combined to each other have a theoretical combination factor 0 = 0.45...0.53 and a code 

factor ca 0 = 0.6 assigned in the lesser load.  

When imposed loads are combined to each other a combination factor is not applied 0 = 1 regardless of 

the duration of these loads as the imposed loads are proportions of the total imposed load in a house.  

 

 

 

5. Conclusions 

 

The simultaneous loads are always combined dependently in the structural design. If the loads are not 

simultaneous, the load distributions can be converted in a way the loads are simultaneous, i.e. the loads are 

always combined dependently.  
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Abstract. Modern technical systems are heterogeneous in the sense that they tightly integrate computational
elements into physical surroundings. Computational elements usually require discrete, and physical systems
continuous modeling. In this paper, we present an modeling formalism and safety verification algorithm for
such heterogeneous systems.

1. Introduction

Modern technical systems more and more consist of a tight integration of computational devices into phys-
ical surroundings. For example, in modern cars, a large part of the development cost goes into software
and digital electronics. Moreover, the complexity of such systems is growing rapidly. Hence it is of utmost
importance to come up with formalisms for modeling, and algorithms for analyzing such systems.

The notion of a hybrid dynamical system is a current approach for modeling computation in physical
surroundings (Lunze and Lamnabhi-Lagarrigue, 2009). Such systems integrate ordinary differential equa-
tions with finite state machines, based on a state space that is the Cartesian product of a subset of Rn and
a set of finitely many states. Uncertainty is usually included by also allowing differential inequalities, or by
allowing uncertain parameters in the differential equations. However, finite state machines do not suffice for
modeling software of the complexity occurring in modern technical systems.

In our work, we will present an extension of the hybrid system model to systems that are parametric in k
data types, with k an arbitrary, but fixed, positive integer. Those data types are generic in the sense that they
can be chosen arbitrarily as long as they fulfill certain conditions that are met by the most widely-used data
types such as integers, arrays, and lists. The state space of the new model is formed by the Cartesian product
of a subset of Rn and the used data types. Again, the dynamics of the continuous part of the states space is
given by ordinary differential equations (or inequalities).

Moreover, we provide an algorithm for the formal safety verification of such systems (i.e., the automatic
verification that the system state always stays in a certain set of states considered to be safe) based on
certain operations that the basic data types are required to provide. The algorithm is an extension of our
earlier algorithm for hybrid systems verification (Dzetkulič and Ratschan, 2011).

This work was supported by MŠMT project number OC10048 and long-term financing of the Institute
of Computer Science (RVO 67985807).
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2. Problem Definition

Let us assume k (not necessarily distinct) data types D1, . . . , Dk. For each of those data types we assume
certain functions and relations. For example for a certain i ∈ {1, . . . , k}, Di might be the set of integers
with the functions addition and multiplication, and relations = and ≤. Another examples is the set of lists
of integers with the operations nil (for describing the empty list), first (for taking the first element of
a list), rest (for taking the result of removing the first element of the list), and cons (for constructing a
new list from an integer, and an old list). In the case of classical hybrid systems, there is just one data type,
consisting of finitely many (but a potentially huge number) of so-called modes.

For modeling the physical surroundings we use the n-dimensional real space Rn, with functions such as
addition and multiplication, and relations such as equality = and inequality ≤.

Now we assume a language L of constraints whose semantics is built on top of the semantics of the
functions and relations of the data types D1, . . . , Dk, and of the real numbers. For example, having just one
data type, the integers, L might consist of conjunctions of linear equalities and inequalities. Having both
integers and lists over integers, we might allow expressions such as

x′ = x + 1 ∧ l′ = cons(x′, l).

For us, the specific form of the language will not be important, but it will be essential to have certain
constraint solving algorithms on them. We will introduce the specification of those algorithms in Section 3
and describe concrete possibilities for implementing them in Section 4.

Now, in order to describe the behavior of software within physical systems, we will introduce dynamical
systems over those data types. The state space Φ will be given by D1 × . . .×Dk × C, where C ⊆ Rn.

DEFINITION 1. A system H is a tuple (Flow, Jump, Init, Unsafe), where Flow ⊆ Φ × Rn, Jump ⊆
Φ× Φ, Init ⊆ Φ, and Unsafe ⊆ Φ.

Informally speaking, the set Init specifies the initial states of a system and Unsafe the set of unsafe
states that should not be reachable from an initial state. The relation Flow specifies the possible continuous
behavior of the system by relating states with corresponding derivatives, and Jump specifies the possible
discontinuous behavior by relating each state to a successor state.

We can describe those sets using the language L. For example, using the constraint above to describe
the set Jump—assuming that unprimed variables denote the current state and primed variables the successor
state—will result in a system that creates a list of successive integers.

Another example, is a system with state space {on,off} × R2, where the set Flow could be described
by a constraint of the form

[mode = on ∧ ẋ = x + y ∧ ẏ = x− y] ∨ [mode = off ∧ ẋ = x + y ∧ ẏ = x− 2y].

Here we view mode as a variable ranging over {on,off}, and x, ẋ, y, ẏ as variables ranging over R. Note
that the dot in ẋ is just used as a way of defining a new variable distinct from x—it is not yet connected
to any form of derivation. It will be connected to derivation only now, in the following definition of system
behavior:
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DEFINITION 2. For a certain discrete state s ∈ D1 × . . . ×Dk, a flow of length l ≥ 0 in s is a function
r : [0, l] → Φ such that the projection of r to its continuous part C ⊆ Rn is differentiable and for all
t ∈ [0, l], the projection of r to its discrete part D1× . . .×Dk is s. A trajectory of a system H is a sequence
of flows r0, . . . , rp of lengths l0, . . . , lp such that for all i ∈ {0, . . . , p},
1. if i > 0 then (ri−1(li−1), ri(0)) ∈ Jump, and

2. if li > 0 then (ri(t), ṙi(t)) ∈ Flow, for all t ∈ [0, li], where ṙi is the derivative of the projection of ri to
its continuous component.

A (concrete) error trajectory of a system H is a trajectory r0, . . . , rp of H such that r0(0) ∈ Init and
rp(l) ∈ Unsafe, where l is the length of rp. H is safe if it does not have an error trajectory.

In the rest of the paper we will assume an arbitrary, but fixed system H . We will denote the set of its
error trajectories by E . In this paper, we study the problem of safety verification. This means that we want
to check whether a given system has an error trajectory, that is, whether the set E is empty.

3. Safety Verification

One method for safety verification (that is used in so-called ”bounded model checking”(Biere et al., 2003;
Fränzle et al., 2007)) in the discrete time case is, to take the set of initial states, and compute the set of states
reachable in one step, two steps, etc. and to check whether the result intersects the set of unsafe states. This
has the drawback that it verifies safety of a given system over a bounded number of steps (at least for infinite
state systems, and without additional techniques). Since the number of steps realistic systems can take is
often huge, it is often more useful to design methods that check safety over unbounded time.

The straight-forward approach to verify safety over an unbounded number of steps is, to check whether
the union of reachable states for subsequent time steps reaches a fix-point (in other words, further times
steps do not result in further reachable states). For finite-state systems this is the main topic of the field of
unbounded model checking (Clarke et al., 1999). For infinite state (but discrete time) systems in the form of
computer programs, this is studied by abstract interpretation (Nielson et al., 1999). Such approaches make it
necessary to first choose a representation for sets of system states for which a fix-point check can be easily
done, and then to over-approximate the reachable states of the system using that representation.

This technique is also the basis of the first tools for safety verification of hybrid systems (Henzinger
et al., 1997). However, for systems with non-trivial continuous evolution, this strategy has one severe draw-
back: For hybrid systems with non-trivial continuous dynamics even bounded time reach set computation
necessarily involves over-approximation. A-priori it is not clear how precisely the reachable sets have to
be computed to prove a given safety property. Hence, it may be advantageous to first compute approximate
information using loose over-approximation, and then incrementally refine this.

Such techniques are popular in finite state and program verification under the name of ”counter-example
guided abstraction refinement” (CEGAR) (Clarke et al., 2003b) that has also been tried for hybrid sys-
tems (Alur et al., 2006; Clarke et al., 2003a). However, for systems with a partially continuous state space,
this easily results in a behavior where the computed approximate information radically grows in size without
representing enough information necessary for proving the safety property at hand.
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In some earlier work (Dzetkulič and Ratschan, 2011), we presented a technique for avoiding this behav-
ior for hybrid systems, and here we extend the technique to complex heterogeneous systems of the type
described above.

Our approach is be based on an incremental refinement of a covering of the systems state space Φ by
connected sets that we will call regions. We will form the regions in such a way that no two regions will
overlap (i.e., regions are allowed to intersect, but only on their boundaries of the continuous part of the state
space). The method is independent of the class of regions used. For example, in the special case of hybrid
systems with a state space M × Rn, where M is finite, the regions can be formed by pairs consisting of
an element of M and a Cartesian product of closed intervals (i.e., a box). But other classes of regions (e.g.,
based on polyhedra) are equally conceivable.

DEFINITION 3. An abstraction is a graph whose vertices (which we will also call abstract states) are
formed by regions that may be labeled with labels Init or Unsafe. We call the edges of an abstraction
abstract transitions.

This is the basic form of abstraction. However, an abstraction might be extended with much more infor-
mation about the concrete system. For example, in our instantiation of this approach to the hybrid systems
case (Dzetkulič and Ratschan, 2011), we store additional information on where trajectories might leave the
regions.

For example, for a state space Φ = R2, and the regions delimited by the black lines in Figure 1, a

Figure 1. Abstraction Example

corresponding abstraction might be the graph consisting of those regions as nodes, the vertices given by the
arrows (colored in blue), and with the region on the left-hand side (colored in green) marked as initial, and
two regions on the right-hand side (colored in red) marked as unsafe. Such an abstraction represents the
set of all trajectories that start in a region marked as initial (i.e., in a region colored in green in the figure),
follows the edges of the graph (i.e.., the blue arrows in the figure), and ends in a region marked as unsafe
(i.e., in a region colored in green in the figure). We will formalize this now.

We call a sequence of abstract states a1, . . . , al an abstract trajectory. If all abstract states and all tran-
sitions between successive abstract states in an abstract trajectory belong to an abstraction A, we call it an
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A-abstract trajectory and we denote it by a1 → . . . → an. An (A-)abstract trajectory represents the set of
concrete trajectories that begin in the region of a1, move from one abstract state region to the next only if
there is a corresponding concrete transition, and end in the region of an. We denote this set by [[a1, . . . , an]]
for a given abstract trajectory or [[a1 → . . .→ an]] for some A-abstract trajectory.

This can be formalized as follows: We define a splitting of a flow l to be a sequence of flows s1, . . . , sr
such that for all i ∈ {1, . . . , r}, for all t ∈ [0, length(si)], si(t) = l(

∑
j∈{1,...,i−1} t + length(sj)). A

trajectory splitting is a concatenation of splittings of its individual contained flows. [[a1, . . . , an]] then is
the set of all concrete trajectories r1, . . . , rp that have a trajectory splitting q1, . . . qn, such that for all i ∈
{1, . . . , n}, for all t ∈ [0, length(qi)], qi(t) ∈ ai.

An A-abstract error trajectory is an A-abstract trajectory a1 → . . . → an such that in A, a1 is labelled
initial, and an is labelled unsafe.

An abstraction A represents the set of all concrete trajectories [[a1 → . . . → an]] for abstract error
trajectories a1 → . . .→ an in the abstraction A. We denote this set by [[A]].

The intuition is that, during abstraction refinement, the abstraction stays an over-approximation of the set
of error trajectories E of a given system. We say that an abstraction A∗ is a refinement of an abstraction A
iff
− the abstraction A∗ represents less trajectories than A, that is, [[A∗]] ⊆ [[A]], and

− the abstraction A∗ does not lose error trajectories that are present in A, that is [[A∗]] ⊇ [[A]] ∩ E .
Now we will come up with an algorithm that will incrementally improve an abstraction by refining it, without
increasing the number of abstract states in the abstraction. Note that, in particular, A is a refinement of A
itself, but in practice we will try to remove as many trajectories from the abstraction as possible.

Given abstract states a and a′, we will assume a procedure Init(a) that computes an over-approximation
of the set of points in a that are initial (i.e., an element of Init), and a procedure Reach(a, a′) that computes
an over-approximation of the set of points in a′ reachable from a according to the system dynamics (here we
do not assume any time bound, implementations of those procedures that compute reachability over bounded
time would only require slight modifications of our algorithms). Our method is independent of the concrete
technique used to compute those procedures. Still, in Section 4 we will discuss in detail how this can be
implemented in practice. We assume that smaller inputs improve the precision of these operations, that is:
− a1 ⊆ a2 implies Init(a1) ⊆ Init(a2)

− a1 ⊆ a2 and a′1 ⊆ a′2 implies Reach(a1, a
′
1) ⊆ Reach(a2, a

′
2)

Furthermore, we assume that these procedures exploit information about empty inputs, that is:
− a = ∅ implies Init(a) = ∅

− a = ∅ implies Reach(a, a′) = ∅

− a′ = ∅ implies Reach(a, a′) = ∅
In the following, we require the existence of operationsv and] on regions, with the following properties.

− v such that if a∗ v a, then for all n ∈ N, for all i ∈ {1 . . . n} and for all regions b1 . . . bi−1, bi+1 . . . bn
we have that [[b1, . . . , bi−1, a

∗, bi+1, . . . , bn]] ⊆ [[b1, . . . , bi−1, a, bi+1, . . . , bn]] i.e., less concrete tra-
jectories follow a given abstract trajectory after replacing an abstract state by smaller one wrt. v
operation.
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− ] s.t. for all regions a1, a2, b : a1 v b∧ a2 v b implies a1 ]b a2 v b, a1 v a1 ]b a2 and a2 v a1 ]b a2.

Since in our case abstract states represent sets, this can be ensured by the following:

− ] s.t. for all a1, a2 ⊆ b: a1 ∪ a2 ⊆ a1 ]b a2 and a1 ]b a2 ⊆ b

− v s.t. a1 v a2 iff a1 ⊆ a2

This is our natural interpretation of ] and v. However, different choices are possible, as long as they fulfill
the above properties: For certain representations of regions it might be convenient to use a weaker form of
v efficiency reasons. Also, when encoding more information into abstract states (Dzetkulič and Ratschan,
2011), different interpretations of those symbols are often convenient.

In the instantiation of the method with boxes, a1 ]b a2 is the smallest box that includes both argument
boxes a1 and a2, but does not exceed b (i.e., box union intersected with bounding box), and v is the subset
operation on boxes. Note that for a1, a2 ⊆ b defining a1 v a2 iff a1 ]b a2 = a2 fulfills the above property.

The following algorithm (which we will call pruning algorithm) computes a refinement of a given ab-
stractionA. The intuition is to remove parts from the regions forming the abstraction for which we can prove
that they cannot lie on an error trajectory.

A∗ ← copy of A, all regions set to ∅, no initial labels, no edges
// from now on, for every abstract state a of A,
// we denote by a∗ the corresponding abstract state of A∗
for all a ∈ A, a is initial

a∗ ← Init(a)
if a∗ 6= ∅ then

mark a∗ as initial
while there is a pair of abstract states (a1, a2) in A with

a1 → a2, s.t. Reach(a∗1, a2) 6v a∗2 or (a∗1 6→ a∗2 and Reach(a∗1, a2) 6= ∅) do
if a∗1 6→ a∗2 in A∗ then introduce an edge a∗1 → a∗2 into A∗
if Reach(a∗1, a2) 6v a∗2 then a∗2 ← (a∗2 ]a2 Reach(a∗1, a2))

return A∗

Algorithms of such a type are known in the literature under them name ”chaotic iteration” or ”worklist
algorithms” (Cousot and Cousot, 1977; Bourdoncle, 1993; Nielson et al., 1999; Apt, 1999; Apt, 2000).

Like similar algorithms in abstract interpretation, this algorithm computes unbounded reachability based
on a fixpoint argument. However, unlike those algorithms, it exploits and refines the knowledge already
available in the abstraction A. In contrast to CEGAR approaches, the algorithm does not increase the size
(i.e., the number of nodes) of the abstraction. Still it deduces some interesting information:

THEOREM 1. The result of the pruning algorithm is a refinement of the input abstraction A.

Since the algorithm uses knowledge about the given system only through the operations Init and Reach ,
the correctness proof for the hybrid systems case (Dzetkulič and Ratschan, 2011) also applies here. For
a similar approach in a completely discrete context see the notion of abstraction slicing (Brückner et al.,
2008).
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Note, that it is a-priori not clear, that the pruning algorithm terminates. However, termination can be
ensured, for example, by using a representation for which, for given regions a and b, there is not infinite
chain a v a1 v a2 v . . . v b.

In the case where the discrete part of the state space is finite, and the regions describing the contin-
uous part are formed by boxes, this holds if the endpoints of the corresponding intervals are formed by
floating-point numbers, and the continuous state space is compact. Strategies for ensuring termination of
such fixpoint computations are widely studied in the abstract interpretation community under the term
”widening”.

As already mentioned, the pruning algorithm tries to deduce information about a given system without
increasing the size of the abstraction. In cases, where it can deduce no more information, we have to fall
back to some increase of the size of the abstraction (cf. to a similar approach in constraint programming
where one falls back to exponential-time splitting, when polynomial-time deduction does not succeed any
more).

A simple method for doing this is a Split operation that chooses an abstract state and splits it into two,
copying all the involved edges and introducing edges between the two new states. All the labels and abstract
transitions to other abstract states are copied as well. Moreover, two new abstract transitions that connect the
original abstract state with its copy are added. The region assigned to the abstract state is equally split among
two abstract states. Such a refinement decreases the amount of over-approximation in subsequent calls to
the pruning algorithm due to the properties of Reach and Init . For example, Henzinger et. al. (Henzinger
et al., 1998) use such a splitting step to reduce the over-approximation of the continuous system dynamics
by differential inclusions of the form ẋ ∈ A, where A is a polyhedron. It is possible to use much more so-
phisticated splitting strategies, for example, a splitting step that removes as specific abstract error trajectory
(i.e., one CEGAR step) (Alur et al., 2006; Clarke et al., 2003a) instead.

It is clear that the pruning algorithm can also be applied backward in time (i.e., removing parts of the
abstraction not leading to an unsafe state) (Henzinger and Ho, 1995; Frehse et al., 2006). We will denote the
resulting algorithm by Prune−(A).

Now we have to following overall algorithm for computing increasingly fine abstractions:

initialize A with an arbitrary abstraction such that
[[A]] contains all error trajectories of the input system

while there is an A-abstract error trajectory
A ← Prune(A)
A ← Prune−(A)
A ← Split(A)

return ”safe”

The most simple way to initialize the abstraction A in this algorithm is to use the trivial abstraction
containing just one vertex for every mode marked as Init and Unsafe, containing a transition to all other
vertices and itself, and a region containing the whole state space of the input system.

Since neither pruning nor splitting removes an error trajectory, the absence of an A-abstract error trajec-
tory at the termination of the while loop implies the absence of an error trajectory of the original system.
Hence, in such a case, the algorithm correctly returns the information that the input system was safe. In cases
where the input does have an error trajectory, this algorithm does not terminate. However, in such cases, the
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algorithm maintains an abstraction that, at any time, can be used by other algorithms (Ratschan and Smaus,
2009) for searching for this error trajectory.

Note that forward pruning may enable further backward pruning and vice versa, hence the algorithm may
be extended in such a way that forward and backward pruning are done in a loop until no further improve-
ment occurs. If either forward or backward pruning is dropped from the algorithm, it will incrementally
compute a tighter and tighter over-approximation of the (forward/backward) reach set.

The improvements to this algorithm introduced in an earlier paper (Dzetkulič and Ratschan, 2011) for
the special case of classical hybrid systems can all easily be adapted to the more general case discussed in
this paper.

4. Computation of Reachability Information

For applying the techniques in the previous sections to a concrete system one needs to

− choose a class of regions that will be used for representing subsets of the state space,

− instantiate the operations v and ] with concrete algorithms, and

− provide algorithms for computing the reachability operations Reach and Init .

Here we make the observation that for this, techniques from computational logic can be used. First we
assume that (as in all examples above) the language L is based on first-order predicate logic. Moreover we
assume that also the regions of the abstraction are formed by predicate logical formulas representing the set
of all values that satisfy a given formula. For example, formulas of the form

∧
i∈{1,...,n} ai ≤ xi ∧ xi ≤

ai represent hyper-rectangles (boxes). A concrete implementation may, of course, use a more optimized
representation, but the usage of a formula representation in this section helps us to gain more insight into
the nature of the problem.

Then, the region operationsv and ] can be implemented by (a sound approximation of) logical implica-
tion (a v b is such that a v b implies a⇒ b) and (a conservative approximation of) disjunction (a1 ]b a2 is
such that (a1 ∨ a2) ∧ b implies a1 ]b a2). For example, when using boxes, a ] b might be the box hull (i.e.,
the smallest box containing both arguments) which clearly fulfills the above requirement.

Now we turn to the reachability operations Reach and Init . We will write them as first-order predicate
logical formulas. The operation Init(a) must be such that the formula

a(x) ∧ Init(x)

implies Init(a)(x).
For analyzing reachability we provide two separate logical formulas for reachability through jumps

ReachJ(a, a′) and reachability through flows ReachF (a, a′) which will result in reachability Reach(a, a′)
being

ReachJ(a, a′) ∨ ReachF (a, a′).

The first part, ReachJ(a, a′) must be such that

∃x . a(x) ∧ Jump(x, x′) ∧ a′(x′)
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implies ReachJ(a, a′)(x′), and ReachF (a, a′) must be such that

∃x∃t . 0 ≤ t ∧ t ≤ c ∧ a(x) ∧ Ta(x, x′, t) ∧ a′(x′)

implies ReachF (a, a′)(x′), where Ta(x, x′, t) models the fact that there is a continuous flow from x to x′ in
a taking time t (we will later show how to model this as a logical formula), and c is an arbitrary positive real
constant, or∞, in which case the constraint t ≤ c can be dropped.

Now, one could just take the above formulas as the implementation of the operations themselves, in
which case the implications above are implemented as equivalences. This is, in fact, the approach taken by
bounded model checking of finite state systems, where there are techniques for representing and checking
satisfiability of huge formulas in propositional logic using so-called SAT solvers (Biere et al., 2009). For
discrete time systems with other data types/domains this can be extended to so-called satisfiability modulo
theory (SMT) solvers (De Moura and Bjørner, 2011; Fränzle et al., 2007).

However, in the unbounded time case this has the disadvantage that when concatenating reachability
over several steps (in our case, several applications of the Reach(a, a′) operator), more and more quantifiers
accumulate, resulting in high-dimensional formulas, on which—in the unbounded time case—a fixpoint
check (in our case based on v) has to be done.

Another approach would be, to use the above formulas, but to eliminate the quantifiers in each application
by quantifier elimination algorithms (Harrison, 2009), that is, algorithms that that compute equivalent, but
quantifier-free formulas. In fact, this is precisely the approach taken in the finite state/propositional case,
where practically efficient algorithms based on binary decision diagrams (BDDs) (Drechsler and Becker,
1998) exist. Also, early algorithms for hybrid systems verification took this approach (for very simple
continuous dynamics). However, as soon as we leave the purely propositional case, even for quite simple
individual theories, quantifier elimination is often not possible (e.g., non-linear integer arithmetic), or highly
complex (e.g., linear integer arithmetic).

Hence, it makes sense, to use some form of over-approximation here, not implementing the above
implications as equivalences any more. In program verification, the design of such regions with correspond-
ing algorithms is the subject of abstract domain design (Filé et al., 1996), and—when using techniques
from logic—logical interpretation (Tiwari and Gulwani, 2007; Gulwani and Tiwari, 2006). However, those
abstract domains cannot directly be applied to systems with continuous time dynamics.

In our instantiation of the method for hybrid systems (Dzetkulič and Ratschan, 2011) we use interval con-
straint propagation (Benhamou and Granvilliers, 2006) (we also have a generalization of this technique avail-
able (Ratschan, 2006)). We also have investigated an alternative method based on an over-approximation of
Fourier-Motzkin elimination (Dzetkulič and Ratschan, 2009).

We will now analyze how to handle continuous dynamics in this context. Above we used the expression
Ta(x, x′, t) to model the fact that there is a continuous flow from x to x′ in a taking time t. This could be
directly written down in second order predicate logic (i.e., where variable and quantifier are allowed to range
over functions and such functions can model system trajectories), however this would bring in additional
difficulties for algorithmic analysis.

But, even if we need second order logic to model continuous reachability, we can at least approximate
continuous reachability in first order logic. Here one get rid of second order quantifiers as follows: For each
v ∈ {1, . . . , n}, we can do a Taylor expansion at x of the projection of the trajectory to its v-th variable.
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From this we get

∃y, d . a(y)∧Flowk+1(x, x(1))∧. . .∧Flow(x, x(k))∧Flowk+1(y, d)∧x′ = x+. . .+
x(k)

k!
tk+

d|v
(k + 1)!

tk+1,

where the notation d|v denote the projection of d to its v-th variable, and Flowi denotes a constraint that
assigns to a point y its i-th derivative. If, as in the original Definition 1, only first-order derivatives are
available, the formula can be applied only for k = 0 (i.e., the case corresponding to the mean-value
theorem). The expression Ta(x, x′, t) can now be replaced by a conjunction of the above formula over
all v ∈ {1, . . . , n}. One can think of many variations of this approach, for example, by applying Taylor
expansion backward in time.

5. Conclusion

In this paper we introduced a framework for formal safety verification of systems with both continuous
and discrete dynamics, where the discrete part of the state space may include data structures such as lists
and arrays. The framework includes an algorithm for safety verification of hybrid systems as an instantia-
tion (Dzetkulič and Ratschan, 2011; Ratschan and She, ). Computational experiments with that instantiation
confirm the usefulness of the approach.

The remaining challenge is to instantiate the framework to cases with more interesting data structures, to
design corresponding reachability analysis algorithms both for the discrete and continuous cases, and their
combinations.
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Stochastic cracking of brittle matrix composites with heterogeneous
reinforcement
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Abstract. A model capable of capturing the effect of irregularly structured reinforcement in a brittle matrix
is presented. It introduces a homogenization procedure for the state fields at the microscale in the vicinity
of a crack bridge. In combination with a mesoscale model for matrix cracking the homogenized state fields
are used for explicit calculation of the strain hardening-response of the composite. The model has been
formulated for brittle matrix composites with reinforcement that exhibits random properties, e.g. due to
random fiber orientation or because of an irregular penetration profile of the matrix into multifilament
yarns. In the present paper we use multifilament yarns applied in textile reinforced concrete (TRC) to
demonstrate the capabilities of the model. It is used for parametric studies to detect some qualitative and
quantitative dependencies between the micromechanical material parameters and strain-hardening response
of the composite.

Keywords: stochastic cracking, multifilament yarn, statistics, composite strength, micromechanics, filament

1. Introduction

Combining brittle matrix with fibrous reinforcement leads to quasi-ductile composite behavior with a high
bearing capacity. When loaded in tension brittle matrix composites exhibit multiple cracks developing in
the matrix perpendicularly to the loading direction (Li and Wu, 1992; Fantilli et al., 2009). This process is
accompanied with significant stress redistributions both between and within the constituents of the compos-
ite. The qualitative and quantitative characteristics of composites depend on the mechanical and geometrical
properties of the components and their interface.

In order to study the response of the material structure subject to general loading conditions in 3D several
models explicitly representing the geometrical distribution of fibers have been introduced using the finite
element method (Radtke et al., 2010) or lattice models (Bolander and Saito, 1997; Leite et al., 2004).
For purely tensile loading, models applying simplifying assumptions about the geometrical layout of the
composite with respect to the tensile loding direction have been formulated with the goal to describe the
tensile strain-hardening behavior. These models reflect the fragmentation process of composites starting
from an elastic range, over a gradual evolution of matrix cracks with reinforcement strain localization up to
a saturated crack density and/or ultimate failure of the weakest crack bridge.

The strain-hardening response of composites with elastic-brittle matrix and elastic reinforcement or sim-
ilarly elastic-brittle reinforcement and elastic matrix can be described in closed form. In their classical work
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Table I. State of the art overview

scheme transverse longitudinal bond law math ref.

assumed
homogeneous

periodic CS,
const. length

constant
1D,
analytical

(Aveston et al., 1971; Aveston
and Kelly, 1973)

assumed
homogeneous

exact CS length
distribution

constant
1D,
analytical

(Curtin, 1992; Ahn and
Curtin, 1996)

averaged
micromechanical

simplified
arbitrary
analytical

1D,
analytical

(Li et al., 1991; Chudoba et
al., 2006a)

partly
homogeneous

explicit cracks arbitrary
1D (2D),
numerical

(Konrad and Chudoba, 2009;
Azzam and Richter, 2011)

explicit
micromechanical

explicit cracks arbitrary
2D, 3D,
numerical

(Bolander and Saito, 1997;
Radtke et al., 2010)

Aveston, Cooper and Kelly (Aveston et al., 1971) formulated the explicit relation between stress and strain of
the composites with constant matrix strength under the assumption of aligned continuous reinforcement with
an ideally plastic bond to the matrix. Later, they extended the model for elastic-plastic bond and included
the effect of random fiber orientation by correspondingly reducing the number of bridging fibers compared
to the aligned mode (Aveston and Kelly, 1973). An energy release rate approach taking into account the
elastic stretching of matrix and fibers, matrix cracks propagation and fiber debonding has been presented by
(Budiansky et al., 1986).

(Cho et al., 1992) studied ceramic composites with aligned fibers and provided analytical formulas for
the composite stress-strain diagram assuming elastic material properties and a more sophisticated bond law.
Using the stress criterion for debonding, the formulation of Cho et al. delivers a set of closed form solutions
describing the composite behavior and crack spacing distributions for three different ratios of matrix and
debonding strength. Moreover, a numerical study was performed for random matrix strength following
the two parameter Weibull distribution furnishing stress-strain diagrams and crack spacing distribution. A
remarkable method for arriving at the exact crack spacing distribution was developed by (Curtin, 1991) for
a single filament embedded in a large failure strain matrix with randomized filament strength and constant
frictional bond. The results show good agreement with an extensive Monte Carlo simulation performed
earlier by (Netravali et al., 1989; Henstenburg and Phoenix, 1989).

Curtin later applied his theory to composites with multiple matrix cracks (Curtin, 1992) and found a
connection between the matrix flaw distribution and the crack spacing of a composite loaded in tension.
Since the initial matrix flaws have to propagate through the cross-section while consuming energy a lower
threshold is introduced for the stress-at-first-crack distribution. Having fitted two independent parameters
from a composite tensile test, this model is able to predict the composite behavior and estimate the frictional
bond. Another estimation of the bond stress based on experiments was performed earlier by (Marshall and
Evans, 1985) offering three different methods for this purpose. An inherently statistical evaluation of the
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Figure 1. Scheme of the proposed model

stress-strain relationship and hysteretic behavior was performed by (Ahn and Curtin, 1996) and further
simplified to closed forms by (Curtin et al., 1998).

For composites with interface that can be described by one or a few bond parameters, e.g. for concrete
reinforced with steel rebars, the aforementioned models can provide a realistic prediction. However, compos-
ites consisting of a large number of short or continuous fibers exhibit irregularities of the material structure
(e.g. due random orientation of the fibers or due to an incomplete penetration of yarns by the matrix). The
resulting variations in the stiffness and bond properties lead to a highly inhomogeneous microscopic bond
stress fields. Such a field cannot be uniquely captured by a constant shear stress within the frictional bond
model. This fact makes a more detailed resolution of the local stress and strain fields in the debonding
zones inevitable. Models resolving the local fields in the vicinity in the crack bridge have been constructed
using statistical averaging techniques (Li et al., 1991; Chudoba et al., 2006a; Kabele, 2003). With a higher
computational effort, also finite element method has been used for local representation of the heterogeneous
matrix-reinforcement bond structure (Konrad and Chudoba, 2009; Azzam and Richter, 2011; Nour et al.,
2011).

Table I summarizes the mentioned modeling approaches with a schematic picture of the assumed material
representation. The models are classified according to the level of material resolution distinguished in trans-
verse and longitudinal directions, kind of crack representation, applied bond law and dimensionality of the
underlying mathematical formulation. In this paper a refined model for the simulation of strain-hardening
response of a composite with heterogeneous structure of reinforcement is formulated. The effective stress –

Figure 2. TRC specimen reinforced with carbon fabrics after tensile test: localized failure crack (left), crack pattern (right)
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Figure 3. Application of the proposed model to textile reinforced concrete (from the top): homogenized composite model; statistical
crack bridge model, microfilament double sided pullout model

strain relation is obtained using a multiscale homogenization procedure with separate integration loops at the
micro- and mesoscale. At the microscale, the random structure of the reinforcement is reflected in the model
of a representative crack bridge. At the mescoscale, the homogenization is performed over a representative
series of emerging cracks sequentially introduced at positions where the matrix tensile stress reaches the
level of the matrix strength.

The model components realizing the described homogenization procedure at the micro and mesoscales
are depicted in Fig. 1. The hierarchical structure of the model opens up the possibility to include formulations
of the crack bridge behavior for various types of reinforcement structure (e.g. short fibers, multifilament
yarns or steel rebars) and their combinations. Let us also note, that the present modeling framework does
not impose any limitations on the type of the bond law governing the interaction between fibers and matrix.

In order to make the explanation of the implementation of the model illustrative the formulation is
provided for textile reinforced concrete consisting of a fine grained, brittle cementitious matrix reinforced
by continuous multifilament yarns, such as AR-glass, carbon or aramid rovings (Fig. 2). The smallest scale
considered deals with a single filament that bridges a matrix crack. The formulation of a single filament
bridging a crack is provided in Sec. 2. A large number of such filaments form the reinforcing yarn which
is assumed to be a multiple of the average filament response (Sec. 3). The evaluation of the homogenized
strain field within a specimen with multiple cracks at a given level of stress is provided in Sec. 4. Results
of computational examples showing some micromechanical dependencies on the global composite response
are presented in Sec. 5 and concluding remarks summarize the capabilities and limitations of the model in
Sec. 6.

2. Filament crack bridge model

At this level a single filament from a multifilament yarn embedded in matrix is observed and shall be
represented by a parametric micromechanical model. For efficiency reasons, we assume symmetry at the
half distance between adjacent cracks so that the filament is modeled only between two such symmetry
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points crossing a single crack and its boundary conditions are fixed (Fig. 3). As the loading is increased,
the crack width grows, both matrix and filament are stretched and debonding takes place at the filament-
matrix interface. Filaments are assumed to have constant geometrical and physical properties over the length.
However, the properties vary for individual filaments because they can, in general, have different physical,
geometrical and bond properties. These assumptions together with linear elastic behavior of the matrix result
in the following formulation for the filament response in terms of bridging force vs. crack width relationship:

Ff0 = Ff0(w,Am, Em, Ll, Lr,θf), θf = {Af , Ef , τ, `, θ, ξ, p} (1)

where the control variable w is the crack width, Am/f and Em/f the matrix/filament cross-sectional area
and modulus of elasticity, respectively, Ll/r are distances from the crack to the boundaries at the left/right
hand side, τ stands for the friction acting at the matrix-filament interface, ` denotes the bond free length of
the filament, θ is the filament waviness in terms of additional strain (delayed activation), ξ is the filament
breaking strain and p is the filament perimeter. Variables summarized in θf are the filament properties which
are later in Sec. 3 eventually considered as random. For simplicity only the control variables w, x will be
explicitly indicated further in the text.

Three stages (Fig. 4) of the filament crack bridge response have to be distinguished in the explicit
notation:

(A) First, debonding (the bond law assumed here is a frictional resistance with constant magnitude τ ) takes
place at both sides of the crack and propagates towards the (fixed) boundaries

Ff0(A)(w) =

{
1
2η2

(√
c2

A + 4wθKfη2T − cA

)
, wθ ≥ 0

0, wθ < 0
(2)

cA = LT − η(Lmin + Lmax)T, (3)

`θ and wθ include the effect of the filament waviness in the following way: `θ = `(1 + θ);wθ =
w − θ`. T = τp denotes the shear flow per unit length of a filament with the perimeter p, Kf/m is the
filament/matrix tensile stiffness defined as Af/mEf/m and η stands for the matrix/composite stiffness
ratio Km/(Kf +Km). Lmin/max is the shorter/longer bonded length at the left or right hand side from
the crack and is defined as min/max{Ll−`/2, Lr−`/2} and L is the total filament length in the crack
bridge (see Fig. 3).

(B) As soon as the debonding reaches the closer boundary, i.e. the bond is activated along the whole
primarily bonded length Lmin (Fig. 3) the model formally changes from a crack bridge to a pullout
with free fiber length `e equal to 2Lmin + `, bonded length Lb defined as Lmax − Lmin and a force
offset PA accumulated in stage A due to the frictional bond along the debonded interface:

Ff0(B)(w) =
1

η2

(√
c2

B + 2(wθ − wθ,A)Kfη2T − cB

)
+ PA (4)

cB = LT − η(Lmax − Lmin)T (5)

with wθ,A/PA the crack width/force at the transition between stage A and B.
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(C) After the filament has been fully debonded along the whole length L, the model responses linearly-
elastic to further loading with tensile stiffness Kf :

Ff0(C)(w) =
Kf(wθ − wθ,B)

L
+ PB. (6)

where wθ,B/PB in analogy to Eq. (4) stand for the crack width/force at the transition between stage B
and C.

Putting Eqns. (2, 4, 6) together yields the formula for the bridging force Ff0:

Ff0(w) =


Pf0(A) : 0 ≤ Ff0 < PA

Pf0(B) : PA ≤ Ff0 < PB

Pf0(C) : PB ≤ Ff0

(7)

Filament can break anytime during the loading which causes an immediate drop of the bridging force to
zero. The remaining force carried by a broken filament being pulled out of the matrix is assumed to have
minor contribution compared to intact filaments and is therefore neglected. This can be written using the
Heaviside step function H(x) defined as:

H(x) =

{
0 : x < 0
1 : x > 0

(8)

resulting in:
Ff0(w) = Ff0 ·H(Ff0 −AfEfξ) (9)

Eqn. (7) delivers a base for the evaluation of strains in the filament εf(x) and matrix along the longitudinal
axis x (Fig. 4). Highest values of filament strain occur at the crack position and with growing distance from
the crack linearly descend with slope equal to the shear flow per length value T provided that the filament
has a bond to the matrix. If there is a part of the filament with no contact to the matrix, the strain is constant
along the region (see lower diagrams in Fig. 4). However, there is a lower bound εff for the filament strain
which equals the far field strain of the compact composite where no debonding takes place:

εff(w) =
Ff0

Km +Kf
. (10)

The strain along a filament can be expressed as:

εf(w, x) =

 Ff0/Kf : free length `e
[Ff0 − T (|x| − `θ/2)] /Kf : debonded part a
εff : bonded part LPO − a

(11)

where the variable x is the position at the longitudinal axis with origin at the crack.
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Figure 4. Filament crack bridge - force vs crack width with 3 distinguished phases (upper diagram); force in filament along the
longitudinal axis for debonding stages A, B and C (lower diagrams). Parameters:Am = 29.4 ·10−3 [mm2], Em = 30 ·103 [MPa],
Ll = 50 [mm], Lr = 20 [mm], Af = 5.31 · 10−4 [mm2], Ef = 72 · 103 [MPa], τ = 0.1 [N/mm2], ` = 10 [mm], θ = 0.01 [-],
ξ = 0.0179 [-], p = 85.0 · 10−3 [mm]. The three profiles are depicted for crack widths w = 0.15, 0.4 and 0.7 mm (from left to
right).

3. Statistical crack bridge model

Sec. 2 creates a basis for the yarn crack bridge model. Since yarns consist of several hundreds or thousands
of filaments, it would be very inefficient to simulate every single filament and sum their contributions.
Therefore, the yarn is assumed to be represented by the average filament multiplied by the total number of
filaments:

Fy0(w) = Nf · µf0 = Nf · E [Ff0] (12)
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Figure 5. Yarn crack bridge - normalized yarn force Fy0/Nf vs crack opening and 5 random filament realizations (a); normalized
yarn force Fy/Nf along longitudinal axis and 5 random filament realizations (b); 3D plot of the diagrams (c). Parameters for the
yarn response:Am = 50.0 [mm2],Em = 30 ·103 [MPa], Ll = 50 [mm], Lr = 20 [mm],Af = 5.31 ·10−4 [mm2],Ef = 72 ·103
[MPa], τ = uniformdistribution (min = 0.05, max = 0.20) [N/mm2], ` = uniformdistribution (min = 2.0, max = 17.0)
[mm], θ = 0.01 [-], ξ = Weibull distribution (shape = 5.0, scale = 0.0179 [-], p = 85.0 · 10−3 [mm], Nf = 1700 [-]. The
profiles in (b) are depicted for the crack width w = 0.5 mm.

for the force vs crack width and

Fy(w, x) = Nf · µf = Nf · E [Ff ] (13)

for the force along the yarn. The average or expected value of the filament crack bridge response µf0 and µf

multiplied by the total number of filaments Nf can be alternatively written as follows:

Fy0(w) = E [Ff0(Af = Ay, p = Nf · p)] (14)

and
Fy(w, x) = E [Ff(Af = Ay, p = Nf · p)] (15)

respectively. This approach was used earlier e.g. for modeling fiber bundles with random fiber properties
in (Phoenix, 1979; Phoenix and Taylor, 1973; Chudoba et al., 2006b) and in the early works (Daniels,
1945; Coleman, 1958). Assumed that the filaments are statistically and mechanically independent it delivers
an asymptotic result (for an infinite number of filaments) which is in this case justified by the large number of
filaments forming a yarn. The average filament response (Fig. 5) is evaluated as stated in the cited literature
in the following way:

µf0(w) =

∫
θf

Ff0 · f(θf) dθf (16)

for the force resisting the crack opening and

µf(w, x) =

∫
θf

Ff · f(θf) dθf (17)

for the force along the composite longitudinal axis, with f(θf) denoting the joint probability density function
(PDF) of the random variables from the vector θf . The average filament responses µf0 and µf are depicted
in Fig. 5.
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4. Composite model with stochastic cracking

With equations defined in Sec. 3 all tools needed for describing the stress state in the composite around a
crack are provided. However, composite materials are designed to fail only after multiple transverse cracks
have formed. To model this behavior, two additional variables have to be introduced: the load level F for new
cracks to form and positions xc of the cracks. F and xc are revealed by satisfying the following condition:

σm(F, x) ≥ σmu(x) (18)

where σmu is a static autocorrelated random field (Vorechovsky, 2008). We define the local matrix strength
as having the distribution of minimum extremes according to Weibull

W (σmu) = 1− exp

(
−
〈
σmu

σ0

〉m)
(19)

with m and σ0 standing for the shape and scale parameter, respectively, and being cross correlated by the
following definition

R(dx, lρ) = exp

(
−dx

lρ

)2

(20)

where lρ is the autocorrelation length and dx the distance between two points in the random field. The
random field mimics the natural fluctuations of the local strength of reinforced matrix and automatically
ensures the random distribution of the first cracks along the specimen (Fig. 6). A realization of this random
field σmu is at a given load compared with the stress state in matrix σm and cracks are formed at the load
level F and position xc where the two functions first overlap if F is monotonically increased (Fig. 7).

4.1. COMPUTATION OF σm

At small tensile loads at the beginning of the loading process, the strains in both matrix and reinforcement
are assumed to be constant along the longitudinal axis x and described by:

εff(F ) =
F

Kf +Km
(21)

Figure 6. Autocorrelation function for lρ = 3.0 and 10.0 mm (left); corresponding realizations of a Weibull (shape = 10.0, scale =
5.0, location = 0.0) random field (right)
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Figure 7. Matrix stress profiles at various loading stages

As soon as the tensile strength of the matrix is reached at some place, a matrix crack forms, the forces are
redistributed and the reinforcement strain localizes at the position of the matrix crack (Fig. 7). Analogically,
strain in the matrix drops to zero and is built up with growing distance from the crack. Cohesive forces
between the newly created matrix surfaces are ignored here. The current matrix stress, given the yarn force
by Eq. (15), is evaluated as:

σm(F, x) =
F − Fy

Am
(22)

where the half distances to the neighboring cracks Ll and Lr, respectively, have to be taken into account
and substituted into Fy in Eq. (15). Since Fy is controlled by crack opening, the value of crack opening
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corresponding to the applied load F has to be evaluated first. This can be done by inverting Eq. (16) so
that µf0(w) becomes w(µf0) where µf0 is substituted by the applied load F . In this way, Fy in Eq. (15) is
redefined as a function of F .

4.2. AVERAGE COMPOSITE STRAIN

The strain profile along the yarn has to be evaluated at every load step as it is qualitatively and quantitatively
affected by both the load level and the crack positions. The overall (average) strain of the composite loaded in
tension is evaluated by integrating the yarn strain, which is the parallel coupling of yarn strain profiles within
the individual crack bridges εy = Fy/(EfAy), along the whole specimen - delivering the total displacement
- and dividing it by the composite specimen length Lc:

εc(F ) =
1

Lc

∫ Lc

0
εy(F, x)dx (23)

5. Computational examples

To demonstrate the influence of randomized parameters we observe the composite stress – strain diagram
Eq. (23) and the crack width distribution. Parameters shall be varied ’one at the time’ to point out their
particular contribution to the global response.

5.1. RANDOM MATRIX STRENGTH

Defining the matrix strength by a constant value results in a horizontal line in the stress – strain diagram
(ACK (Aveston et al., 1971)) at the composite stress level, which corresponds to the ultimate matrix stress. If
the local matrix strength fluctuates around this value, cracks develop at earlier load stages (Fig. 8). In fact, the
load at first crack is distributed as the minimum extreme value of the random matrix strength. Furthermore,
the composite response is also affected by the predominant correlation of the matrix strength. If the fine
grains are the main source of strength correlation, the autocorrelation length lρ is rather small. In contrary, a
nearly homogeneous matrix with strength fluctuations caused predominantly by outer sources (e.g. casting
process, geometrical inaccuracies) can be expected to have a large lρ. A case in between these extremes is
e.g. the cross-section strength reduction caused by fine shrinkage cracks. Here, the lρ of the matrix strength
is in the order of a few millimeters. In Fig. 9, the filament and bond parameters are fixed and lρ of the matrix
strength is varied to represent the three cases mentioned. In the range of approx. 1.0 < δ0/lρ < 10.0, where

δ0 =
(Km +Kf)σ0

EmT
(24)

is the shielded length and σ0 is the scale parameter of the matrix strength distribution, the autocorrelation
length lρ has a significant influence on the degree of tension stiffening - the difference in strains of a
composite saturated with crack and of the reinforcement only. It is proportional to the stress remaining
in the matrix in the saturated state (gray shaded area in Fig. 9) which on the other hand is proportional to the
distance of minimums of the matrix strength For high δ0/lρ ratios, the minimums of matrix strength along
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Figure 8. Variable shape parameter m of the matrix strength distribution. Stress – strain diagrams (left), matrix strength along x
for variable m (right). Parameters: Am = 50.0 [mm2], Em = 30 · 103 [MPa], Lc = 3000 [mm], Af = 5.31 · 10−4 [mm2],
Ef = 72 · 103 [MPa], τ = 0.1 [N/mm2], ` = 0.0 [mm], θ = 0.0 [-], ξ = ∞ [-], p = 85.0 · 10−3 [mm], Nf = 1700 [-], σmu =
autocorrelated field with Weibull distribution (shape = 3.0, 10.0, 1000.0, scale = 5.0, lρ = 30.0 [mm])

Figure 9. Variable autocorrelation length lρ of the matrix strength distribution. Stress – strain diagrams (left), matrix strength σmu

along x for variable lρ and matrix stress σm(x) in saturated state (right). Parameters: Am = 50.0 [mm2], Em = 30 · 103 [MPa],
Lc = 3000 [mm], Af = 5.31 · 10−4 [mm2], Ef = 72 · 103 [MPa], τ = 0.1 [N/mm2], ` = 0.0 [mm], θ = 0.0 [-], ξ = ∞ [-],
p = 85.0 · 10−3 [mm], Nf = 1700 [-], σmu = autocorrelated field with Weibull distribution (shape = 7.0, scale = 5.0, δ0/lρ =
200.0, 4.0, 1.0)

x are close, so that the matrix cracking takes place mainly at lower stresses and the composite achieves the
saturated state at relatively low loading stages. The crack spacing is dense and consequently there is not
much stress remaining in the matrix in the saturated state. Low δ0/lρ ratios result in a wider load range
of matrix cracking, the saturated state is reached at higher load stages, the crack spacing is larger and the
amount of stress stored in the matrix is higher.

The two examples demonstrate the feasibility of the implementation and its capability to reflect the
effect of microstructural parameters on the strain-hardening response of the composite. Systematic para-
metric studies are currently being elaborated and will be presented in the following papers and during the
conference presentation.

 

 
 
 
480

 
 
 
 
 

 
 
 
5th International Conference on Reliable Engineering Computing (REC 2012)



Stochastic cracking of brittle matrix composites with heterogeneous reinforcement

6. Concluding remarks

The paper describes a multiscale approach for modeling of the fragmentation process of composites with
heterogeneous reinforcement. Components of the model were presented separately according to their respec-
tive scales. We have presented some results in Sec. 5, which reflect the sensitivity of the global composite
behavior on the matrix strength distribution.

We remark that the matrix strength is represented by a single realization of a random field. Consequently,
the results are single realizations of a function of random variables. However, the single realizations can
be considered as fairly close to the expected values as the length of the modeled specimen Lc gets large
compared to the autocorrelation length and therefore the variability, according to the central limit theorem,
diminishes with the rate ≈ lρ/Lc . We kept this principle in mind when evaluating the presented results.

Summary of assumptions imposed in the model:

− loading results in uniaxial stress in the composite

− cracks are planar and perpendicular to the loading direction

− crack opening is uniform across the composite cross section
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Abstract. In this contribution, multi-objective optimization methods are applied together with uncertainty
quantification approaches in order to provide a concept for a robust structural design. The concept enhances
the utilization of numerical simulation methods (Finite Element analysis) and as such can be useful for the
computer-aided engineering. In this study, the application of the approach for a design of tires is shown. The
proposed methodology enables the consideration of fragmentary or dubious information within the design
process, which leads to the introduction of fuzzy variables into the optimization task. The application of
fuzzy set theory is motivated by the epistemic character of available uncertain data. The proposed concept
enables the optimization of multiple objectives and simultaneously the uncertainty reduction in the opti-
mization results, which leads to the robustness improvement. In order to increase the numerical efficiency
of the proposed design approach, a response surface approximation based on artificial neural networks is
applied.

Keywords: optimization, numerical simulations, uncertainty

1. Introduction

The intensive development of multi-objective optimization methods in the past decades, as well as the coup-
ling of these methods with numerical simulation approaches, e.g. Finite Element method (FEM), enables
currently the solution of complex design problems in numerous engineering fields. The main feature of
these design tasks is that the considered multiple objectives are predominantly in conflict with each other.
This means, that generally no ideal solution exists.

There are two well established optimization approaches, which yield a solution for these kind of prob-
lems. The first approach encloses the formulation of an aggregate objective function (AOF), which combines
all considered objectives through the application of the weighted sum method. Within AOF, each single
objective function is preserved with a weighting factor, which is chosen subjectively by the decision maker
in order to express the preference of this objective. Thereby, the choice of weighting factors, which are
gathered into a preference vector, strongly affects the optimization result.

In order to avoid the insertion of subjective decisions into the optimization process, some objective
approaches are proposed. They enable the identification of a well distributed set of trade-off solutions
(Pareto-optimal set), instead of finding one suboptimal solution (Pareto, 1971). The solutions in Pareto-
optimal set P ∗ are satisfying the criterion of Pareto optimality. That means, that in the set of solutions P ,
the Pareto-optimal set P ∗ contains solutions, which are not dominated by any member of set P .
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After the completion of optimization, the decision maker can choose one solution from the Pareto-optimal
set P ∗, according to defined preferences. The main advantage of this approach, compared to the AOF method
is that the expression of preferences occurs in the post-optimization step. A detailed description of the
Pareto-optimality concept as well as the dominance concept is presented in Section 3.1.

The optimization approaches shortly described above are deterministic. Thereby, in the engineering de-
sign tasks, uncertainty has to be taken into account. Uncertainty is present in different forms: e.g. geometry
parameters of structural parts can be regarded as uncertain, as well as the properties of materials utilized
for the components. In some cases also the loads applied to the designed structure can be considered as
uncertain. Thereby, the sources of uncertainty can be various, e.g. the uncertainty in geometry or material
properties is caused by unstable production conditions of structural elements. The source of uncertainty in
loading is vague information or variability, e.g. in the case of tire design, considered here, the vertical load
applied to the tire changes in dependency on the car weight, which is different for diverse car models.

According to the uncertainty sources, it is distinguished between three characteristics of uncertainty:
variability, imprecision and incompleteness. In this study, the focus is set on the incompleteness as in many
engineering tasks we have to handle with vague information, leading to assumptions and expert evaluations.
A suitable model for describing this kind of uncertainty is the uncertainty model fuzziness. In this paper, the
application of fuzzy variables to the mentioned multi-objective optimization concepts will be studied.

If uncertainty is considered in the optimization process, a quantification of robustness can be accom-
plished subsequently, which is shown within the proposed optimization approach.

2. Modelling uncertain quantities

In order to properly consider the uncertainty within the design task, a suitable uncertainty model should be
chosen, dependent on the type of available information. Commonly, the probabilistic uncertainty models
are utilized (Benjamin and Cornell, 1970), which employ the random variables for the description of non-
deterministic parameters. The application of probabilistic models is preconditioned by the availability of
extensive statistical information. If this prerequisites are not met, other uncertainty models should be taken
into account, especially enabling the consideration of subjective information.

These models account for the Bayesian methods (Bernardo and Smith, 1994) or approaches based on
the fuzzy set theory. The uncertainty model fuzziness (Dubois and Prade, 1997) and (Zadeh, 1965) employs
the fuzzy set theory for modelling the vague, incomplete or subjective information. Within fuzzy sets, the
gradual membership of elements to the set is defined, which enable a subjective weightening of informa-
tion inside the set. Alternatives for modelling with fuzzy sets represent the convex modelling (Elishakoff,
1995) and interval mathematics (Alefeld and Herzberger, 1983). Though, the last concepts are based on
the assumption of crisp membership of the elements to the set and, therefore, provide limited modelling
capabilities in comparison to fuzzy sets.

A generalized uncertainty model, enabling accounting for objective and subjective information simul-
taneously – fuzzy-randomness is described in (Kwakernaak, 1978) and (Möller and Beer, 2004). Fuzzy-
randomness can be utilized for modelling of imprecise probabilities. Within this model, fuzziness and
randomness might be considered as special cases. Another approach, which allows the consideration of
uncertainty – the chaos theory (Kapitaniak, 2000) makes an attempt to describe the unpredictable behaviour
of dynamical systems.
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From the uncertainty models, mentioned above, the uncertainty model fuzziness is chosen for further
investigation and applied within the multi-objective optimization approach. The choice of fuzziness is
motivated by the capability of the model to describe vague, incomplete or subjective information, which
is predominant in engineering design tasks.

The formulation of a fuzzy set refers to the definition of a crisp set. The membership to a crisp setA ⊆ X ,
where X = Rn can be defined in a binary way, an element either belongs to the set or not. Thereby, the
membership µÃ to a fuzzy set Ã is defined gradually, see Fig. 1. If µÃ takes values within the interval [0,1]
and, at least, once the value 1 is achieved, than such a set is called a normalized fuzzy set Ã or a fuzzy
number on X

µÃ : X −→ [0,∞). (1)

Figure 1. Fuzzy variable.

A fuzzy set is defined by its support S(Ã) and the membership function µÃ. According to Fig. 1, S(Ã)
is a crisp set, which contains elements

S(Ã) = {x ∈ X,µÃ(x) > 0}. (2)

In the optimization approach considered here, the fuzzy quantities are defined as normalized fuzzy sets.
Thereby, the convexity of fuzzy sets is presumed. Convexity can be stated, if for every x1, x2 ∈ X and
λ ∈ [0, 1]

µÃ(λx2 + (1− λ)x1) > min(µÃ(x1), µÃ(x2)). (3)

The numerical treatment of a fuzzy quantity Ã occurs by means of the discretization of Ã by numerous crisp
sets Cα(Ã) – so-called α-level sets

Cα(Ã) = {x ∈ X : µÃ > α}, (4)

Ã = (Cα(Ã))α∈(0,1]. (5)

Fuzzy quantities regarded in this study are n-dimensional. They are enclosed in the set of all fuzzy quantities
F(Rn).
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3. Multi-objective optimization

3.1. DETERMINISTIC MULTI-OBJECTIVE OPTIMIZATION APPROACHES

In the deterministic multi-objective optimization (MOO) task, we consider design variables, described in
terms of design vectors xd = (xd1, xd2, ..., xdn), which are defined in the design space Xd = Rn. The
design vectors xd are mapped by means of the evaluation function f : Xd → Z onto the objective vectors
z(z1, z2, ..., zk) in the objective space Z = Rk. Due to the fact, that the evaluation function f is vector-
valued, the objective space is k-dimensional. The multi-objective optimization task with objective functions
fi, i = 1, ..., k, subjected to equality constraints h(xd) and inequality constraints g(xd) is formulated as

min{f(xd) | h(xd) = 0, g(xd) ≤ 0} , f(xd) = [f1(xd), ..., fk(xd)]
T . (6)

Thereby, it should be pointed out, that if k = 1, a single objective optimization problem is to solve, or
accordingly a multi-objective optimization problem reduced by means of an aggregate function to a single
objective problem. If k = 1, a direct comparison of one-dimensional objective vectors is accomplished
within the optimization process. For k > 1, the k-dimensional objective vectors shall be compared, which
can be carried out only through the utilization of the dominance concept.

Dominance: an objective vector z∗ = f(x∗d) dominates another objective vector z′ = f(x′d) if no
component of z∗ is greater than the corresponding component of z′ and at least one component is smaller

∀i ∈ {1, ..., k} : fi(x∗d) ≤ fi(x′d) ∧ ∃i ∈ {1, ..., k} : fi(x∗d) < fi(x′d). (7)

The dominance is formulated as z∗ � z′.
Pareto-optimal set: the goal of the multi-objective optimization approach is to find a set of solutions,

which are not dominated with respect to each other (non-dominated set). According to the definition pro-
vided in Section 1, if P is the entire design space Xd, than the non-dominated set P ∗ (or X∗d ) is a Pareto-
optimal set. The visualization of the Pareto-optimal set X∗d in the objective space is the Pareto-front Z∗ =
f(X∗d) ⊆ Z.

As mentioned in Section 1, the state of the art in the multi-objective optimization methods are approaches
that either evaluate the aggregate objective function and refer to single objective optimization methods or
approximate the Pareto-optimal set in different manners.

According to (Deb, 2002a), within the available multi-objective optimization methods it is distinguished
between classical methods and evolutionary algorithms. The classical methods transform the multi-objective
optimization problem into a single-objective optimization task by the application of different user-specified
techniques. In this group, the weighted sum method, enabling the formulation of an aggregate function or
the ε-constraint method, converting all objective functions, except of one, into constraints can be identified.
These methods yield, after completing the optimization, one sub-optimal objective vector. An aggregate
function, created, using the weighted sum method is formulated

fobj(xd) =
k∑
i=1

wifi(xd). (8)

Thereby, wi defines a user-specified weight vector. Some approaches are proposed, which presume, that
through the utilization of the weighted sum method and an appropriate choice of the weight vector, a Pareto-
optimal solution can be identified. A purposeful manipulation of the weight vector components in multiple
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optimization runs, could provide a whole Pareto-optimal set. Though, the evaluation of the optimization
procedure numerous times, required for the identification of the whole Pareto-optimal set, is quite inefficient.
Therefore, evolutionary algorithms, which enable providing the Pareto-optimal set in one optimization run,
are commonly employed for the solution of multi-objective optimization problems.

The multi-objective evolutionary algorithms (MOEAs) provide not optimal trade-offs but an approxi-
mation of the Pareto-set. In general, MOEAs are expected to fulfil two tasks: guide the search through the
Pareto-set and keep a diverse set of non-dominated solutions. The first goal is achieved by assigning the
fitness to the population, based on the non-dominated sorting method, while the second goal by including
the density information into the selection process. In 1990s several methods, e.g. the Nondominated Sort-
ing Genetic Algorithm (NSGA) (Srinivas and Deb, 1995) or Multi-objective Genetic Algorithm (MOGA)
(Fonseca and Fleming, 1993) were proposed, which were able to identify multiple diverse Pareto solu-
tions. In further developments of MOEA, elitism was introduced in order to obtain a better convergence.
Elitism enables the prevention of non-dominated solutions from being lost. Among the developed methods,
which include elitism, three main approaches should be mentioned: NSGA-II (Deb, 2002b), the Strength-
Pareto Evolutionary Algorithm (SPEA-2) and the Pareto-Archieved Evolution Strategy (PAES) (Knowles
and Corne, 1999).

In the presented contribution, the application of fuzzy quantities within the weighted sum method (ag-
gregate function) and to methods, providing the trade-off solutions will be studied.

3.2. MULTI-OBJECTIVE OPTIMIZATION WITH CONSIDERATION OF UNCERTAIN QUANTITIES

3.2.1. Problem formulation
In the literature, several methods were proposed which evaluate uncertainty within the multi-objective opti-
mization. Thereby, referring to (Das et al., 2009), different sources of uncertainty are taken into account, e.g.
noisy data, objective function evaluation errors or user indecision concerning the prioritization of objective
functions. Generally, within the available approaches it is distinguished between methods, which evaluate
aleatory uncertainty and utilize probabilistic concepts and methods, which account for epistemic uncertainty
and employ concepts based on the fuzzy set theory. Recently, ideas and algorithms for the simultaneous
consideration of different types of uncertainty and different uncertainty models (polymorphic uncertainty)
within the optimization task are developed.

The main difference between deterministic multi-objective optimization approaches and approaches
considering uncertainty, is expressed within the formulation of dominance. In the probabilistic concepts,
the dominance of vector u over the vector v is expressed by the probability of dominance pr(u � v).
Exemplary, such approaches model the random error, present by the evaluation of objective functions.
Among the epistemic procedures, the idea proposed by (Farina and Amato, 2004) for the introduction of
a fuzzy measure for the comparison of two non-dominated solutions, is worth mentioning. The comparison
is accomplished through the evaluation of the number of objectives, in which one solution dominates another
one. Further developments enabled the comparison of two solutions, which do not have to be Pareto-optimal
– like in the previous approach – by the application of the concept of a fuzzy dominance.

In this study, instead of employing the concept of fuzzy dominance, ideas for obtaining and evaluation
of a Fuzzy-Pareto-Front will be discussed. A Fuzzy-Pareto-Front contains fuzzy objective vectors, gained
from the optimization with the application of fuzzy variables. The method for obtaining fuzzy results will
be first introduced within the multi-objective optimization, using the weighted sum method for the creation
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of the aggregate function. Subsequently, a method for evaluating fuzzy objective vectors within the Fuzzy-
Pareto-Front will be discussed.

3.2.2. Aggregate objective function evaluating fuzzy variables
In the proposed methodology, a distinction is made within the definition of input quantities for the optimiza-
tion task, between uncertain a-priori parameters p̃

a
∈ F(Rnp) and design variables xd ∈ Rn. Uncertain

a-priori parameters p̃
a

are quantities, influencing the optimization task, which can not be modelled as crisp
quantities due to information deficits. Therefore, they are considered as fuzzy numbers. Design variables xd
are defined within the user-specified ranges and can be arbitrarily chosen during the optimization.

The scheme of the optimization with fuzzy quantities is presented in Figure 2. The method is a three
level approach. Optimization establishes the first level, that is the outer loop of the approach. Within the
optimization loop, the fuzzy analysis is performed. The numerical realization encloses the execution of fuzzy
analysis for every design vector xd. In consequence, if k objective functions are considered, k fuzzy result
quantities are obtained for each design vector. These fuzzy result quantities are gathered into k-dimensional
fuzzy objective vector z̃ ∈ F(Rk).

Figure 2. Optimization scheme.

Within the fuzzy analysis, the deterministic solution, that is a FE-solution or a response surface is evalu-
ated numerous times. The fuzzy analysis uses the α-level optimization approach for the computation of
membership functions of all fuzzy result quantities. For the α-level optimization, the modified evolution
strategy is utilized, which was proposed in (Möller, Graf and Beer, 2000). In order to be able to evaluate
the fuzzy result quantities, obtained for several designs, an aggregate objective function, enclosing the
information reducing measuresMj is formulated

fobj : Rn ×F(Rnp)→ R (9)

(xd, p̃a) 7→
k∑
i=1

u∑
j=1

wij Mj(fi(xd, p̃a)). (10)

In Eq. (10), wij defines the weighting factors, which enable the prioritization of chosen components
(objectives). The information reducing measures Mj map the fuzzy result quantities onto real numbers
and allow their quantification. AsMj , uncertainty measures for fuzzy variables can be applied, e.g. the area
(zeroth moment) of a fuzzy variable, variance or the Shannon’s entropy. The uncertainty measureM1, based
on the Shannon’s entropy (Beer and Liebscher, 2008) and applied to the quantification of a one-dimensional
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fuzzy result quantity z̃, is formulated as

M1 = HU = −
z=+∞∫
z=−∞

[µ(z) · lnµ(z) + (1− µ(z)) · ln (1− µ(z))] dz. (11)

An uncertainty measure M2, evaluating the variance of a fuzzy variable z̃ is proposed in (Wu and
Mendel, 2007)

M2 = V =
z=+∞∫
z=−∞

(z − z)2 · µ(z)dz ·

 z=+∞∫
z=−∞

µ(z)dz

−1

. (12)

Another uncertainty measure M3, which assesses the area under the membership function µ(z) of a
fuzzy variable is defined by

M3 = A =
z=+∞∫
z=−∞

µ(z)dz. (13)

For the optimization approach, described in this study two information reducing measures are employed.
The first measure is the uncertainty measureM3. The second information reducing measureM4 assesses
the position of the first element of the fuzzy quantity support S(z̃) and can be regarded as a performance
measure. Through the minimization of the smallest element of the support S(z̃), the minimization of the
fuzzy result quantity z̃ is achieved.

In Fig. 3, the application of the information reducing measures for the comparison of two fuzzy result
quantities z̃1 and z̃2, obtained for two different designs – A and B – is shown. Once the criteria for the
comparison of uncertain quantities are formulated and included into the aggregate objective function, the
optimization can succeed. The application of the method for single-objective optimization tasks is shown in
(Pannier, 2011).

Figure 3. Comparison of fuzzy result quantities for design A and B.
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3.2.3. Fuzzy-Pareto solutions
In Subsection 3.2.2., a method for handling fuzzy results within the optimization is presented, which focused
on bringing together the fuzzy results from several objectives into one aggregate objective function, enclos-
ing the information reducing measuresMj . Another crucial issue, when regarding the objective space with
numerous k-dimensional fuzzy objective vectors, is to find the Fuzzy-Pareto-Front. Fuzzy-Pareto-Front is
the image of the Fuzzy-Pareto set in the objective space. In the context of the optimization approach with
fuzzy variables, described above, the search for the best design should be coupled with the identification of
the set of fuzzy result quantities, which are not dominated by any other fuzzy quantity from the set of all
fuzzy quantities F(Rk).

The objective space, containing k-dimensional fuzzy result vectors z̃1 − z̃5, obtained for corresponding
design vectors xd1 − xd5 is shown in Fig. 4 (here k = 2). Thereby, fuzzy result vectors z̃1 − z̃3 are not
dominated by any other fuzzy result vector in the objective space.

Figure 4. Fuzzy-Pareto-Front.

The k-dimensional fuzzy objective vector z̃∗ is formulated

z̃∗ = {(z∗ = (z1, ..., zk), µ∗ = (µ∗1, ..., µ
∗
k)) | zi ∈ Rk}. (14)

The support S(z̃∗) is defined by

S(z̃∗) = {(z∗ = (z1, ..., zk), µ∗ = (µ∗1, ..., µ
∗
k)) ∀ i ∈ [1, k], µ∗i (zi) > 0}. (15)

The identification of the set of non-dominated k-dimensional fuzzy objective vectors prerequires the for-
mulation of non-dominance criteria for fuzzy variables. A fuzzy objective vector z̃∗ is non-dominated, if in
the set of all fuzzy objective vectors F(Rk), there exists no other fuzzy objective vector z̃′, so that every
element z′ ∈ S(z̃′) dominates all elements z∗ ∈ S(z̃∗).

The proposed concept enables the check of dominance in the postcomputation step. Though, an approach
is required, which would allow a dominance check for fuzzy quantities during the multi-objective optimiza-
tion. In this way, the information concerning the dominance can influence the selection and variation step
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in the evolutionary optimization algorithm. First attempts are made to extend the non-dominated sorting
procedure, applied within NSGA II for the consideration of the domination criteria for fuzzy variables.

3.3. COUPLING OF MULTI-OBJECTIVE OPTIMIZATION APPROACHES WITH FE SOLUTION

According to Fig. 2, if FE simulation is applied as deterministic solution d, the evaluation function f for-
mulated in Eq. (6) as well as the aggregate function fobj defined in Eq. (10), depend on the solution of a
mechanical system, especially depend on displacements ϕ(xd, p̃a) gained from the FE analysis. ϕ(xd, p̃a)
are obtained from the evaluation of the nonlinear equation of motion. In the case of a stationary rolling body
(tire analysis), the equation of motion is formulated as

(K −W ) ·∆ϕ = f − f
σ

+ f
T
. (16)

In Eq. (16), K denotes the tangential stiffness matrix, W the Arbitrary Lagrangian Eulerian inertia matrix,
f nodal forces of external loads, f

σ
nodal forces resulting from internal stress state and f

T
nodal forces due

to inertia. The dependency of the aggregate function fobj on displacements ϕ(xd, p̃a) is defined as

fobj : Rn ×F(Rnp)→ R, (17)

(xd, p̃a) 7→
k∑
i=1

u∑
j=1

wij Mj(fi(ϕ(xd, p̃a))). (18)

3.4. IMPLICIT ROBUSTNESS QUANTIFICATION WITHIN THE MULTI-OBJECTIVE OPTIMIZATION

Due to the consideration of one uncertainty measure –M3 – within the aggregate objective function fobj , the
minimization of fobj will automatically cause the reduction of uncertainty in the fuzzy results. This concept
refers to the robustness measure R[p]

l,k, proposed in (Beer and Liebscher, 2008) and in (Graf et al., 2010),
which quantifies the ratio of the uncertainty of input quantities versus the uncertainty of result quantities for
each design. R[p]

l,k adapted for the application within the multi-objective optimization is defined

R
[p]
l,k =

np∑
p=1

wp
(
Mj

(
p̃
a

))
l∑

q=1
wq

k∑
i=1

wi
(
Mj

(
fi
(
xd, p̃a

))) . (19)

In Eq. (19), R[p]
l,k denotes the robustness measure of [p]-th structural design under consideration of l load

cases and k objective functions.Mj indicates the [j]-th uncertainty measure (here j = 3) and wp, wq, wi the
weighting factors. The configuration of uncertain a-priori parameters does not change during the optimiza-
tion task. Therefore, the numerator of the fraction in Eq. (19) remains constant and can be neglected. Only
the expression in the denominator of the fraction is considered within the aggregate objective function fobj .

The proposed design approach enables beside of optimization of numerous objectives also the uncertainty
reduction within the fuzzy results, which contributes to the robustness improvement. The application of the
developed method to the structural tire design is shown by the way of an example.
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4. Example

The goal of this study is the optimization and the robustness improvement of a passenger car tire 195/60 R15.
Generally, within the tire structure the tread layer, made of rubber, several reinforcement layers – capplies
and belts – as well as the bead, consisting of numerous steel cords can be identified, see Fig. 5.

Figure 5. Tire cross-section.

Through the modifications of these structural parts, two objective functions f1 and f2 will be improved.
The first objective function f1 aims at providing regular tire wear, whereas f2 at improving the fatigue
performance. Regular tire wear is obtained, if a uniform contact pressure distribution in the tire-road contact
zone occurs. Therefore, a ratio of the contact pressure in the shoulder region versus the contact pressure
in the central region of the tire cross-section will be optimized. Within f2, a fatigue criterion based on the
evaluation of the strain energy density at the critical area – the belt edge – is applied.

The optimization of mentioned objectives is accomplished by the consideration of three design variables
– the belt angle xd1, the thickness of the tread layer xd2 and the number of capplies xd3 as well as three
uncertain a-priori parameters – the tire inner pressure p̃a1, the fiber spacing in bodyply p̃a2 and the stiffness
of the tread compound p̃a3. The following ranges for the design variables are specified: xd1: 〈18◦; 30◦〉,
xd2: 〈−1.5; 1.5〉mm and xd3: 〈0; 2〉. The uncertain a-priori parameters are defined as fuzzy numbers – p̃a1:
〈0.23; 0.25; 0.27〉N/mm2, p̃a2: 〈1.17; 1.304; 1.44〉mm and p̃a3: 〈0.875; 0.976; 1.075〉N/mm2.

In the first analysis step, the design of experiments (DOE) is performed. For each of the sampling points
a 3D Finite Element tire model is evaluated in steady state rolling situation. The steady state rolling analysis
is executed in terms of the Arbitrary Lagrangian Eulerian approach (Kaliske et al., 2003) and (Nackenhorst,
2004). Due to the high computational cost of the rolling tire analysis, the FE solution is substituted by
a neural network based response surface approximation. The training of the feedforward neural networks
occurs for the sampling points, evaluated within DOE. The obtained response surface can be applied as the
deterministic solution within the optimization approach, according to the scheme in Fig. 2.

After the execution of the coupled approach of optimization and fuzzy analysis, which uses the aggregate
objective function, one design vector is identified as the optimal solution. For this design, the FE analysis is
performed in the ’post processing’ step in order to validate the neural network outputs. The results, obtained
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for the optimal solution are compared with results gained for reference designs. In Fig. 6, the contact
pressure distributions in the optimal design – Fig. 6a), 6b) – and in the reference design – Fig. 6c), 6d)
– are depicted. For each design, distributions obtained for the most advantageous – Fig. 6a), 6c) – and most
disadvantageous – Fig. 6b), 6d) – combination of a-priori parameters are shown. These most advantageous
and most disadvantageous combinations are derived from the definition of the contact pressure ratio as a
fuzzy quantity, obtained for the regarded design.

Figure 6. Contact pressure distribution for the optimal design: a) best case, b) worst case and reference design: c) best case and d)
worst case.

It can be stated, that for the optimal design a uniform contact pressure distribution is obtained in the best
case as well as in the worst case. This fact is confirmed by the according contact pressure ratios pcoeff = 1.23
and pcoeff = 1.27, see Fig. 7a). Therefore, the occurrence of a regular wear is expected for the optimal design.
Within the reference design, a non-uniform contact pressure distribution occurs, resulting in pcoeff = 1.68
(best case) and pcoeff = 1.97 (worst case). Thus, not only the minimization of the contact pressure ratio but
also the uncertainty reduction (small support) is achieved for the optimal design.

Figure 7. Contact pressure ratio and strain energy density amplitude obtained for the optimal design.

The second design task presumed the minimization of the strain energy density delta, which leads to
the improvement of the tire resistance to fatigue. In Fig. 8, the strain energy density evaluated over the
circumference of a tire is shown. According to the strain energy density as a fuzzy result quantity, four
curves are shown – signifying the worse and best case for the optimal design and for the reference design as
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well. The fuzzy result quantity, obtained for the optimal design is shown in Fig. 7b). From the comparison
of the curves in Fig. 8, it can be stated that, peaks of curves obtained for the optimal design lie below the
peaks of curves obtained for the reference design. The improvement is confirmed also by the strain energy
density amplitudes: for the optimal design ∆W = 0.190N/mm2 (best case) and ∆W = 0.222N/mm2 (worst
case), whereas for the reference design ∆W = 0.309N/mm2 and analogically ∆W = 0.321N/mm2.

Figure 8. Strain energy density versus the circumference of a tire.

In the example, the capability of the approach to optimize the objectives and to reduce the uncertainty of
fuzzy results is shown.

5. Conclusions

In this contribution, concepts for the consideration of fuzzy variables within the multi-objective optimization
approaches are discussed. Fuzziness is chosen as an appropriate model for the description of parame-
ters, which can not be defined as crisp quantities due to limited data and information deficits. Therefore,
procedures are proposed, which enable handling of these uncertain a-priori parameters next to the design
variables within the optimization task. The consideration of fuzzy variables within an aggregate objective
function, formulated by means of the weighted sum method is studied. The application of the approach to
the optimization and robustness improvement of a passenger car tire is shown. Additionally, concepts for the
identification of the set of non-dominated fuzzy quantities are proposed in the context of Pareto-optimality.
The developed approaches can be coupled with a FE simulation or a response surface approximation and
therefore are suitable for the solution of engineering design tasks.
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Möller, B. and M. Beer. Fuzzy Randomness – Uncertainty in Civil Engineering and Computational Mechanics. Springer, Berlin,

2004.
Möller, B., Graf, W. and M. Beer. Fuzzy Structural Analysis Using Alpha-level Optimization. Computational Mechanics, 26:547–

565, 2000.
Nackenhorst, U. The ALE-formulation of Bodies in Rolling Contact – Theoretical Foundations and Finite Element Approach.

Computer Methods and Applied Mechanics in Engineering, 193:4299–4322, 2004.
Pannier, S. Effizienter Numerischer Entwurf von Strukturen und Prozessen bei Unschärfe. Diss., Technische Universität Dresden,

2011.
Pareto, V. Manual of Political Economy. Macmillan, 1971.
Srinivas, N. and K. Deb. Multi-objective Function Optimization Using Non-dominated Sorting Genetic Algorithms. Evolutionary

Computation, 2:221–248, 1995.
Wu, D. and J. M. Mendel. Uncertainty Measures for Interval Type-2 Fuzzy Sets. Information Science, 177:5378–5393, 2007.
Zadeh, L. Fuzzy Sets. Information and Control, 8:338–353, 1965.

 

 
 
 
5th International Conference on Reliable Engineering Computing (REC 2012)

 
 
 
 
 

 
 
 
495



 

 
 
 
496

 
 
 
 
 

 
 
 
5th International Conference on Reliable Engineering Computing (REC 2012)



Dynamic Response of Beams to Interval Load

Iwona Skalna
Department of Applied Computer Science, AGH University of Science and Technology, Krakow, Poland

skalna@agh.edu.pl

M.V. Rama Rao
Department of Civil Engineering, Vasavi College of Engineering, Hyderabad, India

dr.mvrr@gmail.com

Andrzej Pownuk
Department of Mathematical Sciences, University of Texas at El Paso, 500 West University Avenue El Paso,

TX 79968, USA
andrzej@pownuk.com

Abstract. Parameters of mathematical models are most often represented by real numbers, while in practice
it is impossible or at least very difficult to get reliable information about their exact values. Hence, it is
unreasonable to take point data for that may lead to incorrect results, which is not welcome especially
when inaccuracy cannot be neglected. Depending on available information, one can use different ways
of modelling of uncertainty. Interval computing plays an important role in this field, because very often
the only available information are lower and upper bounds on a physical quantity. This paper focuses on
a transient dynamic analysis of a beam with uncertain parameters. Finite difference and finite element
methods are used to solve partial differential equation which represents the model for the motion of a straight
elastic beam. In order to compute the time-history response of the beam under uncertainty, interval dynamic
beam equations are solved using Search method, Gradient method, Taylor method, adaptive Taylor method,
direct optimisation and Direct method for solving parametric interval linear systems. The applicability, i.e.
effectiveness and accuracy, of those methods is illustrated through solution of beams with interval value of
modulus of elasticity and mass density and subjected to interval dynamic loading.

Keywords: Euler-Bernoulli beam, Dynamic response, Interval arithmetic, Search method, Gradient method,
Taylor method, adaptive Taylor method, Direct method, Direct optimisation.

1. Introduction

Airplane wings, high-rise buildings and suspension bridges are just some of the mechanical and structural
examples where vibration analysis of beams is essential for the safe design. Safety issues are the greatest
concern of structural engineering as the design and construction of secure and safe structures can prevent
disasters like the collapse of Tacoma Narrow Bridge November 7, 1940, just few month after it was fin-
ished. This was probably the most dramatic failure in bridge engineering history. Safety studies in structural
engineering are supposed to prevent failure during the lifetime of a structure.

Constantly increasing computational capabilities allow for detailed numerical models of structural sys-
tems. However, those models are built, inter alia, on a number of model parameters subject to uncertainty.
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The use of models that include the uncertainty, which is central to reliability/risk analysis of engineering
systems, is of great importance for a design engineer.

Uncertainty of structural parameters is mainly due to the scarcity or lack of data which may be resulted
from manufacturing/construction tolerances or caused by progressive deterioration of concrete and corro-
sion of steel. In engineering applications, uncertainty also exists in determining external loads. To make
a decision based on an inexact data say some parameter p̃, a measurement error ∆p = |p̃ − p| must known
at least. Very often, the only available information about the error is its upper bound ∆p 6 ∆. In this
case, once the measurement p̃ is obtained, one can conclude that the possible values p̃+∆p form an interval
p = [p̃−∆, p̃+∆] which is guaranteed to contain the exact value p of the parameter. Once interval quantities
are introduced, they must be handled appropriately to obtain the result which is guaranteed to contain the
exact solution.

Though interval arithmetic was introduced by Moore (Moore, 1966) already in 1966, the application of
interval concepts to structural analysis is more recent. Some important advances on reliability-based design
and modelling of uncertainty when data is limited were made during last years. Structural analysis using
interval variables has been used by several researchers to incorporate uncertainty into structural analysis
((Köylüoglu et al., 1995), (Nakagiri and Yoshikawa, 1996), (Rao and Sawyer, 1995), (Rao and Berke, 1997),
(Rao and Chen, 1998), (Mullen and Muhanna, 2001), (Neumaier and Pownuk, 2007), (Skalna, Pownuk and
Rama Rao, 2008)).

In this paper, the problem of vibrations of an Euler-Bernoulli beam with interval material properties
subjected to interval load is considered. Two different approaches are employed to obtain beam deflection in
time. In the first approach, the Euler-Bernoulli equation governing the behaviour of the beam is descretized
in space and time. The beam bending in the respective time step is obtained by solving a system of equations
with coefficient depending on interval parameters. Several methods are used for this purpose. Search method,
Gradient method ((Skalna, Pownuk and Rama Rao, 2008)), Taylor method and adaptive Taylor method
(Pownuk, 2011) utilise the fact that in many structural engineering problems relation between the solution
and uncertain parameters is monotone. In such a case, the extreme values of a solution are attained at
respective endpoints of given intervals. Monotonicity can be verified by using Taylor series or an interval
method (Hansen, 1992). Methods exploiting monotonicity tests are useful for solving large scale problems,
but they may underestimate. When monotonicity is not assumed, the solution can be obtained using methods
for solving parametric interval linear systems (Skalna, 2010)). Those methods give guaranteed enclosures,
but their usage is limited e.g. by the amount of uncertainty. In the second approach, the Finite Element
Method is a starting point for considerations. The Wilson-θ method and optimisation approach are used for
the solution of the problem (Rama Rao, Pownuk and Vandewalle, 2010).

The paper has the following structure. In Sections 3 and 6, the considered problem is described in terms
of the mathematical theory. Section 4 describes the discretization of the problem in time and space. Section
5 and 6.1 are devoted to the methods for solving interval linear systems obtained from the discretization of
the Euler-Bernoulli equation. Numerical examples are given in Section 7. The paper ends with concluding
remarks.
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2. Interval uncertainty

If only very limited knowledge about the value of some structural parameter pi is available, then this value
can be conveniently described by an interval number in the following way:

pi ∈ [p̃i −∆pi, p̃i + ∆pi] = [p
i
, pi] = pi, (1)

where p̃i can be considered as an approximation of the true value of pi and ∆pi as an approximation error.
Now, if some output quantity y is related to parameters p by a known relation y = f(p), then the

calculation of the result, assuming p vary within p, is numerically equivalent to finding the following solution
set:

yS = {y : y = f(p), p ∈ p}. (2)

The outcome of the interval analysis here is expressed as a set yS of possible solutions as, in general,
it cannot be described exactly by an interval or hypercube. The correct interpretation of this expression is
that the set yS contains all vectors y that are obtained from applying the function f on all possible vectors p
within the interval vector p.

An exact description of the solution set yS is often extremely difficult to find. Therefore, usually an
interval vector x∗ 3 yS , called outer solution/enclosure, is computed instead and the goal is x∗ to be as
narrow as possible. The tightest interval vector containing yS is called hull solution (or simply a hull). One
can also calculate inner solution/approximation which is defined as an interval vector which is included in the
hull. They are usually obtained using the ”straightforward” interval arithmetic. However, this usually leads
to large overestimation due to the so-called dependency problem. Keeping track of how intermediate results
on input data may decrease excess with. This idea was successfully implemented in several approaches, e.g.
affine arithmetic (Comba and Stolfi, 1993).

3. Forced vibration of a beam

Forced vibration of a beam is governed by Euler-Bernoulli equation (Ciarlet, 1997).

∂2

∂x2

(
EJ

∂2w

∂x2

)
= q − ρA∂

2w

∂t2
, (3)

where E is the elastic modulus, J is the second area moment, A is the cross-sectional area, ρ is mass
density of the material of the beam and q is an external load. The model (3) where the displacement w
depends only on one-dimensional spatial variable x and time t is obtained upon the use of Hookes law and
other simplifying assumptions. This model is a valid approximation for thin beams under small transverse
deformations. As a good rule-of-thumb, ’small’ is defined as deflections that are at least ten times smaller
than beam thickness.

For an uniform beam (EJ is constant), Eq. (3) reduces to

EJ
∂4w

∂x4
= q − ρA∂

2w

∂t2
. (4)

Because vibration is an initial-boundary value problem, therefore both initial and boundary conditions are
required to obtain a unique solutionw(x, t). Since the equation involves second order derivative with respect
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to time and fourth derivative with respect to a space coordinate, thus four boundary and two initial conditions
are necessary: 

w(0, t) = 0
w(L, t) = 0
∂2w

∂x2
(0, t) = 0

∂2w

∂x2
(L, t) = 0

,

{
w(x, 0) = w0(x)

v(x, 0) = ∂w
∂t (x, 0) = v0(x)

(5)

Endpoint displacements are equal to zero, which can be written as w(0, t) = w(L, t) = 0 for t ∈ [0, T ].

Because bending moments at both endpoints are equal to zero, therefore M(0, t) = EJ
∂2w

∂x2
(0, t) and

M(L, t) = EJ
∂2w

∂x2
(L, t), and consequently

∂2w

∂x2
(0, t) =

∂2w

∂x2
(L, t) = 0 for t ∈ [0, T ]. For t = 0, both

displacement and velocity are equal to zero and thus w0(x) = 0, v0(x) = 0 for x ∈ [0, L].

4. Implicit Finite Difference Discretization

In this paper implicit Finite Difference Method has been applied to the problem of dynamic beam vibrations
(Ciarlet, 1990). Discretization of Eq. (4) is performed at point (i, j + 1):(

EJ
∂4w

∂x4

)
i,j+1

= qi,j+1 −
(
ρA

∂2w

∂t2

)
i,j+1

(6)

which leads to the finite difference equation:

Ei,j+1Ji,j+1
wi+2,j+1 − 4wi+1,j+1 + 6wi,j+1 − 4wi−1,j+1 + wi−2,j+1

∆x4
+
ρi,j+1Ai,j+1

∆t2
wi,j+1 =

= qi,j+1 − ρi,j+1Ai,j+1
2wi,j − wi,j−1

∆t2

(7)

Similarly, it is possible to discretize initial and boundary conditions. Finally, one obtains:

w0,j+1 = 0
w0,j+1 − 2w1,j+1 + w2,j+1 = 0

Ei,j+1Ji,j+1
wi+2,j+1 − 4wi+1,j+1 + 6wi,j+1 − 4wi−1,j+1 + wi−2,j+1

∆x4
+
ρi,j+1Ai,j+1

∆t2
wi,j+1 =

= qi,j+1 − ρi,j+1Ai,j+1
2wi,j − wi,j−1

∆t2
wn−2,j+1 − 2wn−1,j+1 + wn,j+1 = 0
wn,j+1 = 0
wi,0 = w∗i
wi,1 = wi,0 + v∗i ∆t.

(8)

It is important to note that wi,j+1 = w(pi,j+1) where pi,j+1 = (Ei,j+1, ρi,j+1, qi,j+1). Discretization
reduces the problem of computing the dynamic response of a beam to the problem of solving a sequence of
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parametric linear systems. Assuming the uncertainty of the parameters, an sequence of parametric interval
linear systems must be solved. In order to increase the accuracy of the FDM, finite difference scheme of
order higher than 3 has been applied for the time step.(

∂2w

∂t2

)
i,j

≈ 2wi,j − 5wi,j−1 + 4wi,j−2 − wi,j−3

∆t2
(9)

5. Methods for solving parametric linear systems

Apart from the diversity caused by the nature of the numerical problem at hand, a clear distinction can
be made between fundamental approaches for tackling the interval uncertainty. The interval arithmetic
strategy approaches the exact hypercubic circumscription of the interval result from outside. It is based on
the calculation of guaranteed outer bounds. The global optimisation approach on the other hand calculates
an inner approximation. The interval arithmetic based methods proves to be computationally less expensive
than the approximate method, it very often results in a huge overestimation of the actual interval result,
due to the dependency problem. On the other hand, optimisation based approaches, though computationally
expensive and time-consuming, provide an acceptable solution for practical engineering problems.

5.1. INTERVAL SOLUTION AS A FUNCTION OF UNCERTAIN PARAMETERS

Each interval solution is in fact a function of some specific combinations of the parameters:

wi,j = wi,j(p
min
i,j ), wi,j = wi,j(p

max
i,j ). (10)

In the continuous case, one can write

w(x, t) = w(x, t, pmin(x, t)),
w(x, t) = w(x, t, pmax(x, t)).

(11)

In some situations, the interval solution depends only on one combination of parameters for some domain
Dα ⊆ [0, L]× [0, T ]

w(x, t) = w(x, t, pmin
α ), w(x, t) = w(x, t, pmax

α ). (12)

In such cases it is possible to calculate the interval solution exactly by using finite number of combinations
of the parameters pmin

1 , pmax
1 ,...,pmin

α , pmax
α ,...,pmin

q , pmax
q where D1 ∪ ... ∪Dq = [0, L]× [0, T ].

5.1.1. Search method
In order to find the interval solution the Search method is applied. The method relies on solving parametric
linear systems of equations corresponding to the specific combinations of the parameters. That is, each
interval parameter pi is replaced by the set of discrete points pi1, . . . , pik:

pi ≈ {pi1, . . . , pik}. (13)

A multidimensional interval p = [p1, . . . , pm] is approximated by the discrete set of points:

p = [p1, . . . , pm] ≈ {(p1,i1 , . . . , pm,ik) : 0 6 i1, . . . , ik 6 k} = Pm,k. (14)

 

 
 
 
5th International Conference on Reliable Engineering Computing (REC 2012)

 
 
 
 
 

 
 
 
501



Iwona Skalna, M.V. Rama Rao, Andrzej Pownuk

Number of elements in the set (14) equals km where m is the number of interval parameters and k is the
number of intermediate points in each interval pi (for k = 2 the method reduces to the endpoints combination
method). Then, an interval solution can be calculated in the following way:

wi,j ≈ wsearchi,j = min{wi,j(p1,i1 , . . . , pm,ik) : (p1,i1 , . . . , pm,ik) ∈ Pm,k}, (15)

wi,j ≈ wsearchi,j = max{wi,j(p1,i1 , . . . , pm,ik) : (p1,i1 , . . . , pm,ik) ∈ Pm,k}. (16)

The search method allows as well finding approximate values of pmin,search
i,j , pmax,search

i,j .

wi,j ≈ wsearchi,j = wi,j(p
min,search
i,j ), wi,j ≈ wsearchi,j = wi,j(p

max,search
i,j ) (17)

According to numerical experiments

pmin
i,j ≈ p

min,search
i,j , pmax

i,j ≈ p
max,search
i,j (18)

which means that the Search method can find approximate or exact values of pmin
i,j and pmax

i,j .

5.1.2. Gradient method
The value of pmin(x, t) and pmax(x, t) can be found as well by solving respectively the following minimi-
sation and maximisation problems

pmin(x, t) = arg min
p
w(x, t, p),

pmax(x, t) = arg max
p
w(x, t, p),

s.t.



EJ
∂4w

∂x4
= q − ρA∂

2w

∂t2
w(0, t) = 0
w(L, t) = 0
∂2w

∂x2
(0, t) = 0

∂2w

∂x2
(L, t) = 0

w(x, 0) = w0(x)

v(x, 0) =
∂w

∂t
(x, 0) = v0(x)

p ∈ p

(19)

Solutions wi,j are functions of uncertain parameters wi,j = wi,j(p). If the function wi,j = wi,j(p) is
monotone, then pmin

i,j and pmax
i,j can be calculated as:

pmin,gradient
i,j,k = p

k
, if

∂wi,j
∂pk

< 0 else pmin,gradient
i,j,k = pk, (20)

pmax,gradient
i,j,k = pk, if

∂wi,j
∂pk

≥ 0 else pmax,gradient
i,j,k = p

k
, (21)
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where ∂wi,j

∂pk
are partial derivatives with respect to all uncertain parameters. Thus obtained combinations of

endpoints can be utilised for calculation of upper and lower bounds of the solution

wi,j ≈ w
gradient
i,j = wi,j(p

min,gradient
i,j ), wi,j ≈ wgradienti,j = wi,j(p

max,gradient
i,j ). (22)

5.1.3. Taylor method
The interval solution can be also calculated by using first order Taylor model:

wi,j(p) ≈ T (1)
i,j (p) = wi,j(p0) +

∑
k

∂wi,j
∂pk

(p0) · (pk − p0). (23)

In this approach the interval solution can be calculated in the following way

wi,j ≈ w
Taylor
i,j = wi,j(p0)−

∑
k

∣∣∣∣∂wi,j∂pk
(p0)

∣∣∣∣ ·∆pk, (24)

wi,j ≈ wTaylori,j = wi,j(p0) +
∑
k

∣∣∣∣∂wi,j∂pk
(p0)

∣∣∣∣ ·∆pk, (25)

The result of the Taylor method can be calculated as well by using endpoint combinations and Taylor
polynomial

wTaylori,j = T
(1)
i,j (pmin,gradient

i,j ), wTaylori,j = T
(1)
i,j (pmax,gradient

i,j ). (26)

5.1.4. Adaptive Taylor approximation
It is possible to increase the accuracy of the Taylor method results by using adaptive approximation (Pownuk,
2011). It is necessary to calculate all different combinations of parameters L1 = {p∗,1, ..., p∗,n1} in the sets
pmin,gradient
i,j and pmax,gradient

i,j . For each combination p(∗,k) from the list L1 it is necessary to find a point
solution w(k) = w(p∗,k).

w
(1)
i,j ≈ min{w

(1)
i,j , ..., w

(n1)
i,j }, w

(1)
i,j ≈ max{w

(1)
i,j , ..., w

(n1)
i,j } (27)

For w(1)
i,j and w(1)

i,j it is necessary to calculate new values of pmin,gradient,1
i,j and pmax,gradient,1

i,j . In the sets

pmin,gradient,1
i,j and pmax,gradient,1

i,j it is necessary to find new combinations of parameters and add to the list
L. New list will be denoted as L2 and calculate new values of upper and lower bound from the formula (27).
Calculations will be stopped if no new combinations of parameters will be found in the next iteration i.e.
Li = Li+1.

5.2. DIRECT METHOD

To verify the results obtained using the approximate methods described in the previous sections, the direct
method (DM) (Skalna, 2010) for solving parametric interval linear systems is applied to the problem.
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5.2.1. Iterative approach
The system (8) can be written in matrix form as:

Kwj+1 = Qj +M2w
j +M1w

j−1, (j = 2, . . . , nt) (28)

with

Qj =



0
0

q2,j+1

q3,j+1
...

qn−2,j+1

0
0


, M1 = µ2



0 0 0 0
0 0 0 0

−1
. . .
−1

0 0 0
0 0 0


, M2 = µ2



0 0 0 0
0 0 0 0

2
. . .

2
0 0 0
0 0 0


, (29)

and

K =



1 0 0 0 0 0 0 ... 0 0 0 0 0
1 −2 1 0 0 0 0 ... 0 0 0 0 0
µ1 −4µ1 6µ1 + µ2 −4µ1 µ1 0 0 ... 0 0 0 0 0
0 µ1 −4µ1 6µ1 + µ2 −4µ1 µ1 0 . . . 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 0 . . . µ1 −4µ1 6µ1 + µ2 −4µ1 µ1

0 0 0 0 0 0 0 . . . 0 0 1 −2 1
0 0 0 0 0 0 0 . . . 0 0 0 0 1


, (30)

where µ1 = EJ
∆x4

, µ2 = ρA
∆t2

. As can be seen, the coefficients of the system (28) are polynomial functions of
the parameters E, ρ and q. Thus, the Direct Method can be applied. The interval result obtained in a given
iteration step enters into the right-hand of the system to be solved in the next step. The iterative approach is
quite efficient, however the overestimation of the result grows in successive iteration steps. This is mainly
due to the so-called dependency problem. Namely, starting from the second iteration, the dependency in the
right hand vector is lost since the solution enters the right-hand as an interval vector and not the affine one.
Therefore, in what follows a non-iterative approach is considered.

5.2.2. Non-iterative formulation
Consider the linear system (28). Taking into account boundary conditions, one obtains:

w0 = 0
w1 = 0
−M1w

0 −M2w
1 +Kw2 = Q1

. . .
−M1w

nt−2 −M2w
nt−1 +Kwnt = Qnt−1

, (31)
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where wj = [w0,j , w1,j , . . . , wnx,j ]. Finally, the following parametric linear system is obtained:

1 0 0 0 . . . 0
0 1 0 0 . . . 0
−M1 −M2 K 0 . . . 0

0 −M1 −M2 K . . . 0
...

...
...

...
...

...
0 0 . . . −M1 −M2 K





w0

w1

w2

w3

...
wnt


=



0
0
Q1

Q2

...
Qnt−1


(32)

The non-iterative approach is free from the accumulation error problem described above, but suffers from
the efficiency problem as a very large system (of size (nx + 1)nt) must be solved.

6. Wilson-θ method

Consider a discrete structural system with multi-degree of freedom (MDOF) described by equation

Mẅ + Cẇ +Kw = F (t) (33)

The damping matrix C is defined as
C = α0M + α1K, (34)

and the coefficients α0 and α1 are computed by considering damping ratios ξ1 and ξ2 in the first two modes
of vibration (with corresponding frequencies ω1 and ω2) as follows:[

α0

α1

]
=

1

2

[ 1
ω1

ω1
1
ω2

ω2

] [
ξ1

ξ2

]
(35)

Wilson-θ method is used for the solution of the transient dynamic problem. This method is an implicit
integration method and involves computation of dynamic response of a MDOF system by adopting a step by
step integration process in the time domain. The Wilson-θ method assumes a linear variation of acceleration
over the time interval [t, t + θδt], where θ ≥ 1.0 and δt is a small time step. It has been shown by Wilson
that the method becomes unconditionally stable for θ ≥ 1.38.

6.1. OPTIMISATION APPROACH

Uncertainty is considered in the values of Young’s modulus and mass density of steel and load. The solution
to the resulting interval MDOF system is obtained by an optimisation procedure. This is done by utilising the
fmincon function from the optimisation toolbox of MATLAB (The Mathworks, 2011) which seeks to find
the minimum of a constrained non-linear multivariate function. The fmincon function finds a constrained
minimum of a function f(x) of several variables by solving a problem of the form:

{x} = fmincon(objfun, {x0}, [A], [B], [Aeq], {beq}, {lb}, {ub}) (36)

subject to the inequality constraints
Ax 6 b, (37)
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equality constraints
Aeqx0 = beq (38)

and bounds
lb ≤ x ≤ ub (39)

with x0 being the starting point for search. The last condition (39) defines a set of lower and upper bounds on
the design variables {x}, so that a solution is found in the range lb ≤ x ≤ ub. Wilson-θ method is extended
to compute the interval displacement response as a function of time by formulating it as a MATLAB function
objfun yielding a single output describing the deterministic transient vertical displacement of a given node
of the structure. The displacement response is optimised and the bounds for the displacement response are
obtained at each time step δt for 0 ≤ t ≤ tmax. The normalised uncertainties associated with mass and
stiffness and load terms are represented by normalised interval parameters p1, p2 and p3 respectively. These
upper and lower bounds of these interval parameters form the vertices of an uncertainty hypercube pI . Any
point (p1, p2, p3) inside this bounds {lb} and {ub} described in equation (39) are defined as

lb =

 p1
p

2
p

3

 and ub =

 p1

p2

p3

 (40)

Equation (33) is recast in interval parametric form as

p1 Mẅ + Cw + p2Kw = p3F (t) (41)

where parameters pi are defined as
pi = [p

i,
pi], (i = 1, 2, 3). (42)

The objective function can be computed at any point p defined by coordinates (p1, p2, p3) within the hy-
percube pI that forms the search domain. Thus, using the procedure described above, the deterministic
algorithm is translated to an interval algorithm using the global optimisation based approach. In this ap-
proach, the lower and upper bounds of interval displacement wn at a given node n is determined, taking
into account that the uncertain parameters p can vary within their intervals pI . This interval wn of this
displacement is determined by a minimisation and a maximisation over the uncertainty interval pI .

wn =

[
min
p∈pI

(wn),max
p∈pI

(wn)

]
(43)

This is done by computing the displacement {w(x, t)} at any location x along the span of the beam at a
given time t, using the following deterministic matrix equation,by implementing Wilson-θ approach. :

p1Mẅ + Cw + p2Kw = p3F (t). (44)

The time history of the displacement response is obtained by computing the minimum and maximum values
of the response at each time step. To compute the displacement at a certain time, it has to be computed at all
earlier time steps too. However, in order to reduce the computational cost of the optimisations using the local
optimisation algorithm fmincon , all function evaluations of the objective function are stored in a database
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Figure 1. Geometry of the uniform beam with symmetrical load.

to enable the optimiser to reuse them for future optimisations without performing the same finite element
analysis again. This database is also used to start optimisations from the point with the best function value
found so far the lowest function value for minimisation and the highest function value for maximisation. All
optimisations are performed from the highest to the lowest membership level.

7. Numerical experiments

In order to show the interval solutions obtained using the methods described in the paper, an example of
the dynamically loaded beam with the load uniformly distributed over the entire span will be considered.
Different cases of the amount of uncertainty are investigated.

Example 1. Consider Euler Bernoulli beam shown in Figure 1 with uniform load of 2.5kN applied for a
short time of 0.009s. The beam has a span L = 4m, area of cross section A = 0.01m2, second moment of
area J = 8.333× 10−6 m4 and Young’s modulus E = 200GPa. It is assumed that mass density is uncertain
±0.5% and the load is uncertain ±20%. This gives 2 interval parameters p = (p1, p2) = (ρ, q).

The following discretization is applied nx = 20, (∆x = L/nx), number of time steps is equal to
nt = 100 and time step is ∆t = 0.0015s. The load is applied for 0.009s.
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Figure 2. Search method result form = 2, k = 7: (a) the lower and upper bound of the interval solution, (b) the difference between
upper and lower bound, wsearch − wsearch.

(a) (b)
Figure 3. Combinations of parameters which correspond to pmin: (a) Search Method, (b) comparison of the Search Method and
the Gradient Method. The colours which represent each particular combination for the Search Method and the Gradient Method are
different

From the Fig. 3 it is possible to see that the parameters which are calculated by using the Search Method
and the Gradient Method are very similar. Only for one time step combinations of parameters were predicted
incorrectly by the Gradient Method.

pmin,gradient
i,j ≈ pmin,search

i,j . (45)

The interval solution depends mostly on the endpoints of the intervals. In order to show this, pmin,search
i,j ,

pmax,search
i,j is calculated with 2, 5 and 7 intermediate points in the given intervals. For nx = 20, nt = 100

the results are identical:
wsearch,2i,j = wsearch,5i,j = wsearch,7i,j . (46)
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(a) (b)
Figure 4. Difference between the results of the search methodwsearch,7

i,j −wsearch,2
i,j for k = 2 and k = 5 for different discretization

of the problem. nx = 20, nt = 100 (a), nx = 100, nt = 200 (b).

Of course, it is possible to find examples in which there are some difference between the solution for k = 2
and k > 2. However, according to numerical experiments for the equation which is discussed in this paper
wsearch,2i,j ≈ wsearch,ki,j and wsearch,2i,j ≈ wsearch,ki,j where k > 2.

Figure 5 compares the results of the Direct Method and the Search Method. The solution for point data
(solid black line) is presented as well.

Figure 5. Vertical displacement of the midspan; comparison of the results of Direct method and Search method for the case:
E = 200[GPa], ρ = 7850[kg/m2]±0.5%, q = 2.5[kN]±20%, nx = 20, nt = 100, ∆t = 0.0015.

As can be seen, the results of Direct method and Search method coincide. This proves the quality of the
results of both methods.

Example 2. A beam similar to the one used in Example 1 is considered for analysis once again. The beam
is acted upon by a load of 5kN/m uniformly distributed over the whole span suddenly for a duration of 0.4
seconds. Five percent damping is considered to be present. The transient dynamic response of the beam is
computed using the procedure outlined in section 6.1 and results are presented . Figure 6 shows the time
history plot of vertical displacement of the beam at mid-span corresponding to the case with p1 = p2 =
[0.95, 1.05]and p3 = [1.0, 1.0]. This corresponds to deterministic load and interval values of stiffness and

 

 
 
 
5th International Conference on Reliable Engineering Computing (REC 2012)

 
 
 
 
 

 
 
 
509



Iwona Skalna, M.V. Rama Rao, Andrzej Pownuk

mass matrices. Figure 7 shows the time history plot of vertical displacement corresponding to the case
p1 = p2 = [1.0, 1.0] and p3 = [0.8, 1.2]. Figure 6 clearly depicts the shifting of peaks of response and
increase of uncertainty of response as time progresses as uncertainty in mass and stiffness causes a large
uncertainty in the eigenfrequencies of the structure. However, no such shifting of peaks is observed in
Figure 7 because mass and stiffness properties are deterministic and eigenfrequencies remain deterministic
even as time progresses.

Figure 6. Vertical displacement of the midspan with p1 = p2 = [0.95, 1.05], p3 = [1.0, 1.0] and 5 percent damping.

Figure 7. Vertical displacement of midspan with p1 = p2 = [1.0, 1.0], p3 = [0.8, 1.2] and 5 percent damping
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8. Conclusions

Several methods for solving beam vibrations problem under interval uncertainty were considered. Based on
illustrative examples, it can be stated that in the case of symmetrically loaded beam, the interval solution
depends on very few combinations of uncertain parameters. In the example, the interval solution depends
only on 4 combinations of parameters. This means that in practice it is possible to find four point solutions
in order to compute the exact values of the interval solution. Appropriate combinations of parameters can
be predicted by using the gradient of the solution. Moreover, it is possible to increase the accuracy of the
calculations by using adaptive approximation (Pownuk, 2011) which will be a topic of future research. In
more complex cases, as seen in Example 1, it is possible to find large areas in which the interval solution
depends only on specific combinations of parameters. It is possible to use this information in order to
improve accuracy of the interval solution. There are also situations in which the interval solution depends on
infinite number of combinations of the parameters. According to numerical results, in considered example,
the solution depends only on the endpoints of the parameters. In such situations it is possible to calculate
the exact solution by using the gradient method (Pownuk, 2004). In this case it is possible to calculate the
interval solution approximately using Taylor method, which is especially useful for narrow intervals. The
guaranteed solution can be obtained using the Direct method for solving parametric interval linear systems,
however the method requires some improvement do deal with large scale problems. Direct formulation of the
iterative problems can eliminate the wrapping effects from the interval calculations. Optimisation approach
is time consuming but produces acceptable results even with large intervals of input parameters.
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de Computação Gráfica e Processamento de Imagens (Recife, BR), 9-18, 1993.

 

 
 
 
512

 
 
 
 
 

 
 
 
5th International Conference on Reliable Engineering Computing (REC 2012)



Terror, Security, and Money: Balancing the Risks, Benefits, and 

Costs of Critical Infrastructure Protection 

 
Mark G Stewart 

Australian Research Council Professorial Fellow 

Centre for Infrastructure Performance and Reliability 

The University of Newcastle, Australia 

email: mark.stewart@newcastle.edu.au  

 

John Mueller 

Mershon Center for International Security Studies, Ohio State University 

Cato Senior Fellow, Cato Institute, Washington, DC 

email: bbbb@osu.edu 

 
Abstract: The loading and response of structures to explosive blast loading is subject to uncertainty and 

variability. This uncertainty can be caused by variability of dimensions and material properties, model 

errors, environment, etc. Limit state and LRFD design codes for reinforced concrete and steel have been 

derived from probabilistic and structural reliability methods to ensure that new and existing structures 

satisfy an acceptable level of risk. These techniques can be applied to the area of structural response of 

structures subject to explosive blast loading. The use of decision theory to determine acceptability of risk is 

crucial to prioritise protective measures for built infrastructure. Government spending on homeland security 

will reach $141.6 billion worldwide in 2009 and is projected to reach $300 billion by 2016. The question is, 

is this or other expenditure necessary? Clearly, scientific rigour is needed when assessing the effectiveness 

and the need for protective measures to ensure that their benefits exceed the cost. The paper will assess 

terrorist threats to buildings and airport infrastructure and the cost-effectiveness of protective and counter-

terrorism measures. Structural reliability and probabilistic methods are used to assess risk reduction due to 

protective measures. The key innovation is incorporating uncertainty modelling in the decision analysis, 

which in this case will maximise net benefit. This analysis will then consider threat likelihood, cost of 

security measures, risk reduction and expected losses to compare the costs and benefits of security measures 

to decide which security measures are cost-effective, and those which are not.  
 

Keywords: risk, reliability, terrorism, security, cost-benefit analysis, infrastructure, aviation 

 

 

 

1. Introduction 

 

Terrorist threats against civilian and military infrastructure, particularly buildings, bridges, pipelines and 

aviation infrastructure, seem to be increasing, as evidenced by recent terrorist attacks including Manchester 

and London city centres (1992, 1993 and 1996), U.S. Embassy in Kenya (1998), Pentagon and World Trade 

Center (2001), night clubs and restaurants in Bali (2002, 2005), Marriott Hotel in Jakarta (2003), Australian 

Embassy in Indonesia (2004), and ‘near misses’ such as the recent Christmas Day Northwest Airlines 
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aircraft suicide bombing attempt (2009). The preferred method of attack is Improvised Explosive Devices 

(IEDs), often through suicide tactics, against buildings and transport infrastructure, see Figure 1. 

 

      
 

Figure 1. VBIED Damage to Building in Jakarta (2004) and Bridge in Iraq (2009). 

 

Securing airports and aircraft has been a high priority of governments world-wide after the 9/11 attacks. 

Several terrorist plots have recently been foiled, which if successful, would have killed many hundreds of 

people. The U.S. Transportation Security Administration (TSA) has arrayed ’21 Layers of Security’ to 

‘strengthen security through a layered approach’. This is similar to counter-terrorism (CT) strategies 

worldwide. Assessing the effectiveness and reliability of aviation CT measures is important to 

understanding their strengths and weaknesses, and assessing the need for additional security measures.  

 There are considerable uncertainties associated with threat scenarios, system response, effectiveness of 

CT measures and expected damage. Since IEDs are typically ‘home made’ and placed under imperfect 

conditions, then the probability of a successful detonation can be highly uncertain, as evidenced in recent 

failed attempts to blow up U.S. airliners. These uncertainties will affect damage risk predictions and the 

utility of subsequent decisions. Characterising these uncertainties using stochastic (probabilistic) methods is 

a logical step, which will lead to estimates of system reliability and risk. Only very few probabilistic and 

reliability analyses have been carried out for infrastructure systems subject to explosive blast loading (e.g. 

Twisdale 1994, Low and Hao 2001, 2002, Eamon 2007, Hao et al 2010). This is in contrast to the approach 

that has been used very widely and successfully for other man-made and natural hazards (e.g. Stewart and 

Melchers 1997). Risk and reliability analyses will allow comparisons to be made between the relative 

effectiveness of security measures, weapon selection, delivery method or other mitigation measures.  

 To compare costs and benefits requires the quantification of threat probability, risk reduction, losses, 

and security costs. This is a challenging task, but necessary for any risk assessment, and the quantification 

of security risks is recently being addressed (e.g. Stewart et al. 2006, Stewart and Netherton 2008, 

Netherton and Stewart 2009, Dillon et al. 2009, Cox 2009, Stewart and Mueller 2008a, 2008b, 2011), as 

well as recent life-cycle and cost-benefit analyses for infrastructure protective measures (Willis and 

LaTourette 2008, von Winterfeldt and O’Sullivan 2006, Stewart 2008, 2010a,b, 2011). Much of this work 

can be categorized as ‘probabilistic terrorism risk assessment’.  

 The cumulative increase in expenditures on U.S. domestic homeland security over the decade since 

9/11 exceeds one trillion dollars (Mueller and Stewart 2011a,b). Up to 45% of this expenditure is devoted to 

protecting critical infrastructure and key resources. Yet there is little evidence that such expenditures have 
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been efficient. Clearly, for efficient decision-support to occur there is a need to quantify security risks and 

assess their level of acceptability and cost-effectiveness. A significant challenge is balancing the costs and 

benefits of counter-terrorism measures when the threat scenarios are highly transient and considerable risk 

averseness displayed by decision makers. For security and public policy purposes a quantification of 

security risks is essential for risk acceptability and robust decision-making.  

 It was understandable, in the years immediately following the terrorist attacks of September 11, 2001 

that there was a tendency to spend in haste on homeland security. For example, annual security costs for the 

U.S. airline industry have increased to over $8 billion (DHS 2011), yet little scientific rigour has been 

applied to assess the effectiveness of this expenditure as evidenced by a statement from the U.S. 

Department of Homeland Security that ‘We really don't know a whole lot about the overall costs and 

benefits of homeland security.’ (Anderson 2006). These concerns are equally valid for Australia, Canada 

and Europe. There is a need to examine homeland security expenditures in a careful and systematic way, 

applying the kind of system and reliability modelling approaches that are routinely applied to other hazards. 

This type of rigour, where security and public policy decisions are assessed on technical, social and 

economic considerations of risk acceptability, is much needed to ensure that public funds are expended on 

measures that maximise public safety. 

 Terrorism may be viewed as a ‘new hazard’, that although different in nature from other hazards, 

requires systems and reliability approaches similar to those adopted to other hazards to assess risk and 

safety. The paper will review recent research conducted at The University of Newcastle, including: 

1.  Stochastic modelling of blast loads 

2. Stochastic modelling of structural response 

3.  Systems and Reliability analysis 

4.  Risk-based decision theory 

 This is a multi-faceted approach to probabilistic terrorism risk assessment that deals with existing and 

new (hardened) infrastructure. A capability to predict the likelihood and extent of damage and casualty 

levels has many potential uses; including: 

1. infrastructure and security policy, as a decision support tool to mitigate damage 

2. contingency planning and emergency response simulations 

3. collateral damage estimation (CDE) for military planners 

4. forensics to back-calculate charge weights.  

 A review of probabilistic risk assessments are given for specific example applications: (i) IED design 

and initiation, and predicting variability of time-pressure load history on infrastructure, (ii) reinforced 

concrete structural systems, (iii) airports subject to terrorist attack, and (iv) buildings subject to a terrorist 

Vehicle Borne Improvised Explosive Device (VBIED). The illustrative examples in this paper, where 

possible, use actual or representative threat, consequence and cost data. However, some hypothetical data is 

used (particularly when dealing with terrorist threats in Section 5) as the intention of the examples is to 

show the methodology of various risk acceptance criteria and not to make any definitive conclusions about 

a specific item of infrastructure. 

 For additional and wider-ranging assessments of the issues raised and the approaches used, including 

risk and cost-benefit assessments of buildings, bridges and aviation systems (air marshals, full-body 

scanners, etc.), see John Mueller and Mark G. Stewart, Terror, Security, and Money: Balancing the Risks, 

Benefits, and Costs of Homeland Security, Oxford University Press, 2011. 
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2. Risk-Based Decision Support Framework 

 

An advantage of a probabilistic risk assessment is that it can include a risk-cost-benefit analysis that 

considers tradeoffs between risks and costs. An appropriate decision analysis compares the marginal costs 

of CT protective measures with the marginal benefits in terms of fatalities and damages averted. The 

decision problem is to maximise the net benefit (equal to benefits minus the cost) or net present value: 
 

       ( ) | |b B security

T H L

E E C Pr T Pr H T Pr LH L R C      (1) 

 

where E(CB) is the expected benefit from the security measure not directly related to mitigating terrorist 

threats (e.g. increased consumer confidence, reduction in crime), Pr(T) is the annual threat probability per 

item of infrastructure, Pr(H|T) is the conditional probability of a hazard (successful initiation/detonation of 

an IED, or other initiating event leading to damage and loss of life) given occurrence of the threat, Pr(L|H) 

is the conditional probability of a loss given occurrence of the hazard, L is the loss or consequence (i.e., 

damage costs, number of people exposed to the hazard), ΔR is the reduction in risk due to CT measures, and 

Csecurity is the extra cost of CT protective measures including opportunity costs. The product Pr(L|H)L refers 

to the expected loss given the occurrence of the hazard. The summation signs in Eqn. (1) refer to the 

number of possible threat scenarios, hazard levels and losses. A protective measure is viewed as cost-

effective or efficient if the net benefit exceeds zero (OBPR 2010). There are many risk acceptance criteria 

and these depend on the type of risk being quantified (life safety, economic, environmental, social), the 

preferences of the interested parties and the decision maker, and the quality of the information available. 

Risk acceptance criteria based on annual fatality risk or failure probability may also be used (e.g. Stewart 

2010a,b, 2011). 

 Terrorism is a frightening threat that affects our willingness to accept risk, a willingness that is 

influenced by psychological, social, cultural, and institutional processes. Moreover, events involving high 

consequences can cause losses to an individual that they cannot bear, such as bankruptcy or the loss of life. 

On the other hand, governments, large corporations, and other self-insured institutions can absorb such 

losses more readily and so governments and their regulatory agencies normally exhibit risk-neutral attitudes 

in their decision-making (e.g. Sunstein 2002, Ellingwood 2006). This is confirmed by the U.S. Office of 

Management and Budget (OMB) which requires cost-benefit analyses to use expected values (an unbiased 

estimate), and where possible, to use probability distributions of benefits, costs, and net benefits (OMB 

1992). However, Eqn. (1) can be generalised for expected utility incorporating risk aversion (e.g. Stewart et 

al. 2011). The issue of risk aversion is an important one as this seems to dominate CT and other decisions 

(Jordaan 2005, Mueller 2006), but also arises from uncertainty of CT effectiveness (and threats).  

 Equation (1) can be generalised for any time period, discounting of future costs and more detailed 

time-dependent cost and damage consequences. Fatality risks can be computed as the product 

Pr(T)Pr(H|T)Pr(L|T) which can be compared with appropriate societal risk acceptance criteria (Stewart and 

Melchers 1997). Security cost data are available from the literature and security practitioners. This is not so 

for losses, although indicative values for damages due to terrorist attacks in the UK, US and elsewhere are 

available from the literature (Mueller and Stewart 2011a). 

 It is very difficult to estimate the threat probability Pr(T). Progress in quantifying Pr(T) will need 

contributions from security analysts and other academic disciplines. If information about Pr(T) is believed 

to be too unreliable, then the decision analysis can be used to calculate the minimum (threshold) threat 

probability for CT protective measures to be cost-effective (i.e., a break-even approach). It is then the 
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prerogative of the decision-maker, based on expert advice about the anticipated threat probability, to decide 

whether or not a CT protective measure is cost-effective. Moreover, a decision analysis based on scenario 

analysis where threat probability is decoupled from Eqn. (1) provides an alternative decision-making 

criteria based on expected costs. The challenging aspect of risk-based decision theory is predicting values of 

Pr(H|T), Pr(L|H) and ΔR. This information may be inferred from expert opinions, scenario analysis, and 

statistical analysis of prior performance data, as well as system and reliability modelling. Since there is 

uncertainty associated with such predictions, the use of probability distributions to describe mean, variance 

and distribution type is recommended. However, it is recognised that data or models are often incomplete 

for such low probability − high consequence events, and so a sensitivity analysis should always be 

conducted to assess the robustness of results to parameter and modelling uncertainty. 

 We recognise that Eqn. (1) is an overly simplification, however, it is a useful starting point for further 

discussion and perhaps for more detailed and complex analysis of how to manage the often conflicting 

societal preferences associated with assessments of risk, cost, and benefits. Clearly, risk and cost-benefit 

considerations should not be the sole criterion for public decision making. Nonetheless, they provide 

important insights into how security measures may (or may not) perform, their effect on risk reduction, and 

their cost-effectiveness. They can reveal wasteful expenditures and allow limited funds to be directed to 

where the most benefit can be attained. More important, if risk and cost-benefit advice is to be ignored, the 

onus is on public officials to explain why this is so, and the trade-offs and cuts to other programs that will 

inevitably ensue.  

 

 

 

3. Probabilistic Blast Load Modelling 

 

3.1.  RELIABILITY OF IMPROVISED EXPLOSIVE DEVICES (IED) 

 

Unlike conventional military hardware, the reliability of IEDs cannot be calculated through standard 

philosophies such as those identified at MIL-HDBK-217 (Department of Defense 1995). Much of this is 

because IEDs have not been designed, manufactured and utilised in accordance with standard systems 

engineering practices by competent personnel, nor necessarily have they been developed by personnel 

familiar with operations or with military training.  

 The threat of IED attack, and hence development of a probabilistic risk assessment, can be treated 

through a systems model, using an alternate paradigm to conventional munitions reliability. The 

components that make up the IED can be assessed as per traditional reliability methodologies, however, the 

effects of design, environment, manufacturing and operational considerations need to be independently 

considered and overlaid as performance shaping functions (PSFs) that introduce additional variability in 

traditional reliability functions.  

 A reliability function can then be used to identify what could be considered the reliability for an IED 

design and manufacture – that is, the reliability of the IED due to the selection of components, their format 

and the intended operating environment. A baseline reliability function adapted from Wolstenholme (1999) 

is employed to develop the baseline reliability of the IED (R) where the IED is modelled as a series system 

of n components: 
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1

n

c s s
c

R t 


   (2) 

 

where s is the IED component storage failure rate, ts is the time the IED component was in storage, c is 

the reliability of each IED component, and n is the number of components. 

 This paper uses several typical IED configurations of differing design complexities – simple (pipe 

bomb), medium (mobile phone initiated VBIED) and complex (improvised mortar). An example calculation 

for a medium complexity device, a mobile phone initiated VBIED (noting that most components are not 

disclosed for security reasons), derived from representative Operational Level Reliabilities for munitions 

systems data from Australia, U.K. and the U.S., and representative mobile phone data, to inform component 

reliabilities, is 
 

  R = 0.9994 × 0.999 × 0.98 × 0.97 × 0.97 × 0.999 = 0.920 (3) 
 

Table I provides a summary of baseline IED reliabilities derived from conventional munitions’ 

representative component reliability data for common IED designs (Grant and Stewart 2011). The baseline 

reliability assumes there are no errors in connecting components, and assumes statistical independence of 

component reliabilities. Hence, R reflects the reliability of an IED designed and manufactured to military 

specifications and standards. 

  
Table I. Typical IED Baseline Reliability Estimates for Device Complexity 

Device Complexity Representative IED Design 
Baseline Reliability 

R 

Simple Pipe Bomb 0.931 

Medium Mobile Phone initiated VBIED 0.920 

Complex Improvised Mortar 0.910 

 

 

 The probability of IED initiation is Pr(H|T) where H is IED initiation(hazard) and T is the threat, is 
 

  
1

( | )
K

i

i

Pr H T PSF R


   (4) 

 

where PSFi is the performance shaping function for attribute i. Typical PSFs might include design quality, 

manufacture quality, education, training and experience, organisational culture, stress, etc. 

 One open source database from which data is available to quantify the PSFs, the Global Terror 

Database (GTD), is collated by the National Consortium for the Study of Terrorism and Responses to 

Terrorism (START) at the University of Maryland. Terrorist incidents were filtered based on Weapon Type 

and date (1998 to 2008). The dataset was re-characterised based on categorisation of device operation and 

device complexity – Unknown (insufficient incident information to make a categorisation); Simple 

(consisting of roadside bombs, hand-thrown devices and those containing conventional munitions as a 

warhead); Medium (car bombs, remotely-fused IEDs and use of homemade explosive); and Complex 

(devices such as homemade rockets, mortars and projectiles or IEDs with complex triggers). The limitations 

associated with the GTD constrained the fidelity of our model, however, we have been able to consider a 

PSF pertaining to device complexity based on Region and Organisational Culture, see Table II.  

 

 
 
 
518

 
 
 
 
 

 
 
 
5th International Conference on Reliable Engineering Computing (REC 2012)



Terror, Security, and Money: Balancing the Risks, Benefits, and Costs of Critical Infrastructure Protection 

 

 

 Table II shows significant variability in PSFs between organisational types and regions. One 

significant limitation of using the GTD as a dataset is that it has significant potential for bias related to 

open-source reporting, this is thought to be the reason why the results at Table II imply that IED initiation 

rates for Criminal, Terrorist and Insurgent Organisations equal that of their conventional equivalents used 

by Western militaries (i.e. PSF = 1). Despite this, particularly taking the data for Western incidents where 

reporting is more likely to be reflective of the actual incident population, we can identify that the lowest 

levels of performance were observed for individuals, as would be expected for conventional engineering 

and manufacturing activities since the diversity within teams means that they are better equipped to design 

and manufacture IEDs than individuals. It is also notable that the PSFs that were identified are similar to the 

critical factors that have been identified as impacting the performance of personnel and equipment for other 

industries/professions involving processes, skill and stress.  

 For more details, including probabilistic estimates of loss (damage, casualties) due to IED initiation, 

see Grant and Stewart (2011). 

  
Table II. PSFs for IEDs in Regions of Interest 

Organisational 

Culture 
Device Complexity Global Western 

Middle East 

& North Africa 

Individual Simple 0.588 0.537 0.614 

  Medium 0.695 0.521 - 

  Complex - - - 

Criminal Simple →1 0.986 1 

  Medium 0.972 0.956 1 

  Complex 0.550 - - 

Terrorist Organisation Simple 0.981 0.855 0.990 

 Medium 0.980 0.928 0.953 

 Complex 0.905 0.761 1 

Insurgent Organisation Simple →1 NA 1 

 Medium →1 NA 1 

 Complex →1 NA 1 

 

 

3.2.  TIME-PRESSURE LOAD HISTORY OF EXPLOSIVES 

 

The variability in blast loading can be traced to: 

(a) Parameter uncertainty,  

(b) Inherent variability − natural, intrinsic, irreducible uncertainty of a situation, and 

(c) Model error − measure of accuracy of predictive model. 

In all cases the variabilities can be represented as one or more random variables described by their mean, 

COV (coefficient of variation) and probability distribution function. The probabilistic blast load model 

considers parameter uncertainties for (Netherton and Stewart 2010): 

(a) User factor for mass of explosive (Wuser), 

(b) Net equivalent quantity (NEQ) of an explosive in terms of a mass of TNT (WNEQ) 

(c) The range (R) and Angle of Incidence (AOI), and 

(d) Air temperature (Ta) and pressure (Pa). 
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Probabilistic models for model error and inherent variability were obtained from field data of repeatable 

tests. The polynomial curves from the explosive blast loading model proposed by Kingery and Bulmash 

(1984) have been incorporated into widely used and well respected blast load design models, such as 

ConWep (1991), TM5-1300 (1990) and LS-DYNA. Given such wide acceptance, the polynomials of 

Kingery and Bulmash (1984) are used for predicting blast load values. The time-pressure history is 

idealised by an equivalent triangular pressure pulse. 

 The variability of blast load will be influenced by the type of explosive used, its manufacturer, its 

placement, etc. One explosive of significant interest to counter-terrorism personnel is “home-made” 

Ammonium Nitrate Fuel Oil (ANFO) delivered by a VBIED. The statistical parameters describing the 

variability of input parameters and model error (accuracy) are given in Table III, for a VBIED that uses 

ANFO as the explosive. For more details of the probabilistic blast load model see Netherton and Stewart 

(2010), which also includes a blast scenario for weapon delivery of a 500 lb Mark-82 GP bomb (89 kg 

Tritonal) using GBU-38 JDAM (GPS) guidance control. 

 
Table III. Statistical Parameters for Blast Loading Model (Netherton and Stewart 2010).  

Parameter Mean COV Distribution 

Energetic Output:     

  User factor 1.00 0.102 Normal 

  NEQ factor Mode = 0.82 0.359 Triangular 

Detonation Location:    

  VBIED Location x = 0 σ = 3.06 m Normal 

 y = R σ = 1.53 m Normal 

 z = 0 σ = 0 m Deterministic 

  Ambient Air Temperature (oC) 21.9 o C 0.356 Normal 

  Ambient Air Pressure (hPa) 1015.0 hPa 0.014 Uniform 

Model Error:    

  Peak reflected pressure (Pr) 1.032 0.069 Normal 

  Peak reflected impulse (Ir):    

 0.59 m/kg1/3 ≤ Z < 6.0 m/kg1/3 0.991 0.178 − 0.0236Z Normal 

 6.0 m/kg1/3 ≤ Z < 40.0 m/kg1/3 0.991 0.036 Normal 

  Time of positive phase duration (td):    

 0.59 m/kg1/3 ≤ Z < 6.0 m/kg1/3 0.43 + 0.596log10Z C0 + C1Z + C2Z
2 + C3Z

3 Normal 

 6.0 m/kg1/3 ≤ Z < 9.0 m/kg1/3 0.43 + 0.596log10Z 0.046  

 9.0 m/kg1/3 ≤ Z < 40.0 m/kg1/3 1.00 0.046 Normal 

Note: C0 = 0.6267, C1 = −0.3510, C2 = 0.0713, C3 = −0.0048, Z is scaled distance (m/kg1/3) 

 

 

 The blast scenario considered herein is a small van-sized VBIED comprising 116 kg of “home-made” 

ANFO. The explosive for this scenario detonates on or very near to the ground. It is thus considered a 

hemispherical charge detonating against a reflecting surface. The blast load is from a single uninterrupted 

emanation of the shock-wave and that reflections from other structures or surfaces are not considered. The 

probability distribution of peak reflected pressure (Pr), impulse (Ir), and the time of a blast-waves first 

positive phase duration (td) are the outcomes of the probabilistic analysis − see Figure 2 for W = 116 kg 

ANFO and stand-off R = 50 m. Figure 2 also shows the TM5-1300 (or ConWep) design values. Note that 
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the design value based on the TM5-1300 approach includes a 'safety factor' where explosive mass (W) is 

increased by 20%. It is observed that the variability of blast load parameters is considerable, with COVs of 

0.15 to over 1.0. These are significant variabilities, and roughly equivalent to the observed variability for 

earthquake loadings which has the highest variability of all natural hazards. It is observed that the 

probability that the explosive load exceeds the TM5-1300 design value is 28%, 4% and 19% for Pr, Ir and 

td, respectively. More research is needed that calculates the probability of exceedance for a wider range of 

blast scenarios before any definitive conclusions can be made about the conservatism (or not) of ConWep, 

TM5-1300 and other design tools for explosive blast loading.  

 

 

 

4. Probabilistic Modelling of Structural Response and Reliability Analysis 

 

The probability of the hazard for infrastructure conditional on the occurrence of a specific threat is  
 

     | ( ) 0Pr H T Pr G X  (5)
 

 

where G(X) is the limit state function (of structural response) and X is the vector of all relevant variables. 

G(X) = 0 defines the boundary between the ‘unsafe’ and ‘safe’ domains. The limit state functions can be 

expressed in terms of structural damage, safety hazards and casualties. The exposure of people to blast 

effects is highly dependent on site location, building layout, occupancy rates, etc. and so the effect of low 

and high exposures will be considered, both deterministically and probabilistically. As a structure ages the 

effect of deterioration and other time-dependent processes may lead to higher values of Pr(H|T).  

 Computer software Blast-RF (Blast Risk for Facades) that calculates Pr(H|T) for damage, safety level 

and casualties for glazing systems is currently under development and intended as freeware in the near 

future. Details are available elsewhere (Stewart and Netherton 2008, Netherton and Stewart 2009).  

 The discussion to follow will focus instead on the structural capacity and reliability of RC columns 

subject to explosive blast loading. The RC column is representative of a ground floor central column of a 

two storey RC frame building (Shi et al. 2008). The RC column is H = 4.6 m high and is of rectangular 

cross-section (see Figure 3). Table IV shows the design (nominal) material and dimensional properties 

of the RC column. The finite element model used herein is identical to that developed by Shi et al. (2008) 

using explicit FEM software LS-DYNA. 

 Since RC columns are designed to support an axial load, then the damage criterion is based in axial 

load-carrying capacity. The damage index (D) is defined as (Shi et al. 2008): 
 

  1 residual

design

P
D

P
   (6) 

 

where Presidual is the residual axial load-carrying capacity of the damaged column, and Pdesign is the 

maximum axial load-carrying capacity of the undamaged column. Shi et al. (2008) define four damage limit 

states based on the damage index D: 
 

  1.    D = 0−0.2  low damage  3.    D = 0.5−0.8 high damage 

  2.    D = 0.2−0.5 medium damage 4.    D = 0.8−1.0 collapse 
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Figure 2. Probability Distributions of Blast Load Parameters and Comparison with TM5-1300 Design Values (adapted from 

Netherton and Stewart 2010). 
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Figure 3. Location and Cross-section of RC Column. 

  
Table IV. Material and Dimensional Properties for RC Column. 

Parameter Design Value 

Column width (h) 400 mm 

Column depth (b) 600 mm 

Hoops/Cross ties spacing (s) 200 mm 

Longitudinal reinforcement 8 × 20 mm diameter 

Yield strength of longitudinal steel (Fy) 413.7 MPa (Grade 60) 

Hoops/Cross ties 10 mm @ 200 mm spacing 

Yield strength of hoops and cross-ties 275.8 MPa (Grade 40) 

Cover 25 mm 

Concrete Compressive Strength (F’c) 42 MPa 

  

 

Monte-Carlo simulation (MCS) is used for reliability estimation of the RC column. The probability of 

damage states conditional on threat T is Pr(H|T): 
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low damage |
n D

Pr T
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   (7) 
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where n[] is the number of realisations when D matches the damage criterion, and N is the number of 

simulation runs. 

  The blast scenario considered is a W = 100 kg ANFO VBIED detonated from R = 2.5 m to R = 20 m 

from the front face of the RC column. The probabilistic load model described in Section 3.2 is used herein, 

where statistical parameters are given by Table III. The statistical parameters for cover, concrete 

compressive strength and yield strength of reinforcement are given in Table V. These statistics  are 

representative of new RC columns constructed in the United States. Due to high computational demand 

associated with LS-DYNA, N = 100 simulation runs were used to generate distributions of load-carrying 
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capacity, damage index and probabilities of damage and collapse.  

 
Table V.  Statistical Parameters for RC Column (adapted from Stewart et al. 2011).  

Parameter Mean COV Distribution 

Cover (mm) Cnom + 6.4 + 0.004h  = 24.9 mm Normala 

Yield Strength (MPa) 1.145Fy 0.05 Normalb 

Concrete Compressive Strength F’c + 7.5 MPa  = 6 MPa Lognormal 

Note: a truncated at stirrup diameter (10 mm), b truncated at zero. 

 

 

 Results show that the COV of load-carry capacity of the undamaged (Pdesign) and damaged 

(Presidual) columns when R = 10 m are 0.13 and 0.32, respectively. Clearly, there is increased variability 

for a damaged structural element. Blast Reliability Curves (BRCs) are shown in Figure 4. The 90% 

confidence bounds are also shown − more simulation runs would reduce the 90% confidence intervals, 

but those shown in Figure 4 are sufficient to infer the BRCs. As expected, the probability of collapse 

reduces as stand-off (R) increases, and when R exceeds 15 m the probability of collapse is negligible. 

On the other hand, even though the risk of collapse is less than 10% when R = 10 m, there still remains 

a very high likelihood of low or medium damage. The BRCs provide a useful metric for assessing 

safety and damage risks. For more details see Stewart et al. (2011). 
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Figure 4. Blast Reliability Curves (BRC) for RC Column. 
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5. Cost Benefit Assessment of Infrastructure Protection 

 

To illustrate the benefits of probabilistic terrorism risk assessment an airport terminal and institutional 

building subject to a terrorist Vehicle Borne Improvised Explosive Device (VBIED) are considered. The 

illustrative example will show under what combination of security costs, risk reduction, fatality and damage 

costs, and attack probability the protective measures would be cost-effective. 

 

5.1.  AIRPORTS 

 

Although there may be special reasons to protect airplanes, it is not at all clear that there are any special 

reasons to protect airports. Compared with many other places of congregation, people are more dispersed in 

airports, and therefore, a terrorist attack is likely to kill far fewer than if, for example, a crowded stadium is 

targeted. The 2011 suicide bombing of the arrivals area of Moscow’s Domodedovo airport, which killed 36 

and injured 15 others, shows that airports are not unattractive targets, but in the previous year, suicide 

bombers targeted the Moscow metro, killing 25, and the year before that, derailed the Moscow to St. 

Petersburg high-speed train, killing 27.  

 In addition, airports sprawl and are only two or three stories high, and therefore damage to a portion is 

not likely to be nearly as significant as damage to a taller or more compact structure. Moreover, if a bomb 

does go off at an airport, the consequences would probably be comparatively easy to deal with: passengers 

could readily be routed around the damaged area, for example, and the impact on the essential function of 

the airport would be comparatively modest. 

 In the 10 year period 1998−2007 there were ten (2 fatalities) and nine (29 fatalities) attacks on airports 

in Europe and Asia-Pacific, respectively. The annual fatality risk is approximately 2×10-10 and 6.5×10-9 for 

Europe and Asia-Pacific, respectively. These are very low risks, and are considered “acceptable” based on a 

fair degree of agreement about acceptable risk (Stewart and Melchers 1997). However, terrorism is a hazard 

where risk acceptability might not be a matter of fatality risks due to the significant direct and indirect 

economic consequences of a terrorist attack. For example, losses inflicted by the terrorist attack that has 

been by far the most destructive in history, that of September 11, 2001 approached $200 billion (Mueller 

and Stewart 2011a). 

 The threat considered herein is a bombing of an airport terminal. A small IED might kill say five 

people, no structural damage, and minimal disruption to flight schedules - we value this attack at $50 

million based on the value of a single life (VSL) is $6.5 million (Robinson 2010) plus other costs. On the 

other hand, a larger VBIED might kill 100 people ($65 million), severe structural damage to part of a 

terminal building ($100 million), and flight disruptions and relocation of check-in counters, etc. might total 

several billion dollars as a plausible upper bound. Security and protective measures to mitigate IED or 

VBIED attacks might include extra security personnel, vehicle entry screening for explosives, bollards, 

parking restrictions, etc. To be conservative, we assume that the increased cost of security is Csecurity = $2 

million per year for each airport terminal. For Sydney Airport, this would be equivalent to an 8% increase 

in their security budget. Opportunity costs associated with some security measures might be considerable, 

such as parking restriction near the terminal might deter passengers, or extra security screening will delay 

passengers. We do not consider such opportunity costs in this analysis. 

 Equation (1) can be simplified by assuming that Pr(H|T) = Pr(L|H) = 1, and so a break-even analysis to 

calculate how many attacks would have to take place to justify the expenditure gives  
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Table VI arrays the annual attack probabilities (pattack-min) required at a minimum for enhanced security 

expenditures on protecting an airport terminal to be cost-effective.  

 This break-even analysis shows that protective measures that reduce risk by an impressive 75% and 

that successfully protect against an attack that would otherwise inflict $50 million in damage would be cost-

effective only if the annual probability of a successful terrorist attack without them exceeds 0.05 or one in 

20 per terminal per year. If we assume a $2.5 billion attack, and risk is reduced by 75 percent, the minimum 

attack probability per year required for airport protective measures to be considered cost-effective reduces 

to 0.001 per terminal per year. There have been five bomb attacks in the ten year period 1998−2007 in the 

Asia-Pacific region. If we assume there are 500 airport terminals in the Asia-Pacific region, then the attack 

probability is 0.001 per terminal per year. In this case, security and protective measures that cost $2 million 

per year would only be cost-effective if they reduce risk by 75% and prevent losses of $2.5 billion. For 

lower losses, or risk reductions, such security and protective measures would only be cost-effective if the 

attack probability greatly exceeded 0.001 per terminal per year.   

 
Table VI. The number of otherwise successful attacks per year in which enhanced airport security 

would have to be solely responsible for deterring, foiling, or protection against in order for its 

enhanced yearly security budget of $2 million to be cost-effective, at various levels of loss and 

risk reduction − that is, for the security benefit of the expenditures to equal their costs. 

Risk Reduction Caused by 

Enhanced Airport Security 

Expenditure (ΔR) 

Losses from a Successful Terrorist Attack (Closs) 

$50  

million 

$100 

million 

$500 

million 

$1  

billion 

$2.5  

billion 

5 percent 0.80 0.40 0.080 0.040 0.0160 

10 percent 0.40 0.20 0.040 0.020 0.0080 

25 percent 0.16 0.08 0.016 0.008 0.0032 

50 percent 0.08 0.04 0.008 0.004 0.0016 

75 percent 0.05 0.03 0.005 0.003 0.0011 

100 percent 0.04 0.02 0.004 0.002 0.0008 

 

 

5.2.  BUILDINGS 

 

A typical multi-storey building for which occupancy and loss data are available is an academic building 

located at the U.S. Naval Postgraduate School in Monterey, California (Lakamp and McCarthy 2003). In 

this case, measures to protect the building from VBIED and other explosive blast loads include 

strengthening perimeter columns and walls, blast-resistant glazing and other improvements to structurally 

harden the building.  

 Damage and loss parameters are considered as random variables that explicitly consider aleatory and 

epistemic uncertainties. Three threat scenarios are assumed as i = 1: low, i = 2: medium and i = 3: high 

terrorist threats, and two types of loss attributes j = 1: direct physical damage and j = 2: fatalities. The net 

benefit from eqn. (1) is re-written for this example as 
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     (9) 

 

where pattack is the annual attack probability, Pr(Ti|attack) is the relative threat probability given an attack, 

L1 is the cost of direct physical damage (building replacement, damage to contents), L2 is the number of 

people exposed to the hazard (building occupants), and ΔRi is the percentage reduction in risk due to CT 

protective measures for the ith threat. We assume that CB = 0 and Pr(Hi|Ti) = 1. 

 A low threat may be a VBIED with low explosive weight or large stand-off, whereas medium or high 

threats would involve, for example, larger VBIED explosive weights and reduced stand-off. It is assumed 

that Pr(Ti|attack) reduces as the threat level increases due to reduced likelihood of conducting such an 

attack undetected as the size of vehicle increases or as the vehicle moves closer to the target building, see 

Table VII. Stewart (2011) has shown that the probability of building occupant fatality given a terrorist 

attack Pr(L2|Hi) varies from 0.0003 to 0.45 and so Pr(L2|Hi) is assumed relatively low for low and medium 

threats, and is unlikely to reach above 0.5 even for a high threat. This example does not consider the risk 

and safety of people outside the building (such as pedestrians).  

 Although a small VBIED can cause low casualties, the effect on physical damages can be much higher 

as although a VBIED may not totally destroy a building, it will often need to be demolished and replaced, 

hence the probability of physical damage is high even for a medium threat. As there is uncertainty about 

these threat and loss probabilities then they are treated as random variables and Table VII shows their 

assumed statistical parameters and probability distributions. Note that a coefficient of variation (COV) of 

0.25 represents a 95% confidence interval of approximately ± 50% about the mean value. 

 
Table VII. Probabilistic Models for Hypothetical Threats and Losses (Stewart 2010b). 

 Relative Threat 

Probability 

Pr(Ti|attack) 

Probability of Physical Damage 

Pr(L1|Hi) 

Probability of Fatalities 

Pr(L2|Hi) 

Threat  mean COV Distribution mean COV Distribution 

i = 1  Low 0.6 0.25 0.1 Lognormal 0.1 0.25 Lognormal 

i = 2  Medium 0.3 0.80 0.1 Lognormal 0.25 0.25 Lognormal 

i = 3  High 0.1 1.0 - - 0.5 0.25 Lognormal 

Note: probability distributions censored at 0.0 and 1.0 

 

 

 Significant strengthening of a building is likely to reduce damage and fatality levels to near zero for 

low threat events, however, even a significantly strengthened structure can experience damage and 

casualties if the threat is high. It follows that risk reduction will reduce, perhaps marginally, as the size of 

the threat increases. Risk reductions are also modelled as a random variables, see Table VIII, where it is 

assumed that the risk reduction is accurate to ± 10%. 
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  Table VIII. Probabilistic Models for Hypothetical Risk Reduction (Stewart 2010b). 

 Risk Reduction  

ΔRi 

Threat mean COV Distribution 

i = 1  Low 90% 0.064 Uniform [80−100] 

i = 2  Medium 65% 0.089 Uniform [55−75] 

i =3  High 50% 0.115 Uniform [40−60] 

 

 

 The cost of physical damages is approximately L1 = $35 million − this includes replacement value of 

the building, value of contents, and demolition costs. There is more certainty about damage losses so L1 is 

modelled as a normal distribution with mean = $35 million and COV = 0.05. The academic building is 

sizeable, with offices and teaching space, and peak usage comprising 319 building occupants (Lakamp and 

McCarthy 2003). To maximise the impact of a terrorist attack, an attack would most likely occur at a time 

of high building occupancy, so it is assumed herein that the number of occupants (L2) is modelled as a 

normal distribution with mean = 250 people and COV = 0.17 so that there is a 10% probability than 

occupancy will be higher than 319 occupants in the event of a terrorist attack. The value of a single life 

(VSL) is $6.5 million (Robinson 2010), hence, mean L2 = $1.6 billion. 

 A literature review by Stewart (2011) found that the minimum cost of protective measures (Csecurity) 

needed for substantial risk reduction for an existing building is at least 10% of building costs. If we assume 

that the budget time period for providing protective measures to the building is five years, then if the 10% 

increase in costs is annualised over five years with a discount rate of 3% then this equates to a present value 

cost of Csecurity ≈ $450,000 pa.  

 The net benefit is calculated from Eqn. (10) using Monte-Carlo simulation analysis for a range of 

attack probabilities. Figure 5 shows the simulation histogram of net benefit for three attack probabilities: 

pattack = 10-2, 10-3 and 10-4 /building/year. As there is random variability with many of the input parameters 

then net benefit is variable as shown in Figure 5. With reference to Figure 5 it is clear that if pattack = 10-2 per 

building per year then there is near 100% confidence that the net benefit is positive so near 100% sure that 

the protective measures are cost-effective. On the other hand, if pattack = 10-4/building/year then there is near 

100% certainty that protective measures are not cost-effective. If pattack = 10-3/building/year then Figure 5 

shows that there is only a 35% probability that protective measures are cost-effective (i.e., Pr(Eb) > 0). 

Figure 6 shows another way to present results and this shows the mean and lower and upper bounds (5th and 

95th percentiles) of net benefit for various attack probabilities. The threshold threat probability is  

5.6×10-4/building/year so if an attack probability exceeds this threshold (or break-even) value then the 

protective measure is likely to be cost-effective. Note that Ellingwood (2006) suggests that the minimum 

attack probability be at least 10-4/building/year for high density occupancies, key governmental and 

international institutions, monumental or iconic buildings or other critical facilities with a specific threat. It 

should be noted that although the probability of a terrorist attack may be high, the probability that any 

particular item of infrastructure will be attacked is very low. If the annual attack probability is  

10-4/building/year then the protective costs outweigh the benefits (Eb < 0) and so protective measures would 

not be cost-effective. Clearly, due to the uncertainties inherent in such an analysis, a sensitivity analysis is 

recommended, see Stewart (2010a) for further details and analysis. 
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Figure 5. Histograms of Annual Net Benefit (Eb) for Institutional Building, for Attack Probabilities of 10-2, 10-3 and 10-4 per year. 

 

Figure 6. Annual Net Benefit (Eb) for Institutional Building. 

 

 

 
6. Risk Transfer 

 

An important consideration in critical infrastructure protection is the displacement effect, a transfer of risk. 

Terrorists can choose, and change, their targets, depending on local and immediate circumstances. This 
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process, of course, does not hold in the case of natural disasters: a tornado bearing down on Kansas does 

not decide to divert to Oklahoma if it finds Kansans too well protected. In contrast, if the protection of one 

target merely causes the terrorist to seek out another from among the near-infinite set at hand, it is not clear 

how society has gained by expending effort and treasure to protect the first. The people who were saved in 

the first locale are gainers, of course, but their grief is simply transferred to others.  

 For example, there is a program to protect bridges in the United States, and a list of something like 200 

of the most important bridges has been drawn up. There seems to be no evidence terrorists have any 

particular desire to blow up a bridge, due in part, perhaps, to the facts that it is an exceedingly difficult task 

under the best of circumstances and that the number of casualties is likely to be much lower than for many 

other targets. 

 The apparent hope of the protectors in this case is that, after security is improved for all these targets, 

any terrorists who happen to have bridges on their hit list will become disillusioned. If so, however, they 

might become inclined to move on to the 201st bridge or, more likely perhaps, to another kind of bridge: 

the highway overpass, of which there are some 600,000 in the United States.  If the terrorists’ attention is 

drawn, further, to any one of a wide array of multiple overpass bridge networks, they might be inclined to 

destroy one of those. The financial and human consequence, not to mention the devastating traffic 

inconvenience, that could result from such an explosion might well surpass the destructive consequences of 

one directed at one of those 200 bridges. The issue, then, is: how has society been benefited by the 

protection of the bridges? 

 The 2011 suicide bombing at Moscow’s Domodedovo airport took place in the arrivals area, well away 

from the passenger security screening. Accordingly, any risk reduction passengers gained by being in the 

secure zone of the airport was simply transferred to those outside, as the attackers targeted a place of public 

assembly for which there are few countermeasures. 

 Or there is the case of the installation of sensors to measure chemical, biological, or radiological levels 

in New York. Presumably, any terrorists clever enough to engineer the relevant weapons are likely to be 

able to learn where the sensors have been put in place, and there is no gain to society if they simply choose 

to move to Newark or Washington or Columbus. However, this elemental consideration does not appear to 

have been part of the decision process. 

 

 

 

7. Assessing ‘Critical’ Infrastructure 

 

There is no doubt that a terrorist attack on many infrastructure elements could cause considerable damage 

and significant loss of life. However, while such targets as buildings, bridges, highways, pipelines, mass 

transit, water supplies, and communications may be essential to the economy and well-being of society, 

damage to one or even several of these, with few exceptions, will not be “critical” to the economy, or to the 

state. 

 In part, this is because infrastructure designers and operators place much effort on systems modelling 

to ensure that a failure of one node will not keep the network from operating, even if at reduced efficiency. 

This is done routinely: for example, it is necessary to close many bridges from time to time for maintenance 

or repair, and therefore traffic is redirected so that the network is not interrupted. Other failures routinely 

planned for include traffic accidents, severe weather, earthquakes, and equipment malfunctions. In other 
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words, as a matter of course, infrastructure is designed with built-in redundancies and backup systems to 

ensure resilience in the event of anticipated or unexpected hazards. 

 There is also a displacement effect, a transfer of risk. Terrorists can choose, and change, their targets, 

depending on local and immediate circumstances. If the protection of one target merely causes the terrorist 

to seek out another from among the near-infinite set at hand, it is not clear how society has gained by 

expending effort and treasure to protect the first. 

 Relying on standard evaluative measures accepted for decades by analysts, governments, regulators, 

and risk managers, efforts to protect people and structures from the effects of a terrorist attack are unlikely 

in general to be cost-effective because of the multiplicity of targets, the ability of terrorists to shift targets as 

needed, the capacity in many cases to quickly rebuild, the exceedingly low likelihood of an attack on a 

specific target, the limited capability of most terrorist groups, and the difficulty of predicting which targets 

are most appealing to them. If the terrorists’ goal is to kill people, lucrative targets are essentially 

everywhere. If their goal is to destroy property, protection measures may be able to deter, inconvenience, or 

complicate, but only to the point where the terrorists seek something comparable among a vast—or even 

effectively infinite—array of potential unprotected targets. 

 Our cost-benefit assessment suggests, then, that many individual items of infrastructure, including 

airports and buildings, require no protective measures unless, perhaps, there is a very specific threat to 

them. 

 Finally, we are not arguing that much of homeland security spending is wasteful because we believe 

there will be no more terrorist attacks. Like crime and vandalism, terrorism will always be a feature of life, 

and a condition of zero vulnerability is impossible to achieve. However, future attacks might not be as 

devastating as 9/11, as evidenced by the attacks on Western targets in the ten years since 9/11 that, although 

tragic, each have claimed victims numbering in the tens to a few hundred. The frequency and severity of 

terrorist attacks are low, very low in fact, which makes the benefits of enhanced counterterrorism 

expenditures challenging to justify by any rational and accepted standard of cost-benefit analysis. 

 

 

 

8. Conclusions 

 

Since there is uncertainty associated with terrorist threats, structural and system response, effectiveness of 

counter-terrorism and protective measures, and their ability to inflict damage, then there is a need for 

probabilistic approaches to assessing and mitigating terrorism risks. The paper reviews probabilistic risk 

assessments for (i) IED design and detonation, and predicting variability of time-pressure load history on 

infrastructure, (ii) reinforced concrete structural systems, (iii) airport protection, and (iv) buildings subject 

to a terrorist Vehicle Borne Improvised Explosive Device (VBIED). The illustrative examples highlighted 

the recent research, and identified research challenges to be faced in the future. It was found that attack 

probabilities have to be very high for security and protective measures for buildings and airports to be cost-

effective. 
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Abstract: In the maintenance management of infrastructures, stochastic processes as for example the 

Gamma process are gaining importance in methods for performance prediction. Gamma process approaches 

can be based on classical information gained from visual inspections, as for example crack formation, bend-

ing, but also the development of near surface strains (stresses), and enable the development of forecasting 

models as an effective decision making basis for the optimization of inspection intervals and maintenance 

measures. In this contribution, which is based on the material properties during and after the demolition of 

pre-stressed concrete bridges, we example the possibility of the Gamma process approach (in relation to 

visual inspections) to capture the internal mechanical changes, caused for example by pre-stressing steel 

corrosion processes. A pronounced correlation between the gamma process approach and the internal me-

chanical properties of structure are bases for (a) a quantitatively well ascertained remaining service life, (b) 

optimization of inspection periods, (c) identification of critical structural components for the overall condi-

tion and consequently (d) cost-efficient maintenance.  
 

Keywords: Gamma process, Lifecycle analysis, aging of concrete structures 

 

 

 

1. Introduction 

 

Numerous highly developed industrial countries have pronouncedly different infrastructure management 

systems, which are there to ensure the safety levels demanded by the standards of their national economies. 

Every engineering structure is discrete and unique. The result is a deluge of data sets generated by these 

infrastructure management systems, which in turn leads to an overload of information that complicates the 

decision making process for the respective owners instead of facilitating it.  

What is even more relevant, in the last few decades a wide range of modern monitoring technologies 

and numerical methods have been developed, ranging from novel sensor monitoring systems to routine vid-

eo-imaging techniques. These developments make it possible to reform established infrastructure inspection 

methods and to bring them in line with a wide range of high-quality, site specific data based on physical and 

technical realities. Consequently these developments serve also to improve and adapt the inspection rou-

tines resulting in time-efficient and systematic optimization of those maintenance and management systems.  

The present paper presents an approach for effective adaptive maintenance management employing ad-

ditional information gained from new methods of inspection and analysis, as for example the simulation of 

deterioration process. 

Generally speaking, the safety levels of all concrete structures decreases continuously as a result of ag-

ing processes caused by environment-induced mechanical and chemical loads. Today many countries pre-

scribe certain specifications and norms (Schmidt and Sondermann, 2006; 2007; 2011) in order to control 
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the progressive development of these processes and to plan efficient maintenance measures. These specifi-

cations and norms standardize the regular examination of structures with adequately defined inspection in-

tervals and clear specifications of the scope of those inspections. In line with the current practice, most ex-

amination programs based on a visual evaluation of structural components and accessories are performed by 

qualified personnel, whose qualification admittedly corresponds to the subjective international grades 

(Schmidt, 2008). As a general rule, it can be said that they deliver only conditioned exploration about the 

actual bearing capacity and the serviceability of the structure.  Further estimates of the remaining service 

life of a structure are usually based exclusively on experience, depending on the assessment of the concrete 

surface condition. 

In Austria an inspection routine which is subdivided into inspection, continuing monitoring and exami-

nation is the norm. These performance examinations can be carried out either at definite time intervals or 

after the occurrence of specific circumstances and events.  For the general evaluation of the structure, a sep-

arate examination will be assigned. Despite all the advantages of these historically developed inspection 

routines, the following flaws of the system are listed below to raise the awareness: 
 

 The quality of the data gained from inspections may be (partly) faulty or unsuitable for a systematic 

filling. 

 Only in rare cases are inspection data suitable for a quantitative analysis. 

 Alternative inspection methods for lifecycle assessment need to be included. 

 Quantitative information regarding the efficiency of various inspection techniques is not available in 

most cases. 

 The transfer of the examination results into the optimization of maintenance and repair activities is at 

best be carried out by modeling random variables. 

 The number of structure specific inspection data, crucial for a comprehensive evaluation is very limited. 
 

This particular study focuses on the specific degradation process that was observed in a damaged bridge 

and simulated by the application of a Cellular Automata approach compared with the gamma process ap-

proach. Specifically, the gamma process approach examined structural behavior, like crack formation, 

bending, and surface strain (stress development), which can be captured by traditional inspection and/or 

monitoring method. By employing material analysis after the demolition of the examined Neumarkt-bridge 

in South Tyrol, we were able to examine the degradation process due to corrosion and carbonation of pre-

stressing in very deep detail.  

Consequently, this contribution introduces the possibility of the gamma process approach (in relation to 

visual inspections) as a means of capturing the internal mechanical changes, for example due to pre-

stressing steel corrosion processes. A pronounced correlation between the gamma process approach and the 

internal mechanical properties of a structure provides the basis for (a) a quantitatively well ascertained re-

maining service life, (b) the optimization of inspection periods, (c) the identification of critical structural 

components for the overall condition and consequently (d) cost- efficient maintenance. 

 

 

 

2. Gamma Process Approach 

 

Degradation and aging processes of a structure can be described by non-negative and continuous functions. 

These functions can be characterized by non-negative increments with independent path and variable uncer-
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tainty. Furthermore the designated period of time until the occurrence of the observation of this undesirable 

incidence is mostly related to a considerable uncertainty and dependent on structural behavior.  

Stochastic aging processes of mechanical components are frequently determined via the gamma process 

which is suitably applied in the analysis of civil engineering structures. Frangopol et al & Noortwijk rec-

ommended this approach for the assessment of deterioration processes and analyzed its suitability for engi-

neering structures.  

 

2.1. CHARACHTERISTICS OF A STOCHASTIC PROCESS 

 

The reliability of assessment methods for engineering structures such as bridges, are usually based on as-

sumptions of incomplete information on for instance, the material properties, the quality of the construction 

and the relevant loads.  As a result of this insufficient information, the life time distributions which are de-

rived from a very low failure rate are often contradictory and cannot be formulated accurately. Consequent-

ly, in structural engineering in general time dependent and highly uncertain properties/processes, such as an 

average deterioration per unit time are often considered as random quantities. For this, the suitably applica-

ble process is the class of Markov processes as a class of stochastic processes which represents independent 

increments. Markov processes enable discrete and continuous processing (Noorwijk, 2009). For example 

Brownian motion with drift, Poisson Levy and Gamma process differ. The discrete stochastic model is, 

generally speaking, not suitable for determining the deterioration process in the field of engineering. Con-

sequently, continuous gamma processes, as analyzed by Pandey et al are much better suited to this end. 

VanNoorwijk proved suitability of gamma processes illustrating the continuous stochastic process by which 

the temporal damage accumulation can be represented by small independent increments. In particular the 

essential positive increments are determined by a gamma distribution with identical scale parameter and a 

time dependent shape function. Consequently with this type of process, deteriorations such as wear, fatigue, 

creep, cracking corrosion etc. can be determined. Furthermore the gamma process offers the advantage of 

providing a relatively simple mathematical description.  

In the gamma process modeling, we observe at the first step a random variable X with a Gamma distri-

bution, which is characterized by the shape parameter α > 0and the scale parameter β > 0.  

From the above we note that sin  = (x + y)z or: 
 

 
 

 1, exp ,Ga x x x
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is the Gamma function for   0 

 

2.2.  MODELING OF GAMMA PROCESSES 

 

Gamma process distributions Ga are for different time variables are independent of each other. As a result it 

is possible to obtain conditional distribution of variable X only on the basis of current observations which 

are well suited to represent the degradation process of standard structures. Such types of deterioration pre-
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diction models of a given structure based on the brief time period of observation, should consider the cur-

rent status and the past events that preceded the current state. In the prediction models, past deterioration 

profiles can be used to acquaint the engineer with relevant information. In other words, it should be possible 

to integrate historical deterioration profiles. However, their knowledge should not be a prerequisite.  

The parameter α(t) is a non-decreasing, right continuous with left limits, real valued function for t ≥ 0, 

with α(0) = 0. The gamma process with shape function α(t) > 0 and scale parameter β > 0 is a continuous-

time stochastic process {X(t), t ≥ 0} with the following properties: 
 

  P 0 0 1,X    (3) 

        , for 0 ,X X t Ga t t           (4) 
 

where X(t) is characterized by independent increments. Thus the corresponding probability distribution 

function of X(t), with the time variable t, in accordance with the characteristics of the gamma process is de-

fined as follows: 
 

    ( ) , , .
X t
f x Ga x t   (5) 

 

The corresponding expected value:  
 

  
 t

E X t



  (6) 

 

and variance 
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  (7) 

 

Finally the time variable coefficient of variation is obtained from the ratio of the standard deviation and 

mean value as follows: 
 

  
  

    

1
.

Var X t
COV X t

E X t t
   (8) 

 

2.3. GAMMA PROCESS MODELING OF DETERIORATION PROCESSES 

 

The following power law formulation is often suitable for the shape function of degradation gamma pro-

cesses  
 

  .bt c t    (9) 
 

This is a standard formulation, which has a linear shape (b = 1) for the corrosion of concrete reinforce-

ment, a parabolic (b = 2) for the sulphate attack, and a square root (b = 0.5) for the diffusion-controlled ag-

ing according to Elingwood and Mori. The deterioration rate X(t) at the time t, with t ≥ 0 can simply be de-

scribed by the shape function α(t) = ct
b
 and the scale parameter β. In engineering, in most cases the shape of 
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the expected deterioration b is known and can be taken as a constant, as pointed out by VanNoortwijk et al. 

However the random rate of degradation C and the scale parameter  are unknown and need to be deter-

mined by seeking experts’ advice or applying statistical methods. The three most suited statistical methods 

are the Maximum Likelihood Method, the Method of Moments and Bayesian Statistics (VanNoortwijk, 

2009). The determination of the population parameter by means of statistical sample moments is the sim-

plest approach and provides in general a very good result for the first approximation. Provided that the main 

parameters, the expected value and the variance of the cumulative deterioration at time t are known, the 

non-stationary gamma process can be transformed to a stationary gamma process. This can be achieved by 

means of a monotonic transformation from the real time to the operational time as follows: 
 

   
1

.b bz t t t z z  
 

(10) 

 

Thus the expected value is given as:  
 

    ,
c z

E X t z



  (11) 

 

and the equation of the variance as follows: 
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.

c z
Var X t




  (12) 

 

Likewise, the transformation of the inspection times can be carried out, zi = ti
b
, for i = 1,…,n. The in-

spection interval between two inspection times is given as:  
 

b
i

b
ii ttw 1  (13) 

 

and 
 

1 iii XX  (14) 
 

as proposed by Van Noortwijk. The degradation increments γi have an approximate gamma distribution 

with a shape factor cwi and a scale parameter  for all i = 1,2, …, n. The Method of Moments recommend-

ed by Van Noortwijk to estimate the parameters ĉ  and ̂  is given by the following formulation:  
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The Method of Moments leads to a simplified formulation of parameter estimation and can be applied 

for the first estimation of the solutions of the probability equations. The intervals wi can be the shorter or 
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longer periods between the main inspections This can be of particular interest for the optimized selection of 

inspection techniques and inspection intervals.  

 

 

 

3. Case Study: Neumarkt Bridge 

 

Gamma processes, as it is mentioned in the previous sections, are very suitable for the characterization and 

capture of information from the visual inspections as well as from monitoring systems. There is substantial 

interest to use this information for an efficient analysis and assessment of the mechanical changes in the 

structure, wherever no real solution statements can be provided. 

In the present case study, a precast element bridge in South Tyrol was evaluated following RVS guide-

line. As part of the study we examined concrete, prestressed and reinforcement steels for signs of corrosion, 

general degradation processes and their correlations, before and during the demolition of the bridge. The 

changes within the mechanical systems, as for example the changes in cross section of the reinforcement 

and/or presstressing, were monitored during the last decades of the structure using Cellular Automata anal-

ysis time dependent reliability analysis and for comparison, nonlinear model. The structural responses pro-

vided by the nonlinear model analysis were compared with the result the gamma process analysis. 

 

3.1.  GEOMERTY OF THE NEUMARKT BRIDGE 

 

The Neumarkt Bridge, a three-span bridge constructed from precast elements, crosses the A22, the Italian 

section of the Brenner highway, between the provincial towns of Neumarkt and Auer in South Tyrol. It ex-

hibits features typical for the region’s bridge design. The four V-shaped precast elements mounted side by 

side carry a thin concrete slab. In Figure 1 the most important dimensions of the bridge are illustrated with 

regard to elevation and transverse section. The main span of the bridge is 27.0 m long, and the outer spans 

are 9.14 m each. Each V-shaped girder of the main span was mounted with joints in the longitudinal axis as 

well as in the transverse axes. The girders were secured against side swaying by a 0.14 m strong concrete 

slab. As a result, the structure is identified as orthotropic with main parts of V-shaped girders. The bridge 

has two traffic lanes, each 3.75 m of wide and two sidewalks with a width of 1.0 m each. 
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Figure 1. Geometry of the Neumarkt Bridge in South Tyrol: (a) longitudinal section, (b) section of the V-shaped girders of precast 

elements, and (c) sampling plan 

 
Table I. Time variable statistical description values of pitting corro-

sion induced by prestressing 

 tP 1)             Corrosion depth              Remaining cross sectional          

 [Year]    [mm] and/or A/Ao            area of one of the lower  

                                                        prestressing wire, Ar(t)   

                                                                    [mm²]                              

                                                PDF     Mean       Hrs          COV 

 5 (3.5) 2)     0.35      0.95           LN      126.54      5.07        0.040 

10 (7.0)     0.70                        LN      125.98      5.07        0.040  

15 (10.0)   1.05      0.80           LN      125.06      5.07        0.041 

20 (13.5)   1.39                        LN      123.83      5.06        0.041 

25 (17.0)   1.74                        LN      122.25      5.06        0.041 

30 (20.5)   2.09      0.60           LN      120.35      5.06        0.042 

35 (24.0)   2.44                        LN      118.14      5.05        0.043 

40 (27.5)   2.78                        LN      115.74      5.04        0.044 

45 (31.0)   3.13                        LN      112.96      5.03        0.045          

50 (34.5)   3.50                        LN      109.75      5.02        0.046 
1) propagation time after initiation of corrosion 
2) propagation time due to corrosion in 3 layers 
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The condition evaluation of the Neumarkt Bridge, taking into consideration the structural degradation 

was divided into the discrete steps of data acquisition, analysis simulation of chloride contamination and 

estimation of time dependent steel corrosion. In addition, the computation of the structural response, taking 

into account the expected steel section reduction and finally the estimation of the resulting safety level 

and/or prediction of remaining service life were performed.    

 

 

Figure 2. Finite element model to evaluate the SLS and ULS in the center of the beam for a cross section reduction of the prestress-

ing wire in the center line (CL), (a) structuring of makro-elements, (b) FEM mesh generation, und (c) tendon layout of V- girders. 

 

 
Table II. Limit states of the nonlinear model analysis 

Limit state       Action S       Load Comb.     Barrier R       Unit 

Material associated limit states 

G1       Concrete comp. stress σc          QP       0.45 fck         MPa 

G2       Concrete comp. stress σc            C         0.60 fck             MPa 

G3          Mild steel stress σa                              C         0.80 fyk             MPa 

G4           Mild steel stress σa                         C        1.00 fyk             MPa 

G5          Pre-stressing steel stress σp            C         0.75 fpk            MPa 

Deformation associated limit states 

G6          Vertical deflection u                QP         l/500           mm 

G7          Vertical deflection u                FC         l/250           mm 

G8          Crack width w                         QC         0.2              mm 

G9          Crack width w                          C           0.3              mm 

QP = Quasi permanent combination 

C = Characteristic combination 

FC = Frequent combination 

fck = Characteristic concrete compressive strength 

fyk = Characteristic yield strength (reinforcement steel) 

fpk = Characteristic yield strength (prestressing steel) 

l = Span width 
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The actual implementation of the steps outlined above was performed using the software package 

SARA, a program that allows the simulation of time dependent chloride ingression (CATES) and the 

FREET-D program (FREET-D, Teply et al., 2006) which was used to describe the degradation processes as 

for instance steel corrosion and carbonization induced by controlled inputs. The evaluation of the structural 

response for the degraded structure was performed via the nonlinear finite element software environment 

ATENA (Cervenka et al., 2011) on the basis of the fracture mechanical methods, where the generation of 

inputs and the evaluation of the limit state equation are accomplished by FREET (Novak et al., 2008). 

The whole process predicting the chloride concentration up to reliability level for the discrete time ti 

was carried out several times. Table I shows the corrosion progress from the time of corrosion occurrence in 

the lower prestressing position achieved by Cellular Automata Simulation. Accordingly a nonlinear reliabil-

ity analysis was conducted for the limit states indicated in Table II in accordance with the FEM-Model 

shown in Figure 2.  
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Figure 3. The course of the lower concrete stress- load model for the prestressing steel section lose A/Ao in the center of the beam (a) 

without and (b) with the consideration of the yield strength fy reduction 

 

The nonlinear probabilistic FEM analysis delivers on one hand the continuous process of the structural 

response with regard to the load application for different degree of deterioration, as shown for example in 

Figure 3 where the process of monitored concrete stress on the V-girder lower side in the center of the beam 

is illustrated and in Figure 4 where the process of the monitored bending in the center of the beam is shown. 

On the other hand the statistical characteristics of the structural response and also the probability of failure 

with regard to the defined limit states for the current and also for the future conditions (see Table III) need 

to be taken into consideration. These statistical structural responses can be captured by means of visual in-

spection and/or monitoring system and are consequently a link between the gamma process based descrip-

tion of the deterioration process and the assessment of the structural mechanical changes. 

  
3.2.  GAMMA PROCESS BASED CONDITION ASSESSMENT 

 

For the lifetime condition assessment and the illustration of the time dependent structural deterioration, the 

evolution or progression of deterioration over time is modeled by gamma processes. In the following struc-

tural life time response modeling in relation to deflection is conducted for 80% of the LM1 load model. 

Throughout the analysis the independent deterioration increments are characterized by gamma distribution 

function with different shape and scale parameters. As a result, the deterioration profile at different ages of 

the structure was defined and visualized. The gamma process computation was conducted for predictions 
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that were based on inspections at the ages of 30 and 50. It may be worth mentioning that any estimation of 

parameters during the early years is best established by experts, as the Method of Moments provides unreli-

able results in the early lifetime of a structure. Table IV illustrates the gamma process prediction starting 

with the age of 30.      

  
Table III. Statistical characteristics of the structural response and the 

corresponding safety levels for a) serviceability limit states and b) 

ultimate bearing capacity evaluated for 60%, 83% of the LM1 load 

model 
Charact-   Time tP

4)     R            S(60% LM1)         S(83% LM1)                      

eristica1) [years]  Mean COV Mean COV Mean   COV      

Deflection,  0      0.115)         − 0.07   0.04   +   − 0.09    0.04      5.1 

uz [m]2)       30     0.115)         − 0.07   0.04   +   − 0.10    0.05      2.0 

              50     0.115)         − 0.08   0.04  8.7  − 0.12    0.05      − 

 Crack          0      0.206)            0.07    0.17   +     0.06    0.11        + 

 width          30    0.206)            0.05    0.20   +     0.07    0.14        +   

 w [mm] 2)    50    0.206)            0.01    0.11   +     0.02    0.08        +    

 Concrete     0    18.007)        − 14.12    0.01  +   − 19.02  0.01       −    

 stress2)       30   18.007)        − 15.34    0.01  +   − 20.25   0.01      −  

co[MPa]   50   18.007)        − 17.10    0.01 7.5 − 21.83   0.01       −      

 Bearing      0    48.30    0.08    20.00   7.3    30.00          4.7             

 Capacity  30    45.10    0.01    20.00   5.6     30.00          3.3         

 [load step]50   39.00    0.06    20.00   8.1     30.00          3.8          
 1) all variables normal distribution 
2) serviceability limit state (SLS)              
3) load level interpolated for 100% of LM1    
4) time after corrosion initiation  
5) 

z,limit = l/250 according     to [38], 7.4.1  
6) w,limit = 0.2 mm according to [38], 7.3.1 
7) ,limit = 0.6 fck according to [38], 7.2 
8) 10 is indicated by “+“,1 by “− “           

                 

                    
Table IV. Gamma process prediction of statistical characteristics of 

structural response; evaluated for 83% of the LM1 load model 

            Time tP
4)   

                   S (83% LM1)                                

                                   [years]       Mean       COV         C           (t)         

 Defle-        0            0.05          0.04          -             -                              

 ction,        30*          0.07          0.04        13.12      0.044        1.312           

 uz                 50            0.09          0.04        34.22      0.082        4.107 

 [m]2)         35           0.08          0.08         1.764     0.006        0.206            

                  40           0.09          0.07         3.086     0.010        0.412            

                                   50           0.12          0.06         5.967     0.020        0.995            

                                                                    60           0.14          0.06         8.573     0.029        1.715            

                                                                    70           0.16          0.05        10.87      0.036        2.538            

                                                                    80           0.21          0.05        15.32     0.051         4.595             

                                                                  100           0.23          0.05        17.49     0.058         5.830             
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4. Conclusion 
 

Within the current research project, three different testing methods were used to determine the material pa-

rameters of interest in experiment. For the assessment of the material characteristics of concrete, the com-

pressive strength fc, the tensile strength fct and the fracture energy Gf were considered. Small deviations 

between the Vienna test results and the results of tests performed at TU Brno arose. Several of the stochas-

tic concrete parameters, which were characterized by the Brno team, were modeled numerically based on 

data from three-point bending tests. In particular, the comparison of the fracture energy obtained from the 

three-point bending test with the result of the wedge splitting test revealed only minor divergences. These 

results allow the conclusion that all three test methods are reliable, comparable which each other, and pro-

vide consistent stochastic concrete methods. In addition to the verification of the test methods, the evalua-

tion of the influence of concrete additives on the stochastic models were of interest. 
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Abstract: It is well recognized that initiation limit states defined in (ISO 13823, 2008) may be of uttermost 

importance for serviceability as well as ultimate limit states of civil engineering structures. However, 

practical applications of durability assessments may be difficult as basic variables influencing structural 

durability are often random quantities with a considerable spatial variability that should be considered as 

random fields. Application of common discretisation techniques may be rather cumbersome and require a 

considerable amount of input data. A simplified probabilistic model for spatial variation is thus proposed to 

allow for durability analysis of large surfaces using efficient reliability methods such as FORM/SORM. The 

technique is applied in the example of carbonation of concrete where spatial variation of the carbonation 

depth and concrete cover is considered. It appears that the failure probability increases with the size of 

surface exposed to unfavourable environmental influences. Optimisation study further indicates that the 

total costs primarily depend on the thickness of concrete cover, design service life, and the surface area 

exposed to the deterioration. However, the optimum concrete cover and optimum reliability index seem to 

be almost independent of the size of the surface area. 
 

Keywords: durability, random fields, discretization, FORM. 

1. Introduction 

Durability is becoming an important issue of structural design. General principles on the probabilistic 

approach to verification of structural durability are provided in the new international standard (ISO 13823, 

2008). The document is based on the fundamental principles provided in (ISO 2394, 1998), (ISO 19338, 

2003) and (EN 1990, 2002). Materials of other international organisations such as CEB, fib, RILEM and 

findings in scientific publications have also been taken into account. 

(Holicky, 2011) indicates that due to limited experience with the operational use of (ISO 13823, 2008), 

additional studies focused primarily on models of material deterioration, acceptance criteria, and theoretical 

models of basic variables are required. Difficulties in practical applications may arise particularly when 

basic variables influencing structural durability have a considerable spatial variability (e.g. for large 

surfaces concentrations of unfavourable agents or diffusion properties of construction materials). In 

probabilistic analyses the spatial variability is normally described by random fields. Application of common 

discretisation techniques, see e.g. (Allaix et al., 2009), may be rather cumbersome and may require a 

considerable amount of input data. 

In the present study a simplified probabilistic model for spatial variation is thus proposed to allow for 

durability analysis of large surfaces using efficient reliability methods such as FORM/SORM. The 
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technique is applied in the example of carbonation of concrete where spatial variation of the carbonation 

depth and concrete cover is considered. 

 

Figure 1. Limit state method for durability (accepted from (ISO 13823, 2008)). 

2. Concept of Limit States 

(ISO 13823, 2008) formulates the principles of limit state methods for durability. The key steps of 

deterioration modelling and reliability verification using the concepts of limit states are indicated in 

Figure 1. It provides a very general scheme that may be modified considering actual conditions of an 

investigated structure. It should be noted that Figure 1 is a result of many discussions and amendments 

made during the development of (ISO 13823, 2008). 

The three vertical strands in Figure 1 indicate a time axis (on the left), reality (in the middle) and 

professional practice (on the right). The time axis is split into two parts by the point denoted as the Initiation 

Limit State (ILS). It corresponds to the point in time when environmental actions have turning point (for 

example the beginning of reinforcement corrosion or decays of construction materials). 

Annex B
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The environmental effects may in general be combined with the action effects (the middle part of 

Figure 1). Resulting effects may then lead to the loss of resistance (bearing capacity) or to the loss of 

serviceability (excessive cracking or deformations). These limit states - ULS and SLS - are indicated in the 

lower part of Figure 1. However, an important question of load combination rules is not covered in (ISO 

13823, 2008). 

3. Verification of the Service Life 

The fundamental durability requirement is represented by a simple condition that the predicted service life 

tSP should be greater than the design service life tD with a sufficient degree of reliability. Difficulties are 

obviously linked to the term „sufficient reliability“. It is well recognised that the service life tS is dependent 

on a number of basic variables and is consequently a random variable having a considerable scatter. The 

document (ISO 13823, 2008) thus provides a probabilistic formulation of this criterion: 
 

 P[tS < tD] < Ptarget  (1) 
 

where Ptarget denotes the target probability of the service life tS being less than the design service life tD. 

Commonly the design service life tD is a deterministic quantity (for example 50 or 100 years) specified in 

advance. 

4. Verification of the Limit States 

The probabilistic formulation of the limit state conditions is similar to a case of the service life. For an 

arbitrary point in time t ≤ tD the following condition should be satisfied: 
 

 Pf(t) = P[Z(t) < 0] = P[R(t) − S(t) < 0] < Ptarget (2) 
 

where Pf(∙) denotes the failure probability; Z(∙) = reliability margin; R(∙) = resistance; and S(∙) = action 

effect. The basic probabilistic condition for the serviceability can be written analogously as: 
 

 Pf(t) = P[Z(t) < 0] = P[Slim − S(t) < 0] < Ptarget (3) 
 

where Slim is the limit value of the serviceability indicator (for example of the crack width or deflection). 

The initiation limit state may be verified in accordance with Eqs. 2 or 3 depending on particular conditions. 

5. Assessment of the Service Life 

The probabilistic assessment of the predicted service life tSP is schematically shown in Figure 2 adopted 

from (ISO 13823, 2008). Figure 2 describes monotonously varying action effects S(t) and resistances R(t). 

The horizontal axis denotes the time t and the vertical axis in the upper part denotes the resistance R(t) and 

action effect S(t), in the lower part the probability Pf(t). Probability distributions of the variables R(t) and 

S(t) are indicated by probability density functions. 
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Obviously the failure probability Pf(t) is an increasing function of time t. The predicted service life tSP 

follows from the relationship: 
 

 Pf(tSP) = Ptarget (4) 
 

However, there are no recommendations concerning the target probability Ptarget provided in (ISO 13823, 

2008) and this open question may cause difficulties in the effective use of the document. 

 

Figure 2. Probabilistic assessment of the service life. 

6. Target Reliability Level 

Target reliability level, indicated by the target probability Ptarget or reliability index βtarget, depends in general 

on the definition of the service life time, whether the critical durability requirement concerns the ultimate 

limit state, serviceability limit state or initiation limit state and what are the consequences of their 

infringement (Holicky, 2011). Table I provides indicative intervals for the target reliability. 

 
Table I. Indicative values of the target probability and reliability index. 

Limit state Ptarget βtarget 

Ultimate limit state - ULS 

Serviceability limit state - SLS 

Initiation limit state - ILS 

~ 10-4 

0.01 to 0.1 

0.05 to 0.2 

~ 3.7 

1.3 to 2.3 

0.8 to 1.6 

 

Predicted service life tSP

R(t)

S(t)

Ptarget

Pf(t)

Design service life tD

Mean of S(t)

Mean of R(t)
Probability density 

function of R(t)

Probability density 

function of S(t)

t
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The target probability Ptarget and reliability index βtarget given in Table I represent indicative values only. 

They are based on the target values recommended in (ISO 2394, 1998) and (EN 1990, 2002). It should be 

mentioned that (ISO 2394, 1998) indicates an additional dependence of the target values on relative costs of 

safety measures (required to increase the reliability level). This aspect should be also considered when 

specifying target reliability level for durability requirements. Specification of the appropriate reliability 

level remains, therefore, one of the most important open questions. 

7. Simplified Model for Spatial Variability 

(Faber and Rostam, 2001) suggested that a large surface exposed to deterioration effects should be analysed 

as an assembly of elementary surfaces rather than a whole structure. Probabilistic characteristics of the 

variables influencing the deterioration should then include also the spatial variability of the variables among 

elementary surfaces. For instance several studies focused on reinforced concrete structures, see e.g. (Vu and 

Stewart, 2005) or (Stewart and Mullard, 2007), reveal that the elementary surface may be a square with the 

side length varying from 1 to 3 meters. For steel structures the size of an elementary surface may 

correspond to a size of inspected areas (e.g. 3 m), (Straub, 2004). 

The present study is based on the following assumptions: 

 The basic (random) variables influencing a given limit state can be divided into random fields W(x,y) 

(e.g. some material properties) and variables attaining a single value for the whole structure X(t) (e.g. 

some environmental influences). 

 Random fields W(x,y) are homogeneous and can be approximated by N elementary surfaces of the 

same size. Values of the random fields in each elementary surface, Wi,j for i = 1..nW (number of the 

random fields) and j = 1..N (number of elementary surfaces), are independent, identically distributed 

variables (having an appropriate probability distribution based on available data). To simplify the 

notation, vector of the values of the random fields in an elementary surface j is hereafter denoted as 

W = Wi for i = 1..nW. 

 Some of the variables X(t) can be time-dependent. Then they are either monotonously decreasing (when 

favourably influencing durability) or monotonously increasing (when unfavourable). Consequently the 

failure probability is monotonously increasing with time. 

This simplified model for spatial variation is assumed to yield conservative results compared to standard 

techniques such as discretization at the centre of gravity or discretization by spatial mean proposed by 

(VanMarcke, 1983). The failure probability at the elementary surface pf can be obtained from the following 

relationship: 
 

 pf[W,X(t)] = P{Z[W,X(t)] < 0} (5) 
 

The failure probability at a whole surface can be written as: 
 

 Pf(t) = P{ndeg[W,X(t)] / N ≥ lim} = EX(t){P[ndeg(W|x(t)) / N ≥ lim]} (6) 
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where ndeg(∙) denotes the number of elementary surfaces for which [Z(∙) < 0]; lim the limiting value of the 

deterioration level  = ndeg / N; E(∙) expectation operator; and x(t) values of the variables X(t). 

Given x(t), values of the reliability margin in each elementary surface are statistically independent. The 

probability of occurrence of  “failed” elementary surfaces out of N is thus given by the binomial 

distribution, see (Faber and Rostam, 2001), (Malioka et al., 2011) and (Sýkora and Holický, 2011): 
 

 P{ndeg(W|x(t)) = } = fbinom{, N, pf[W|x(t)]} (7) 
 

where fbinom(∙) is the probability density function of a binomial distribution. Note that the number ndeg =  

actually represents the probability of  successes out of N independent trials with the probability of 

success pf. The failure probability (6) can then be modified as: 
 

 Pf(t) = EX(t){1 − Fbinom[Nlim, N, pf(W|x(t))]} (8) 
 

where Fbinom(∙) is the cumulative distribution function of the binomial distribution. 

The use of Fbinom significantly decreases computational demands since the assessment of spatial 

variability simply reduces to evaluation of the cumulative distribution function of the binomial distribution. 

Note that the binomial distribution may be approximated by a normal distribution for, say, N > 50. The 

expectation in Eq. 8 can be carried out by the FORM/SORM methods, see e.g. (Wen, 1990). 

The limiting value lim should be specified by an owner, preferably using cost optimisation and 

previous experience. As an example (Fitch et al., 1995) suggested lim = 0.12 for corrosion-induced 

cracking of reinforced concrete bridges while lim = 0.2 was considered in a general study by (Faber and 

Rostam, 2001). 

It is emphasized that the proposed model of spatial variability may be oversimplified when the random 

fields need to be associated with different areas for which their values can be considered as independent. In 

such a case it would be necessary to modify Eqs. 5, 7 and 8. However, it is foreseen that the proposed 

approximation can be applied in a number of practical cases. 

8. Numerical Example 

8.1.  DETERIORATION MODEL 

The initiation limit state can be well illustrated by the carbonation of concrete. The limit state may be 

defined as a simple requirement that the carbonation depth S(t) (action effect) is less than the concrete cover 

R (resistance). Note that it may be more suitable to define the failure considering an indicator that can be 

verified by visually (such as crack width). 

A large, vertical concrete surface is investigated. Concrete cover R and inverse carbonation resistance 

under natural carbonation conditions RNAC,0
-1

 are assumed to be spatially variable. The size of an element is 

assumed to be 0.5 m in accordance with (Vu and Stewart, 2002) and (Malioka, 2009). The variables X and 

the model uncertainty of action effect KS are time-independent. Notation and probabilistic models of the 

basic variables are given in Table II. 

Given values x and kS, the failure probability at an elementary surface is determined as follows: 
 

 pf(R,t|kS,x) = P[R(R) − kS S(RNAC,0
-1

,t|kS,x) < 0] (9) 
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where R denotes the mean of the concrete cover (nominal value – study parameter). 

The point-in-space carbonation depth is described in accordance with (fib, 2006): 
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   (10) 

 

where t is time in years. Note that in Eqs. 9 and 10, the values of the random fields R and RNAC,0
-1

 are 

denoted by capital letters while values of the random variables and deterministic quantities are denoted by 

small letters. 

 

Table II. Probabilistic models of the basic variables.   

Type Variable / random field Symbol Distribution Unit X VX Ref.

Random 

fields 

 

 

 

Concrete cover 

 

Inverse carbon. 

resistance under natural 

carbonation 

R 

 

 

RNAC,0
-1 

 

Beta (lower 

bound = 0, upper 

bound ≈ 3R) 

Gamma 

 

mm 

 

 

[(mm2/year) / 

(kg/m3)] 

R 

 

 

2×104 

 

0.35 

 

 

0.5 

 

(Holický and 

Holická, 2006) 

(fib, 2006) 

 

Random 

variables 

 

 

 

Determ. 

variables 

 

 

 

Relative humidity 

 

CO2 concentration 

Regression coefficient 

Model uncertainty 

Refer. relative humidity 

Curing period 

Regression coefficient 

Prob. driving rain 

Time of wetness 

RHreal 

 

Cs 

Bw 

KS 

rhref 

tc 

bc 

pSR 

tow 

Beta 

 

normal 

normal 

LN 

- 

- 

- 

- 

- 

- 

 

kg/m3 

- 

- 

- 

day 

- 

- 

- 

0.71



8.2×10-4 

0.45 



0.65

5

-0.57

0.4

0.27

0.18 

 

0.12 

0.37 

0.1 

- 

- 

- 

- 

- 

nearest weath. 

station 

(fib, 2006) 

(fib, 2006) 

- 

(fib, 2006) 

- 

(fib, 2006) 

nearest weath. 

station  

 

 

The model for relative humidity is based on daily mean values. Probability of driving rain for vertical 

surface (facing to the west here) is determined from the distribution of wind directions during rain events. 

Time of wetness is assessed from the average number of days per year for which daily precipitation total 

exceeds 2.5 mm (in this case 100 days per year). Contrary to the recommendations of (fib, 2006), the 

regression coefficient bc is considered here to be deterministic since numerical experience indicates that its 

variability is negligible. 

The considered model for the carbonation depth has been calibrated against extensive measurements on 

cooling towers (unprotected external concrete) described by (Holický and Holická, 2006). Basically, the 

presented model leads to a similar mean value and somewhat lower coefficient of variation and skewness as 

compared to the measurements. 
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8.2.  RELIABILITY ANALYSIS 

The limiting deterioration level lim = 0.15 is considered. The failure probability Pf(t) is obtained from Eq. 8 

by integration over KS and X. In Figure 3 the failure probability Pf(t) is indicated for R = 25 mm and N = 1, 

20, and 100. In addition results based on a hypothetical assumption according to which correlation amongst 

the elementary surfaces is neglected and all the random variables are spatially variable, are plotted for the 

number of elementary surfaces N = 100. 

It appears that the failure probability depends significantly on the number of elementary surfaces. The 

assumed model predicts significantly lower failure probabilities for N = 1 than for N = 10 or 100. Similarly 

as concluded by (Stewart, 2004), it follows that the spatial variability should be appropriately considered 

particularly when analysing large surfaces. 

 

Figure 3. Variation of failure probability Pf(t) with time t for R = 25 mm and lim = 0.15. 

Further Figure 3 shows that misleading results may be obtained when the correlation amongst the 

elementary surfaces is neglected. In this case, the failure probability is very low for t < 30 years and then 

significantly increases. 

Figure 3 can be used to assess the service life tSP defined by Eq. 4 for a specified target probability 

Ptarget, the mean of concrete cover R and number of elementary surfaces N. If for example Ptarget = 0.15, 

then the mean R = 25 mm corresponds to tSP ≈ 30 years for N = 20 and 100, but for N = 1, tSP ≈ 80 years is 

estimated. Obviously, the service life tSP appears to be significantly dependent on the number of elementary 

surfaces and on the target probability. 
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9. Probabilistic Optimisation 

Methods of probabilistic analysis may be effectively used for the specification of the target reliability level 

and durability assessment, (Holicky, 2009) and (Holicky, 2011). The total costs of execution and repair of 

the structure due to failure (infringement of the initiation limit state) can be expressed as a function of the 

mean μR (decisive parameter): 
 

 Ctot = C0 + C1 μR + E[Cf] (11) 
 

where C0 denotes the initial costs independent of μR; C1 the cost of a unit of μR; and E[Cf] = expected 

expenses related to the durability failure given by: 
 

    

t

CC  dE fff  (12) 

 

where Cf denotes a present value of the expected expenses related to the durability failure; q annual 

discount rate (around 0.03); and f(∙) the discounted conditional failure rate given by: 
 

 f(t) = Pf(t)’ / {[1 - Pf(t)](1 + p)
t
} (13) 

 

where Pf(t)’ is the time derivative of the failure probability given in Eq. 8. Standardised total cost is 

considered as: 
 

 tot = [Ctot – C0] / C1 = μR + Cf / C1  
t

 df  (14) 

 

The optimum mean μR,opt may be determined from: 
 

 ∂tot / ∂R = 0 (15) 
 

Note that within the realistic domain of μR from 20 to 70 mm, Eq. 15 may not have a practical solution and 

the minimum of the total costs may not be attained. 

Considering the above described initiation limit state, the standardised total costs tot given by Eq. 14 

are shown in Figure 4 assuming the design life time t = 40 years (typical for cooling towers), q = 0.03 and 

N = 100. In addition variation of the failure probability Pf with R is also indicated. It appears that the 

optimum mean μR,opt considerably increases with increasing cost ratio Cf / C1. More specifically, it follows 

that: 

 For Cf / C1 = 10 (“small” failure consequences or “high” unit costs), the optimum μR,opt is not attained in 

the practical range of R. 

 For Cf / C1 = 100 (“medium” failure consequences and “medium” unit costs), the optimum mean is 

μR,opt ≈ 29 mm (opt(μR,opt = 29 mm) ≈ 1.1). 

 For Cf / C1 = 1 000 (“high” failure consequences or “small” unit costs), then the optimum mean 

increases up to μR,opt ≈ 43.5 mm (opt(μR,opt = 43.5 mm) ≈ 2.4). 
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Additional parameter study reveals that the optimum mean concrete cover μR,opt is nearly independent of the 

number of elementary surfaces N. 

Variation of the optimum (target) reliability index opt (based on μR,opt) with the number of elementary 

surfaces N is shown in Figure 5 for the design life time t = 40 years, q = 0.03 and Cf / C1 = 100 and 1 000. It 

follows that opt insignificantly increases with increasing N. In the first approximation the values opt ≈ 1.1 

(Cf / C1 = 100) and opt ≈ 2.4 (Cf / C1 = 1 000) may be considered. 

 

Figure 4. Variation of the total standardised costs tot and failure probability Pf with the mean concrete cover R for q = 0.03, 

t = 50 years and N = 100. 

 

Figure 5. Variation of the optimum reliability index opt with the number of elementary surfaces N for q = 0.03, t = 40 years, and 

Cf / C1 = 100 and 1 000. 
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10. Concluding Remarks 

Structural durability is becoming an important part of structural design of buildings and other civil 

engineering works. It may be significantly affected the spatial variability particularly for large surfaces. 

Simplified model for deterioration of large surfaces, proposed here, seems to require less input data and 

significantly lower computational demands compared to random field techniques. It is foreseen that this 

model can be effectively used for optimisation studies when structural durability need to be assessed for 

various decision parameters. 

Numerical example, focused on the carbonation of concrete, reveals that the failure probability 

increases with the size of surface exposed to unfavourable environmental influences. Optimisation study 

indicates that the total costs particularly depend on the thickness of the concrete cover, design service life, 

and the size of a surface area exposed to the deterioration. However, the optimum concrete cover and 

optimum reliability index seem to be almost independent of the size of the surface area. As a first 

approximation the optimum concrete cover of 30 mm and optimum reliability index of 1.1 may be 

recommended for the required design life of 40 years, discount rate 0.03 and the cost ratio Cf / C1 = 100. 

Further experimental data and appropriate models for the carbonation process, related model 

uncertainties and initial and failure costs are needed. Further research should be focused on the comparison 

of standard random field approaches with the proposed simplified model. 
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Abstract: Sulfate attack is a set of complex and overlapping chemical and physical processes caused by 

reactions of numerous cement components with sulfates originating from external or internal sources. These 

processes can lead to eventual deterioration of concrete composition and properties; in addition, these 

reactions depend on the environmental exposure, including access of moisture and temperature changes.  

In the context of performance-based approaches, sustainability consideration and whole life costing, 

suitable models, which can reliably predict the behavior of hydrated cement systems of concrete structures 

subjected to sulfate attack during the service life, are needed. A consistent approach to the durability 

assessment of concrete structures is recommended, i.e. fully probabilistic durability design, which 

necessarily requires the utilization of stochastic approaches. 

The present work is restricted to models for the description of concrete under the external sulfate attack. 

The primary sources of external sulfates are natural sulfates in soils or dissolved in ground water, sulfates 

originating from the atmospheric pollution or from the decomposition and oxidation of proteins in waste 

water. Several models for concrete corrosion rate are presented, compared and some parametric analyses 

are shown. 
 

Keywords: sulfate attack, concrete, modeling, stochastic approach 

 

 

 

1. Degradation Modeling 

 

In the context of performance-based approaches for the design or assessment of concrete structures, time is 

the decisive variable and the durability issues are pronounced. Also, the reliability aspects are important as 

they is attribute to service life, maintenance, inspection, repair and the life-cycle cost – see also ISO 13823 

(2008) and the fib Model Code (2010).  

Evidently, durability and reliability are often crucial structural performance characteristics and the 

reliability level for relevant limit states has to be analysed frequently utilising mathematical models for 

degradation prognosis. When doing this it can be useful to have a range of models available for the 

structural task in question. The engineer can then select a suitable one with respect to the type of relevant 

limit state, although frequently, for pragmatic reasons, the model choice is based on the availability of 

model data and effective software.  

Modelling of degradation processes may be based on models of different levels of sophistication: 

a) macro-level; 

b) simplified models, probabilistic approach; 

c) micro-level.  

The level a is the most simple, often being called a “deemed-to-satisfy” set of rules (mostly according 

to current codes), and does not allow for the design/assessment of a specified service life with a specified 
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reliability level. The level b comprises simple models (often semi-empirical) verified by comparisons with 

results obtained from testing under experimental and real-life conditions; the variables are treated as 

random quantities, so the outputs are also capable of expressing statistical and probabilistic quantities 

(service life assessment). This is the level dealt with in the present work. The level c is the most refined one, 

where the models are complex and are developed making use of basic physical laws and often also the 

constitutive laws of mechanics, thus leading to the problem of needing to solve partial differential 

equations. This level of sophistication is too high for everyday design practice. Note that levels b and c may 

be viewed as performance-based design types. 

Many variables applied in the assessment of deteriorating concrete structures show random spatial 

variability. In contrast, the majority of published analyses deal with 1D representation, which enables the 

investigation of a “point in space” or “hotspot”. Because of this, only temporal variability is taken into 

account. However, numerous proposals for approaches which also facilitate the analysis of the spatial 

characteristics of deterioration processes have recently appeared – e.g. Darmavan & Stewart (2003), Straub 

(2011). Frequently, random fields in 2D space are used, often simulated by means of random variables 

generated for a chosen mesh in stochastic finite element analysis. The requirement for data concerning the 

correlation structure in space creates a challenge in real-life cases; therefore, monitoring/testing can be 

employed. A more appropriate and economical decision about the service life consequences can then be 

based on defining the limit states for a certain proportion of the structure, and not merely for an isolated 

hotspot. The spatial variability can also be captured by using e.g. cellular automata technique – for an 

example of this applied to chloride ingress see Podroužek & Teplý (2008). 

 

 

 

2. Tool for practical applications 

 

Any decision process dealing with degradation prognosis needs a suitable set of models and efficient tools 

with stochastic capabilities. In this context, and with regard to the level b mentioned above, a software 

package called FReET-D (see e.g. Teplý et al. (2007)) has been developed. The utilization of stochastic 

approaches - a combination of analytical models and simulation techniques - was involved in the creation of 

this specialized software for assessing newly-designed as well as existing concrete structures. 

FReET-D is a programme associated with the multipurpose probabilistic software for statistical, 

sensitivity and reliability analysis of engineering problems, FReET
 
(Feasible Reliability Engineering Tool), 

which is based on efficient reliability techniques, see (Novák et al., 2003) and (Vořechovský and Novák, 

2003). FReET can be utilized in two modes: as a stand-alone multipurpose programme for any user-defined 

problem, and as a module integrated with ATENA software, which is produced by Červenka Consulting, 

Prague; this integration has been developed within the SARA project (Bergmeister et al., 2007). FReET-D 

provides: 

(i) modelling of degradation phenomena in concrete structures, statistical and sensitivity analyses; 

Bayes updating; 

(ii) assessment of service life; 

(iii) assessment of reliability measures; 

(iv) risk assessment. 

For the purposes of options (ii) and (iii) the user may create different simple limit conditions of the 

following types: 
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( )f dP P A B P         (1) 

 

or 
 

dDSf PttPP  )(       (2) 

 

where A is the effect of the analysed action, B is the barrier and Pd is the target probability value. Generally, 

both A and B are time dependent and hence Pf or reliability index β are time dependent too. The time tS is a 

predicted time value corresponding to the limit given by eq. (1), i.e. the predicted service life, tD is design 

service life. 

The FReET-D module has been developed by implementing a number of degradation models for 

reinforced concrete structures. Degradation models are time dependent mathematical functions that show 

the average increase of cumulative degradation over time. These models are parameterized with several 

material, structural and environmental parameters which are considered to be random variables. For all 

models, the factor ψ (the general multiplier) of model uncertainty is provided to compensate for the possible 

inexactness or incompleteness of results. 

The main criteria in selecting the degradation model for each specific use are: 

 the type of relevant degradation mechanism, the definition of the appropriate limit state and the 

given exposure conditions; 

 the availability of statistical data or the testing method for the input variables of each model; 

 the accuracy of the model when using the available data in relation to the required 

accuracy/strategy level. 

The list of models currently implemented in FReET-D is specified in Table I (mainly 1D models). The 

implementation of additional models is still in progress. The original literature sources for all models that 

are predominantly deterministic are referenced in the FReET-D manuals. 

The individual models listed in Table I can be used to construct and analyze different limit states 

according to Eq. (1) or (2). Input parameters are defined as random variables which are described by their 

probability density functions (PDF) and statistical parameters or can also be described by user-defined raw 

data. A mutual statistical dependence between input variables can be prescribed and is controlled by a 

simulated annealing method (Vořechovský & Novák, 2009). 

Some models may be highly input-demanding; in order to simplify the handling of inputs their 

statistical sensitivity analysis is provided by means of Spearman rank-order correlation coefficients so the 

user may easily gain measurements of the relative effect of each basic variable.  

The present paper briefly mentions “old” features of the software tool FReET-D described previously in 

Teplý et al. (2007) and concentrates in more detail on some recently attached models for different 

degradation effects, namely sulphuric and general acid attack. 

According to the user-defined type of analysis FReET-D provides the following type of outputs: 

 after performing the statistical analysis (via the Monte Carlo method or Latin Hypercube sampling 

method), the statistical moments of output variables are shown in a numerical and graphical way; 

also, the values of the sensitivity coefficients for individual inputs are provided; Bayes updating is 

performed when additional data are inputted; 

 reliability analysis provides the probability of failure value or reliability index relevant to a user-

designed limit condition. For this purpose the FORM technique may also optionally be utilized; 

 the best-fitted PDF may be automatically found for the output quantity. 
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Table I. Models implemented in FReET-D 

D
eg

ra
d

at
io

n
 

m
ec

h
an

is
m

 

Model 

notation 
Output Note 

C
ar

b
o

n
at

io
n
 

Carb1a 

Carb1b 

Carbonation depth at 

time t; time to 

depassivation 

Concretes from Portland cement; model b differs by RH function 

Carb2a 

Carb2b 
Ditto; simplified model 

Carb3 Concretes from Portland cement; influence of temperature 

Carb4a 

Carb4b 
Concretes from blended cements; model b differs by RH function 

Carb5a 

Carb5b 
Concretes from blended cements; model b is for HVFA concretes 

Carb6 
Concretes from blended cements; type of cement considered 

Carb7 

Carb8 Concretes from blended cements; fib-Model Code 2010 model 

Carb9 Concrete from Portland cement with a lime-cement mortar coating 

C
h

lo
ri

d
e 

in
g

re
ss

 

Chlor1a 

Chlor1b 

Depth of chlorination at 

time t; time to 

depassivation 

Model b provides calculation of the saturation concentration of Cl- via an 

analytical formula 

Chlor2a 

Chlor2b 
Concentration of 

chlorides at depth x and 

time t 

Model b provides calculation of the diffusion coefficient via an experimentally 

derived formula 

Chlor3a 

Chlor3b 

fib-Model Code 2010 model; model b provides calculation of surface Cl- conc. 

for specific conditions via an analytical formula 

R
ei

n
fo

rc
em

en
t 

co
rr

o
si

o
n

 

Corr1 
Net rebar diameter at 

time t 
Uniform type of corrosion 

Corr2 Pit depth at time t Pitting type of corrosion 

Corr3 
Net cross sectional area 

of rebar at time t 
Pitting type of corrosion 

Corr4 
Time to cracking due to 

corrosion 
Crack initiation on the steel-concrete interface; uniform corrosion 

Corr5 
Crack width due to 

corrosion at time t  
Crack width on concrete surface; uniform corrosion 

Corr6 
Time to cracking due to 

corrosion 
Crack initiation on the steel-concrete interface; uniform corrosion 

Corr7 
strength and ductility of 

corroded steel 
Yield stress and ultimate stress - apparent values; strain at ultimate  strength 

Scc1a 

Scc1b 

Stress intensity factor at 

the pit tip at time t 
Prestressed reinforcement, pitting corrosion; fracture mechanics approach  

S
u

lp
h

at
e 

at
ta

ck
 

Sulf 
Rate of concrete 

corrosion 
Corrosion of concrete sewer pipes 

A
ci

d
 a

tt
ac

k
 

Acid 
Depth of concrete 

corrosion 

i) User defined concentration of the acid 

ii) User defined pH of mineral acid solution 

iii) Buffering media consideration 
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3. Description of models recently added to FReET-D 

 

3.1.  SULPHIDE ATTACK ON CONCRETE 

 

In sewer collection systems there is a corrosion problem involving the destruction of concrete pipes or 

structures by acid produced from hydrogen sulphide gas – ASCE Manual (2007). A certain kind of bacteria 

causes this type of corrosion, which is termed microbiologically induced corrosion (MIC). The bacteria 

responsible include sulphur-oxidizing bacteria (Thiobacillus), which oxidize sulphide into sulphuric acid. 

The degradation of concrete sewer pipes due to sulphuric acid attack can be assessed by the frequently 

cited model by Pomeroy and Parkhurst (1977) for the deterioration rate c of concrete [mm/year]: 
 

15.11  Akc       (3) 
 

where k = the factor representing the proportion of acid reacting (only an estimated value and ranging from 

1.0 when the acid formation is slow to 0.3 when it is formed rapidly), Ф = the flux of H2S (or sulphide 

release [g H2S/(m
2
 hr)]), A = acid-consumption capability, i.e. the alkalinity of the concrete, expressed as 

the proportion of equivalent calcium carbonate [g CaCO3/g concrete]. For granitic aggregate concretes A 

ranges from 0.17 to 0.24, while for calcareous aggregates it ranges from 0.9 to 1.1, the equivalent A value 

for mortar-lined pipes being 0.4; ψ = the coefficient of model uncertainty (optional). 

Flux Ф can be expressed according to the ASCE Manual (2007) and Tee et al. (2011) as  
 

)/()(7.0 lim

8/3 PbjSsu      (4) 
 

where j is the pH-dependent factor for the proportion of H2S, s is the slope of the pipeline, u is the (m/sec), 

Slim is the limiting value of sulphide concentration or dissolved sulphide concentration, P is the wetted 

perimeter P of the pipe wall and b is the surface width of the stream. Note that the variables s and u are in 

reality strongly dependent on each other (the greater the slope, the greater the velocity of the stream); this 

fact can be specified by appropriate statistical correlation of these two input variables while using  

FReET-D. 

Starting from the example shown in Tee et al. (2011) a parametric study has been performed using 

FReET-D. The following data were selected for a sewer pipe of outer diameter = 2.286 m and wall 

thickness = 0.216 m, flowing half full: 

 
Table II. Input data for an analysed example of sulphate attack  

Notation Unit Distribution  Mean COV 

Slim  mg/l LN(2 par) 3.12 0.10 

s % LN(2 par) 0.001   (up to 0.003) 0.10 

u m/sec LN(2 par);  0.60 0.10 

A  - N 0.20 0.05 

j - deterministic 0.28  

P m deterministic 2.91  

b m LN(2 par) 1.854 0.10 

ψ - deterministic 1.0  

Note: (i) the imposed Spearman correlation coefficient of variables s and u equals 0.9 

(ii) from pH = 7.4 it follows the value of constant j − Pomeroy and Parkhurst (1977) 
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The variable s was set as a parameter in the range from 0.0010 to 0.0030 to show the effect of possible 

scatter due to the non-precise embedding of pipes. It is depicted in Fig. 1.  

 

 
 
Figure 1. Deterioration rate of a sewer pipeline affected by sulphate attack as a function of the slope of the pipeline with depicted 

standard deviations resulting from statistical analysis. 

 

3.2.  ACID ATTACK 

 

According to the fib Model Code (2010) the degree of concrete degradation caused by acid attack is defined 

by the corrosion depth d with respect to the original surface. It comprises the depth of material removed by 

abrasion and/or crystallization pressure and the depth of corroded material remaining on the concrete 

surface. The estimation of the time before a given depth of corrosion is reached is an important decision 

criterion for the designer. 

Supposing the loss of surface material is negligible and the strength of the acid is assumed to be 

constant, the corrosion depth d [m] may then be estimated from the “square root” law 
 

cd k ct ψ      (5) 
 

where c = the concentration of acid in [mol/L] and can be given as a (i) direct input quantity, or assessed 

either (ii) by Eq. (6) or (iii) by Eq. (7); t = contact time in [s], and ψ is the model uncertainty coefficient 

(optional). The constant kc mediates the effect of concrete composition on the corrosion process and 

includes the effect of cement content and type, additions, w/c ratio and aggregate solubility. According to 

the fib Model Code (2010) no prediction formula for this constant may as yet be given − it should be 

determined by appropriate experiments, see e.g. Beddoe and Schmidt (2009a, b). As an example of utilizing 

this source the following kc values for concrete fabricated from CEM I with a mass of 400 kg/m
3
 were 

gained: w/c = 0.4 → kc = 10.64; for w/c = 0.50 kc = 12.46 and for w/c = 0.60 kc = 14.10. 

For mineral acids c [mol/L] is given by the proton concentration of the acid as calculated from its pH 
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10 pHc        (6) 
 

In the case of buffering media it is necessary to know the pH and the total content ctot of acid and acid 

anions (e.g. acetate and acetic acid), dissolved CO2 or ammonium: 
 

10

10

pH

tot

pH

s

c
c
( K )







     (7) 

 

where Ks = the dissociation constant in [mol/L] and ctot = the total content of acid and conjugate base, 

dissolved CO2 or ammonium in [mol/L]. 

For an illustrative example the following conditions and input data were used to calculate the corrosion 

depth. Concrete with a cement content of 400 kg/m
3
 and w/c = 0.5, the variable kc LN(12.46; 1.25), and the 

concentration of the acid was set to LN(0.1; 0.02) mol/L; it affected the concrete for a period of 10 years. 

Statistical analysis gives a mean corrosion depth value of 12.4 mm with COV = 0.14 and Lognormal (3par) 

as the best fitted PDF. 
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Abstract: The paper describes a novelty approach to estimating the entropy generated by the growth of 

multiple defects present in a distributed system. Examples of practical application of this methodology to 

assessing the residual life of pipeline systems (PS) affected by a multiple active degradation processes are 

presented.  

The process of PS degradation (decrease of failure pressure of the defects due to the increase of their 

sizes and subsequent decrease of their residual strength) is considered as a non-homogeneous pure death 

Markov process (NPDMP) of the continuous time and discrete states type.  Failure pressure is calculated, 

using one of the internationally recognized pipeline design codes: B13G, B31Gmod, DNV, Battelle and 

Shell-92. 

The possible range of failure pressure (FP) change of defects is divided into M non-overlapping 

intervals. Thus, the structure of FP is a discrete finite set of states Ii (i = 1, 2,.. M). The probability of this 

state is the value of Pi(t) = P{Pf (t)  Ii}, where Pf (t)  is the FP of defect. 

The probability Pi(t) is a measure of how definite is the occurrence of event the Pf (t)  Ii. The measure 

of uncertainty of state Ii is [– ln Pi(t)], which is called partial entropy and characterizes this state only. 

In the associative-structured approach the entropy associated with degradation of the residual strength 

of a defect is Hd = ∑ Pj(t) [– ln Pj(t)] (j = 1, 2, …, M).    

Since entropy is a measure of uncertainty, it has the greatest value when the system states have an 

equiprobable distribution, i.e., when all the probabilities Pi(t) are equal, and the uncertainty is maximal. The 

moment of time at which entropy is maximal can serve as an analog of the conditional remaining life 

(warning time of failure) of the defect or system. This approach has a potential of performing the role of 

early diagnostics of pipeline failure. 
 

Keywords: entropy, residual strength, probability, Markov process, pipeline systems. 

 

 

 

1. Description of entropy generated by the pipeline defects degradation described by a NPDMP  

 

Consider a pipeline system (PS) with defects. Its residual strength (burst or fracture pressure FP) can be in a 

finite set of states: ijI  (i - number of defects, j - number of states) with probabilities ijP . 

Entropy as a function of time, generated by the degradation of pipeline cross section with a defect, 

which failure is of the rupture type, is calculated by equation:  

     
1

ln
M

d j j

j

H t P t P t


                                                                     (1) 
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Where ( )iP t  is the probability that  ,..,1jI j M at time t the FP  fP t  of a defect is in the j-th state. 

Assuming that the defects are independent of each other, their FPs will also be independent. Therefore, 

according to the property of entropy for independent random variables (Ventzel, 1969), the entropy of a 

pipeline as a system with independent defects can be calculated by formula: 

       
1 1 1

ln
i

n n M

P d ij ij

i i j

H t H t P t P t
  

                                                   (2) 

Where n is the number of defects; ( )ijP t  is the probability that at time t the FP of i-th defect is in the j-th 

state  ,..,1jI j M . 

To estimate the probabilities ( )jP t non-homogeneous pure death Markov process (NPDMP) is used, 

which is described by systems of differential equations and do not depend on the nature of objects and their physical 

properties. In this sense the Markov processes are universal and are widely used in various fields of science 

and technology: nuclear physics, biology, astronomy, queuing theory, reliability theory, etc. (Ventzel, 1969; 

Gnedenko, 1988; Timashev, 1982; Feller, 1984; Bolotin, 1988; Gnedenko, Belyaev and Solovyev, 1965; 

Bogdanoff and Kozin, 1985). 

A PS with many actively growing defects is a physical distributed system, which transits from one state 

to another. The degradation of the PS (measured as monotonous deterioration of its failure pressure) is 

considered as a non-homogeneous pure death Markov process (NPDMP) (Timashev and Bushinskaya, 

2009; Bushinskaya, 2010).  

Consider the cross section of pipeline with a defect. The burst pressure of a performing pipeline 

defective cross section at some fixed time t is a random variable (RV)  f opP t P , where Pop is the 

operating pressure in the pipeline. The burst pressure  fP t  can be assessed using one of the five 

internationally recognized pipeline design codes: B13G (ANSI/ASME B31G, 1991), B31Gmod (Kiefner 

and Vieth, 1989), DNV (DNV-RP-F101, 2004), Battelle (Stephens and Leis, 2000) and Shell-92 (Ritchie 

and Last, 1995). 

Divide the possible range of change of the burst pressure of a pipeline defective cross section 

  ; 0op fP P  into M-1 non-overlapping intervals  1,..,iI i M . Here  0fP  is the burst pressure of defect at 

the initial moment of time t = 0. 

Take the last interval (conditional failure state), which includes the lowest values of burst pressure, as 

equal to (0; Pop]. 

The burst pressure of the defective cross section can only monotonically decrease over time, i.e., at 

random moments of time transit from i-th state only to the (i + 1)-th state, where the state is one of the 

intervals  1,..,iI i M . The system of differential equations (SDE) that describes the process of transition 

the burst pressure of a defect from one state to another has the form: 
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                                  (3) 

where ( )iP t  is the probability that the RV  fP t  is in the i-th state at the moment of time t,  i t  is 

intensity of transition from the i - th state to the (i + 1)-th state. 

System (3) describes the non-homogeneous Markov process of pure death which is characterized by 

discrete number of states and continuous time. It is obvious that at the initial moment of time t = 0 RV 

  10fP I . Hence, the initial conditions for the SDE (3) have the form: 

     1 0 1, 0 0, 2,..,iP P i M                                                             (4) 

Solving the SDE (3) by the method of variation of the constant, with initial conditions (4), obtain: 
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where  t  is calculated by formula: 

   
     

0 0

0t t

f f fP P t P
t d d

I I


    

 
   

                                              (6) 

Since entropy is a measure of uncertainty, it is obvious that it is equal to zero when one of the 

probabilities  ijP t  is equal to unity (and all other probabilities are equal to zero), i.e., when the information 

is completely predictable and does not carry anything new. This situation occurs at the initial time t = 0 (see 

initial conditions (4)) and at the time when ( ) 1MP t   (i.e., when with probability 100% the FP of a defect is 

in the final, failure state). 

The entropy takes the maximum value for the equiprobable distribution, where all probabilities ( )iP t are 

equal, and therefore, the uncertainty is greatest. After reaching its maximum value the entropy begins 

monotonically decrease to zero, until the moment when ( ) 1MP t  . Hence, the entropy maximum can serve 

as a measure of pipeline safety and is subject to further analysis. 

The functions  iP t  are continuous and differentiable for any time t: d(t) < wt, wt is the pipe wall 

thickness, d(t) is the defect depth at time t. Therefore, the maximum entropy can be found by solving the 

following equation with respect to time t: 
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                                             (7) 

 

 

 

2. Entropy Analysis of a Pipeline with Defects. Numerical examples 

 

Evaluate the entropy, produced by the degradation of the pipeline cross section with a defect which fails by 

rupture. The pipeline parameters are presented in Table I. 

 
Table I. Initial data. Pipeline parameters 

Parameters Symbol Value 

External pipeline diameter, mm D 325.0 

Pipeline wall thickness, mm  wt 9.0 

Specified minimum yield strength of pipe material , MPa SMYS 245.0 

Minimum tensile strength of the pipe material, MPa UTS 410.0 

Design operating pressure, MPa Pop 6.4 

 

 

Consider that the last pipeline inspection discovered six characteristic defects with parameters given in 

Table II. 

 
Table II. Initial data. Defects parameters 

# Defect depth d, mm Defect length l, mm 

1 10%wt 

100 

2 20%wt 

3 30%wt 

4 40%wt 

5 50%wt 

6 60%wt 

 

 

Assume that the growth rate (GR) of the defects depths da  is equal to 0.5 mm/year and the growth rate 

GR of defects lengths la is 5 mm/year.  

The stochastic process of degradation of FP of pipeline defect, which fails by rupture, is described by 

an NPDMP, using one of the five internationally recognized pipeline design codes: B31G, B31Gmod, 

DNV, Battelle and Shell92. Using these codes is acceptable for any time t: d(t) < wt, d(t) is the defect depth 

at time t. Assuming that the defect sizes depend linearly from time t, define the limit time ldt  at which 

pipeline integrity is violated and a pinhole is formed  (d(t) = 0.9999wt ≈ wt):  

00.9999
ld

d

wt d
t

a




                                                              (8) 
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Where 
da  is the defect depth GR; 

0d  is the defect depth at initial time t = 0. 

The obtained graphs of the change of local entropy (i.e., entropy related to degradation of one of the 

pipeline defective cross sections) for codes B31G, B31Gmod and DNV are shown in Fig. 1−3. Fig. 4 shows 

entropy evolution of the most dangerous defect, with a 60%wt depth, using all the above five codes. 

 
Figure 1. Entropy change of six defects over time (as per B31G code)  

 
Figure 2. Entropy change of six defects over time (as per B31Gmod code) 
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Figure 3. Entropy change of six defects over time (as per DNV code) 

 
Figure 4. Entropy change of the most dangerous defect (with a 60%wt depth) over time (as per all five codes) 

 

In Fig. 1−4 solid vertical lines, which descend from the ends of the entropy function, cut off on the x-

axis the time ldt , at which d(tld) = 0.9999wt. 

According to Fig. 1−4, the entropy values for all defects have the same maximum values, independent 

from the GR and size of the defects parameters, indicating to entropy invariance, but these maximum values 

are reached at different moments of times. 

Now calculate using eqn. (2) the entropy for the whole pipeline, considering it as the system with six 

identified above defects. The obtained results are shown in Fig. V. 
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Figure 5. Entropy of the whole pipeline as a system with defects (as per all five codes) 

 

According to Fig. 5, for the pipeline as a system the invariance of maximum entropy is not conserved. 

In other words, this maximum depends on the used code. This may be explained by the fact that the entropy 

of the whole pipeline is calculated as the sum of entropies of all defects and that the entropy maximum of 

each defect is reached at different times. 

In Table III the times are presented, when the entropies of the whole pipeline and the most dangerous 

defect reach their maximums, calculated by eqn. (3) using corresponding codes.  

 
Table III. The times when the entropies of the most dangerous defect (depth 60%wt) and the 

pipeline as a system reach their corresponding maximums (years)  

Code 
Time when entropy of the pipeline 

reaches its  maximum, yrs 

Time when entropy of the most 

dangerous defect reaches its maximum, 

yrs 

B31G 6.2 4.6 

B31Gmod 4.7 3.3 

Battelle 4.8 3.6 

DNV 4.5 3.1 

Shell92 3.3 2.1 

 

 

For all codes the entropy maximum of the whole pipeline is larger than entropy maximum of the most 

dangerous defect (see Table III). This fact can be easily explained, as the entropy of the whole pipeline is 

defined as the sum of entropies of all the defects present. 

In Table IV the time distance from reaching the entropy maximum to the time at which the FP is equal 

to the operating pressure FP = OP (limiting condition, i.e. pipeline failure) is presented. 
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Table IV. Time (years) required for the occurrence of the limiting state 

(FP = OP), from the time the defect reaches its maximum entropy 

Defect depth B31G B31Gmod Battelle DNV 

0.1wt 5.7 4.7 1.5 1.6 

0.2wt 5.3 4.2 1.2 1.4 

0.3wt 4.7 3.8 0.9 1.0 

0.4wt 4.2 3.3 0.6 0.7 

0.5wt 3.7 2.7 0.3 0.3 

0.6wt 3.1 2.2 0.0 0.1 

 

 

According to Table IV, for all considered codes, the limiting state for the rupture type defects occurs 

later in time than the maximum of their entropy. With the defect depth growing, this time rapidly reduces: 

for B31G code from 5.7 to 3.1 years, for the B31Gmod code from 4.7 to 2.2 years, and for the Battelle and 

DNV codes to 1.5 (1.6) to 0.0 (0.1), respectively. Thus, the time of maximum entropy of the defect can be 

considered as an analog of its critical (warning) condition (Timashev and Bushinskaya, 2012) and used for 

early diagnostics of the defect condition and for optimizing the plan of its repair.  

Now investigate the behavior of the entropy of a defect as a function of time, depending on the defects 

GR. Consider also the times of occurrence of the critical and limiting conditions of a defect on the entropy 

graph with respect to the time when the defect entropy reaches its maximum. 

Consider one of the defects of the above pipeline, with following parameters: depth = 10%wt, 

length = 100 mm, defect depth GR = 1, 2 and 3 mm / year and defect length GR = 5 mm / year. 

To construct the stochastic process of the degradation of BP of pipeline rupture type defect on the basis 

of NPDMP, use the two most commonly utilized codes: the B31Gmod code (most conservative) and the  

DNV code (least conservative). 

The obtained graphs of the evolution of the local entropy (related to defect degradation) are shown in 

Table V and in Figs. 8 and 9. 

 

Table V. The entropy maximum time  and limit time 
ldt  

Defect depth 

GR 
Limit time tld, yrs 

Entropy maximum time, years Entropy 

maximum value 

The defect depth at time of entropy 

reaching its maximum, %wt 

B31Gmod DNV B31Gmod DNV 

1 mm/year 8.09 4.65 4.02 

1.57 

61.71 54.57 

2 mm/year 4.05 2.42 2.10 63.78 56.74 

3 mm/year 2.69 1.64 1.43 64.60 57.58 
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Figure 6. Defect entropy change in time, depending on the defect depth GR  (as per B31Gmod code) 

 
Figure 7. Defect entropy change in time, depending on the defect depth GR  (as per DNV code) 

 

According to Fig. 6, 7 and Table V the entropy maximum of a defect takes the same value, invariant to 

the used codes and defect depth GR. Given the results presented in Fig. 1−3, following conclusion can be 

made:  

The maximum entropy of a defect takes the same value, independent from the used design code, defect 

depth and its GR. This fact confirms fundamental nature of entropy generated by deterioration of 

mechanical systems. 
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Now estimate: 

─ the moments of time 1 2 3, ,t t t  at which the defect depth will be equal to 60, 70, and 80% of pipe wall 

thickness, respectively; 

─ the moment of time Qt  at which the probability of failure (the probability that the RV FP is in the last 

state) is equal to the maximum allowable value of POF = 10
-5

; 

─ the moment of time 
st  at which the maximum safe operating pressure (MSOP)  sP t of a defect will be 

equal to the operating pressure Pop:    s s f s opP t K P t P   , where K is the strength safety factor; 

─ the moment of time ft  at which the FP of defect  fP t is equal to the operating pressure:  f f opP t P . 

The obtained results are presented in Table VI and in Figs. 10.a, b, 11.a, b. 

 
Table VI. Time (years) to occurrence of the critical and limit conditions of the defect  

Grow rate of 

defect depth 
t1 t2 t3 

B31Gmod code DNV code 

tQ ts tf tQ ts tf 

1 mm/yr 4.50 5.40 6.30 1.61 5.92 7.14 1.50 3.86 5.83 

2 mm/yr 2.25 2.70 3.14 0.83 3.06 3.66 0.78 2.02 3.01 

3 mm/yr 1.50 1.80 2.10 0.56 2.07 2.46 0.53 1.37 2.03 

 

 
Figure 8.a.Defect entropy (as per B31Gmod code), the critical and limit moments of time (GR = 1 mm/yr)  
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Figure 8.b. Defect entropy (as per B31Gmod code), the critical and limit moments of time (GR = 3 mm/yr) 

 
Figure 9.a. Defect entropy (as per DNV code), the critical and limit moments of time (GR =1 mm/yr) 

 
Figure 9.b. Defect entropy (as per DNV code), the critical and limit moments of time (GR = 3 mm/yr) 
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In Fig. 8.a,b, 9a,b, the dashed lines (except at the points of maximum entropy) correspond to the rupture 

type failure, the solid lines − to the leak type failure of defects. 

According to Fig. 11.a,b, in the case of using the DNV code for the defect under consideration, the 

entropy maximum, depending on the corrosion rates, is reached later than the critical condition 

MSOP = OP occurs. 

Moreover, in this case the limit condition of the rupture type defect occurs before the critical condition 

of the leak  type, that is 3ft t ; in the case of using the B31Gmod code the opposite is true (i.e., 3 ft t ). 

The difference (in years) between the time the defect entropy reaches its maximum and the time the 

defect reaches its critical and limit states are shown in Table VII. 

 
Table VII. The difference (in years) between the time the defect  entropy reaches its maximum and the time  the defect reaches its 

critical and limit states  

according to B31Gmod code according to DNV code 

Defect 

depth GR 
tQ t1 t2 t3 ts tf tQ t1 t2 t3 ts tf 

1 mm/year 4.26 0.15 -0.75 -1.65 -1.27 -2.49 3.64 -0.48 -1.38 -2.28 0.16 -1.81 

2 mm/year 2.22 0.17 -0.28 -0.72 -0.64 -1.24 1.91 -0.15 -0.60 -1.04 0.08 -0.91 

3 mm/year 1.50 0.14 -0.16 -0.46 -0.43 -0.82 1.30 -0.07 -0.37 -0.67 0.06 -0.60 

 

 

According to Table VII, when using the B31Gmod code, the time 
1t  occurs earlier than the time when 

entropy reaches its maximum; when using DNV code, this condition is true for time st . According to the 

DNV code the critical state for a rupture type defect occurs earlier than the critical state for a leak type 

defect. When using the B31G code the opposite holds true. 

Proceed to estimate intensity of the entropy change in time. Calculate the average value of the entropy 

function in intervals      1 max 2 max 30; , ; , 0;E E ld ldI t I t t I t   , by equations: 

for 1I :  

 
max

0

max

Et

E

f t dt

t


 ;   for 2I :  

 
max

max

ld

E

t

t

ld E

f t dt

t t


 ;  for 3I :  

 
0

ldt

ld

f t dt

t


,            (9) 

where maxEt  is the point of entropy maximum, f(t) is the entropy function of a degrading defect. The 

obtained results are shown in Table VIII. 

According to Table VIII, the average values of the entropy function for the same period of time do not 

depend on the defect depth GR and have nearly the same value, which means that they are practically 

invariant. 
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Table VIII. Average values of the entropy function of a degrading defect 

Defect 

depth GR 

For the B31Gmod code, in intervals For the DNV code, in intervals 

1I  
2I  

3I  
1I  

2I  
3I  

1 mm/yr 1.11 1.33 1.21 1.09 1.03 1.06 

2 mm/yr 1.12 1.35 1.21 1.09 1.05 1.07 

3 mm/yr 1.12 1.36 1.21 1.09 1.06 1.07 

 

 

Now consider a numerical example of the entropy evolution for the whole pipeline as a system with 

defects, depending on adopted repair policies. Choose two policies of repair. According to the first policy, 

defect repair is performed either after the defect depth will be greater than 80%wt, or when the MSOP is 

equal to the OP. According to the second policy, defect is not repaired until pinhole formation (defect depth 

is equal to pipe wall thickness), or until the pipeline ruptures (FP = OP), depending on what type of failure 

occurs first. It is obvious that after repair the defect is nonexistent and its entropy is equal to zero. 

Suppose there are nine defects in the pipeline, which parameters are given in Table IX. 

 
Table IX. Initial parameters of defects 

Defect # Defect depth d, mm Defect length l, mm 

1 10%wt 

100 

2 15%wt 

3 20%wt 

4 25%wt 

5 30%wt 

6 35%wt 

7 40%wt 

8 45%wt 

9 50%wt 

 

 

Assume that the defect depth GR = 0.1 mm/year, the defects lengths GR = 5 mm/year, and the defects 

are independent of each other. Calculate by formula (2) entropy of the whole pipeline, taking into account 

two policies of defects repair. Consider the process of entropy variation of the whole pipeline up to the 

moment of time at which the depth of the first defect (10%wt) will be equal to the pipe wall thickness. In 

this case, the entropy of the whole pipeline takes the form shown in Figs. 10 and 11. 
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Figure 10. Evolution of the pipeline total entropy in time, depending on the adopted policy of defects repair (as per B31Gmod code) 

 
Figure 11. Evolution of the pipeline total entropy in time, depending on the adopted policy of defects repair (as per DNV code) 

 

Now analyze the partially-total entropy (PTE) of the whole pipeline, considering for each defect only 

the descending branch of its entropy function, which originates right after the point where entropy reaches 

its maximum (hence, called partial entropy). Since each defect has a different time of reaching its entropy 

maximum, consider the process of PTE change for the whole pipeline after the time the deepest defect 

reaches its entropy maximum. This time is the earliest time when a pipeline defect reaches its entropy 

maximum. From this time on, one can get a complete picture of the pipeline PTE change with time. In our 

example, the deepest defect is 55% wt deep. According to the B31Gmod code the entropy maximum of this 

defect is reached in 15.21 years, all other defects reach their entropy maximums later. For moments of time 

t1 > 15.21 yrs the pipeline entropy was calculated using formula (2), as the sum of the entropy of all defects 

for which the entropy maximum is reached at time tj ≥ t1. The obtained partially-total entropy of the whole 

pipeline is shown in Figs. 12 and Fig. 13. 
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Figure 12. Evolution of pipeline system PTE in time depending on the policy of defects repair (as per B31Gmod code) 

 
Figure 13. Evolution of pipeline system PTE in time depending on the policy of defects repair (as per DNV code)  

 

The up and down jumps of the pipeline entropy function (see Fig.12) are caused by the following. The 

jumps down are due to the fact that at some moments of time, certain defects were already repaired. The 

jumps up are due to the fact that at some moments of time new defects came into consideration. 

Such scheme for constructing the pipeline PTE leads to the curve given in Fig. 13. It has a maximum 

which is reached at the time when the shallowest defect (in our case, defect with a 10%wt depth) reaches its 

maximal entropy. After that, the PTE monotonically decreases, as the shallowest defect is the last defect 

providing a partial input into the pipeline PTE (all other defects are only repaired, and their entropies by 

that destroyed). 
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With the DNV code (Fig. 13) the pipeline PTE is everywhere equal to zero, since for all the defects the   

adopted policy of defects repair criterion (MSOP = OP) is reached before the deepest defect reaches its 

entropy maximum. In other words, when starting to visualize the evolution of pipeline entropy according to 

the adopted scheme all defects are already being repaired. 

 

 

 

Conclusions 

 

1. A methodology has been developed for estimating the entropy generated by degradation of pipeline 

defects of the rupture and leak type, as well as for the pipeline as a system with defects, apparently for 

the first time. Ratios have been defined between the different physical and probabilistic conditions of 

pipeline systems and the possibility of their early diagnostics in terms of information entropy was 

revealed. 

2. According to conducted study, value of the defect entropy maximum is invariant with respect to the 

used design codes, defect depth and its GR, all of which confirms its fundamental nature. 

3. This entropy measure could be useful for early diagnostics of pipeline systems condition, as well as for 

planning and optimizing their predictive maintenance (Timashev and Bushinskaya, 2012). 
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Abstract: The paper analyses the actual reliability level which was empirically embedded in international 

codes for pipeline design [B31G, B31Gmod, Shell92, DNV, and Battelle (PCORRC)], using a real pipeline 

section as an example.  A brief review of the above design codes and description of the plastic fracture 

criterion, which is the basis for these design codes are presented. The considered pipeline section contains 

longitudinally oriented surface defects of the corrosion/erosion type.  Estimates of residual strength of the 

pipeline were carried out. For two characteristic defects the influence of randomness of pipeline geometry 

(diameter and pipe wall thickness), pipe material physical properties (ultimate tensile strength and specified 

minimum yield strength), load (operating pressure) and defect geometry (depth and length) on probability 

of failure (POF) is analyzed. This approach can be applied when studying the inherent reliability of other 

pipelines with defects. 

Assessment of the reliability/probability of failure of pipeline with defects was performed using the 

Gram-Charlier-Edgeworth (GCE) method. This method is an assessment of the probability that the limit 

state function (LSF) of pipeline defect is positive at a given moment of time t. LSF(t) = Pf (t) – Pop, where 

Pf(t) is the failure pressure, which is estimated by any of the above design code; Pop is the operating 

pressure. 

The GCE method allows estimating the probability of failure/reliability of the pipeline defect and 

considering the stochastic character of pipeline geometry parameters, physical properties of pipe material, 

parameters of pipeline defects and operating pressure, treating them as random variables. Recommendations 

for choosing probability distributions for these random variables and calculating their statistical parameters 

are also presented. Extensive calculations permitted discovering the reliability levels which are actually 

present in the analyzed international pipeline design codes. 
 

Keywords: reliability, probability of failure POF, design code, Gram-Charlier-Edgeworth series, pipeline 

systems. 

 

 

 

1. Overview of the Most Common Pipeline Design International Codes  

 

Currently, the most internationally recognized methodology for assessing the residual strength of 

longitudinally oriented surface (external or internal) corrosion defects are codes of the American Society of 

Mechanical Engineers (ASME). The initial code, ASME B31G, was adopted as the US national standard. 

(ANSI/ASME B31G, 1991) and, in simplified form, as the national standard of Canada (CAN3-Z183-M86, 

1986). Subsequently, the modification of this standard was developed, which is called B31Gmod (Kiefner 
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and Vieth, 1989).  In addition to the codes B31G and B31Gmod widely used methodologies are: DNV 

(DNV-RP-F101, 2004), Battelle (Stephens and Leis, 2000) and Shell-92 (Ritchie and Last, 1995).  

All the above practical methodologies are based both on theory and extensive experiment conducted on 

real scale pipes. Their essence is in the calculated estimate of the burst (failure) pressure of the defective 

cross section of the pipeline. All the codes considered in this paper are based on the following formula 

which permits calculating the pipe burst pressure: 

 

 

 
 

1
2

1

f

f

d t

wt wt
P t

D d t

wt M t



 
   

 
 

 

                                                          (1) 

Where wt is the pipe wall thickness; D is the pipeline diameter; f is the flow stress; d(t) is the defect depth 

at the moment of t; M is the Folias factor. 

The expression (1) for the evaluation of failure pressures for each of the codes (B31G, B31Gmod, 

Shell92, or DNV) is different, depending on the expressions used for the Folias factor, flow stress, and 

geometric shapes approximating the form of the defect. 

According to (Alkazraji, 2008), all methods are classified as the SMYS-based and the UTS-based, 

where SMYS and UTS are specified minimum yield strength and ultimate tensile strength of the pipe 

material, respectively. UTS-based methods use the ultimate tensile strength of pipe material to define 

destruction of the pipeline defective cross section.  

The described above codes can be applied only to a single cross section of the pipeline containing a 

longitudinally oriented, flat bottom surface defect of the corrosion/ erosion type. 

Below formulas are given for calculating the failure pressure  fP t  of a single defective cross section 

of a pipeline for each of the codes. 

The B31G (ANSI/ASME B31G code, 1991): 
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                                           (2) 

Where Folias factor is calculated by formula: 

 
 2

31 1 0.893B G

l t
M t

D wt
 


                                                    (3) 

The flow stress 1.1s SMYS  .  

Equation (2) applies to defects with 1.12 4l D wt   . For longer defects ( 4.48l D wt  ) assessment 

of burst pressure is calculated by formula: 

 
 2 1.1

1f

d twt SMYS
P t

D wt

 
   

 
                                                  (4) 
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The methodology is applicable only to pipes, which material class is below the X56 API 5L standard 

[5] (i.e., SMYS and UTS is less than, respectively, 386 and 489 MPa). The defects depth must be within the 

(10% - 80%) range of pipe wall thickness. 

The B31Gmod code (Kiefner and Vieth, 1989):  
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                           (5) 

This criterion uses a more accurate expression for the Folias factor than the code B31G and is less 

conservative (Alkazraji, 2008). 

The Folias factor in this case is given by: 
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                     (6) 

The flow stress is 68.95 (10 )s SMYS МПа ksi   . 

The applicability of this methodology is similar to the applicability of the B31G code, with one 

difference: the defects depth must be within the (10% - 85%) range of pipe wall thickness. 

The DNV code (DNV-RP-F101, 2004): 
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                                                 (7) 

The Folias factor is calculated by formula: 

 
 2

1 0.31DNV

l t
M t

D wt
 


                                                               (8) 

The flow stress is equal to UTS. The methodology can be applied only to defects which depth is less 

than 85% of pipe wall thickness. 

The Shell92 code (Ritchie and Last, 1995): 
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                                              (9) 

The Folias factor: 
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 2

92 1 0.805Shell

l t
M t

D wt
 


                                                         (10) 

The flow stress in this code is equal to 0.9UTS. This methodology should be applied only to defects 

which depth is less than 85% of pipe wall thickness. 

The PCORRC (Battelle) code (Stephens and Leis, 2000): 
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Where  
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                                                   (12) 

This methodology can be used only for pipelines, which are operated at temperatures exceeding the 

temperature of pipe material ductile-brittle transition, and for pipe material with the impact energy of 

Charpy 61J and above. 

 

 

 

2. Method of estimating the probability of failure/reliability of defective cross sections of pipeline 

system 

 

2.1THE GRAM-CHARLIER-EDGEWORTH METHOD 

 

The probability of failure / reliability of pipeline defective cross section is estimated, using the probabilistic 

approach based on the Gram-Charlier-Edgeworth series (GCE) (Poluyan, Bushinskaya, Malyukova and 

Timashev, 2009; Timashev, Malyukova, Poluyan and Bushinskaya, 2008). This method allows assessing 

the probability of failure / reliability of a defective cross section of a pipeline, while taking into account the 

probabilistic nature of pipeline and defects geometry parameters, material properties and operating pressure. 

The following main uncertainties of a specific cross section of a pipeline are considered as random 

variables (RVs): defect depth d(t) and length l(t); pipe wall thickness wt and diameter D; SMYS and UTS of 

pipe material; and design operating pressure opP .  

The GSE method is an assessment of the probability that the limit state function (LSF) of a defective 

pipeline cross section has a positive value at an arbitrary moment of time t (i.e., assessment of defect 

reliability). The LSF is the difference between the value of the function which determines the burst pressure 

and the value of the design operating pressure: 

   f opY t P t P                                                                          (13) 

Where  fP t  is the burst (failure) pressure, assessed by any of the above codes.  

The essence of this method is the approximation of the unknown probability density function PDF f(y) 

of the RV Y(t) by an orthogonal polynomial, which is a partial  sum of the Gram-Charlier-Edgeworth series. 

According to this method, the reliability of the pipeline defective cross section is calculated by formula: 
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Where (0 ) /Y Yz    . 

Then the probability of failure (POF) of the pipeline defective cross section can be calculated using 

following formula: 
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                             (15) 

Where  y  is the PDF of the standard normal distribution, exponents n of this function indicate its n-th 

derivative; y is the normalized value of   /Y Yy y    ; Y  is the mean of the RV Y(t); Y  is the 

standard deviation of  RV Y(t);  S is the asymmetry coefficient of  RV Y(t): 
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                                                                            (16) 

E is the curtosis of Y(t): 
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4
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Y

Y
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                                                                      (17) 

In eqns. (17) and (18)    3 4,Y Y   are the third and fourth moments of the RV Y(t), respectively. 

Denote as ix  its i-th RV in the LSF: 1D x , 2wt x ,   3d t x ,   4l t x , 5SMYS x or 5UTS x , 

6opP x . With these notations, the mean and variance of RV Y (t) are calculated by eqns.: 
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                         (19) 

Where 
ix

m  is the mean of the i-th RV included in the LSF; 
ix

D  is the variance of the i-th RV included in 

the LSF,  4 ix  is the fourth moment of the RV ix . 

The second terms in equations (18) and (19) are amendments for the nonlinearity of the LSF.  The third 

and fourth central moments of RV Y (t) are calculated by eqns.: 
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Where  3 ix  is the third moment of RV ix . 

Note that the calculation by formula (14) or (15) is always carried out for the zero value of F. In a 

particular calculation only the statistical characteristics (mean, variance and moments) of LSF will vary. 

Thus, for a less dangerous defect, the LSF mean will be will be farther away from zero, due to which the 

POF will decrease. In the opposite case, for a more dangerous defect, the burst pressure will decrease and 

the difference between the burst and operating pressure will decrease, hence, the POF will increase. 

 

2.2 RECOMMENDATIONS FOR CHOOSING THE PROBABILITY CHARACTERISTICS OF THE PIPELINE SYSTEMS 

PARAMETERS 

 

For practical use of the GCE method probabilistic characteristics of the initial data have to be known: the 

geometric parameters of pipeline and defects, load parameters and mechanical properties of pipe steel.The 

probabilistic characteristics of these parameters are recommended in (C-FER Project No. L128, 2005).  

 

2.2.1  Probabilistic characteristics of the geometric parameters of the pipeline 

The probabilistic characteristics of the relationship between the actual and the nominal value of the pipeline 

geometric parameters are presented in Table I. 

 
Table I. The probabilistic characteristics of the relationship between the actual and the nominal 

value of the pipeline geometric parameters  

Parameter Distribution law Mean Coefficient of variation 

Diameter 
Deterministic 1 1.00 0.00 

Normal 1.00 0.06 % 

Pipe wall thickness 

Normal 2 1.00 0.25/wt 

Normal 3 1.10 3.30 % 

Normal 1.01 1.00 % 

 

 

Different metallurgical plants can produce pipes with different levels of variability in their geometric 

parameters. It is shown (Jiao, Sotberg and Igland, 1995)  that the standard deviation (SD) can be calculated 

on the assumption that the width of the interval of deviation from the nominal value is three sigma on either 

side of the nominal value, i.e., the geometrical parameters of the pipeline are normally distributed. 

It should be noted that the use of a normal distribution for pipeline geometry parameters is not in 

contradiction with their physical properties (strictly positive values), as the scatter of a RV around the mean 

                                                      
1 Based on the pipes with diameter from 16 to 56 inches. RVs with a  COV < 0.1% could be considered as  deterministic 

parameters. 
2 For welded pipes with wall thickness in the range between 15 and 37 mm. In eqn. of COV wt is the nominal pipe wall thickness, 

i.e., the standard deviation = 0.25 mm. 
3 For seamless pipe, based on tolerances for wall thickness. 
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value is such, that the occurrence of negative values is practically impossible. For example, according to 

Table I, the mean of pipe wall thickness (wt) is equal to 110% of its nominal value and the COV is equal to 

3.3% (the largest value in Table I). Hence, the standard deviation (SD) is 3.63% of wt. With this value of 

SD, the negative values of wt are outside the 30.3SD range. Using properties of the normal distribution, the 

probability of hitting a RV outside six SD is equal to 91.97 10  (0.002 cases per million), for seven SD 

such probability is equal to 121.28 10 , and for 30.3SD this probability is infinitesimal (5.23∙10
-202

). 

 

2.2.2 Probabilistic characteristics of the operating pressure 

The relationship between operating pressure (OP) and the design pressure (DP) at an arbitrary time can be 

described by a beta distribution with mean 0.865 and coefficient of variation (COV) 0.084. In this case, the 

operating pressures have as its lower limit 60% and as its upper limit 110% of the design pressure. This 

distribution is based on the assumption that the maximum operating pressure in the pipeline is equal to the 

design pressure. 

In the pipeline section located immediately after the pumping or compressor stations, the ratio between 

the maximum annual operating and design pressure has a Gumbel distribution with mean between 1.03 and 

1.07 and COV of 1 to 2%. This distribution provides a conservative estimate of the annual maximum 

operating pressure for those pipeline sections, which are farther downstream from the pumping/compressor  

stations. 

 
2.2.3 Probabilistic characteristics of the pipe material mechanical properties 

Probabilistic characteristics of the relationship between the actual yield and ultimate strength and SMYS 

and UTS of the pipe material are presented in Table II. 

 
Table II. Probabilistic characteristics of pipe material properties   

Parameter Disribution law Mean COV, % 

SMYS 

Normal 4 1.11 3.40 

Normal 4 1.08 3.30 

Normal or  

Lognormal 5 
1.10 3.50 

Lognormal 1.08 4.00 

UTS 
Normal 4 1.12 3.00 

Normal 4 1.12 3.50 

 

 

Probabilistic characteristics of the relationship between the actual yield (ultimate) stress and the SMYS 

(UTS) of the pipe material is based on data from plant tests. In general, the distribution does not depend on 

the steel grade (C-FER Project No. L128, 2005). It is shown (Jiao, Sotberg and Igland, 1997), that the COV 

may vary, depending on the quality of the pipe steel from different plants. So, as far as possible, results of 

plants tests should be used. 

                                                      
4 Based on multiple tests of samples of different manufacturing plants (760 test samples of steel grade X60 (API 5L standard, 2004) 

and 2753 test samples of steel X65 (API 5L standard, 2004)). 
5 Based on plants data (pipe steel grade X60 and X70 (API 5L standard, 2004)). 
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Use of the normal distribution with parameters from Table II for the properties of pipe material also 

totally excludes negative values of RVs, as in the case with the pipe and defects geometry parameters.. 

 

3. Analysis of the reliability level actually embedded in the international codes for pipeline design 

To assess the actual level of reliability embedded in the international codes [B31G, B31Gmod, Shell92, 

DNV and PCORRC], consider first the problem of evaluating reliability of an ideal pipe (without defects). 

The failure pressure for the ideal pipe is given by formula: 

2 f

f

wt
P

D


                                                                            (22) 

The basic equation (22) for each code varies depends on which expression for the flow stress is utilized. 

Since all the above codes are either SMYS-based or UTS-based, in eqn (22) the UTS or SMYS is used, 

instead of the flow stress: 

2 2
orf f

wt SMYF wt UTS
P P

D D

 
                                                      (23) 

The reliability / probability of failure of the ideal pipe were assessed using the GCE method. The 

analysis was performed on a real pipeline segment, which parameters are defined in Table III. 

 
Table III. Initial data. Nominal values of pipeline parameters 

Parameter Symbol Value 

External pipeline diameter, mm D 325.00 

Pipe wall thickness, mm wt 9.00 

Specified minimum yield strength, MPa  SMYS 245.00 

Ultimate tensile strength, MPa UTS 410.00 

Design operating pressure, MPa Pop 6.40 

 

 

Probabilistic characteristics of the pipeline geometric parameters were calculated on the assumption 

(Jiao, Sotberg and Igland, 1995) that these parameters are normally distributed. 

The maximum deviation for the outside diameter is ± 2 mm, for pipe wall thickness –  +0.6 and -0.8 

mm. Assume that the pipeline parameters are normally distributed. Then, using the three-sigma rule and the 

tolerances as specified by Table III, it is possible to calculate their mean and standard deviation. The mean 

of pipeline diameter is equal to 325 mm and standard deviation SD = 2/3 mm; the mean of pipe wall 

thickness is equal to (9.6+8.2)/2 = 8.9 mm and the SD = (9.6-8.2)/6= 0.23 mm. For SMYS and UTS the 

distribution law and parameters were chosen according to Table II. 

Initial data for further analysis are presented in Table III and IV. 

 
Table IV. Initial data. Pipeline parameters, considered as random variables 

Parameter Symbol Distribution law Mean, mm SD, mm 

External pipeline diameter, mm D Normal 325.00 0.67 

Pipe wall thickness, mm wt Normal 8.90 0.23 

Specified minimum yield strength, MPa  SMYS Normal 269.50 9.43 

Ultimate tensile strength, Mpa UTS Normal 459.00 16.07 

Design operating pressure, MPa Pop Normal 6.40 0.70 
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It is easy to show that for the distribution parameters of Table IV the probability of negative values  of 

pipeline parameters is equal to zero. Indeed, for the pipe wall thickness its negative values are outside the 

38.7 SD (8.90/0.23 ≈ 38.69) range, for the pipeline diameter – outside the 485.1 SD (325.00/0.67 ≈ 485.07) 

range, and for operating pressure – outside the 9.1 SD (6.40/0.70 ≈ 9.14) range. In all these cases the 

probability of occurrence of negative values is infinitesimal. For the pipe material properties the possibility 

of negative values is similarly infinitesimal. 

In the deterministic setting, or considering any pipeline parameter deterministic when using the GCE 

method, the nominal values of pipeline parameters as defined by the Table III should be used. 

The LSF for eqns (23) take the form: 

1 2

2 2
op op

wt SMYS wt UTS
Y P and Y P

D D

 
                                          (24) 

Introduce following notation: 1D x , 2wt x , 3( )SMYS UTS x , 4opP x . Applying the GCE method 

and performing all necessary calculations as prescribed by formula (15), the POFs of the ideal pipe, 

calculated using the basic eqns. (23), are equal to: 

    

    

19
1 1

47
2 2

0 0 7.39 10

0 0 1.55 10

F P Y t

F P Y t





   

   
 

These are the hidden levels of pipeline reliability embedded in the basic methodologies (23) of 

international codes for pipeline design. 

Analyze now the sensitivity of the POF for the defect-free pipeline to the randomness of parameters in 

the LSFs 1 2,Y Y . The obtained results are shown in Table V. 

 
Table V. The POF of geometrically ideal pipelines, calculated by the  GCE method, based on  methodologies (23), using 

SMYS or UTS 

  Formula (23) 

based on 

All pipeline parameters 

are RV 

All parameters of PL are RV, except 

Diameter Pipe wall thickness SMYS or UTS 
Operating 

pressure 

SMYS 7.39·10-19 7.10·10-19 4.38·10-22 6.71·10-26 8.74·10-39 

UTS 1.55·10-47 1.31·10-47 1.44·10-62 9.28·10-86 5.63·10-66 

 

 

According to Table V, as expected, the highest POF of the ideal pipe belongs to the case when all 

parameters were considered as RVs. POF is most sensitive to operating pressure, when SMYS is used in 

eqn.(23), and to the ultimate strength, when  UTS is used in eqn. (23), since in these cases the POF is 

minimal. Further down, in order of decreasing sensitivity of POF, are SMYS and pipe wall thickness, in the 

case of using SMYS in eqn. (23), and the operating pressure and pipe wall thickness in the case of using 

UTS in eqn. (23). In both cases, POF is not sensitive to the pipeline diameter. 

Now analyze the sensitivity of POF of an ideal pipe to the randomness of pipeline parameters, when 

using international codes B31G, B31Gmod, Shell92, DNV и Battelle. For an ideal pipe these codes differ 

only by the coefficient at SMYS or UTS, which either are more than or equal to one. The obtained results 

are shown in Table VI. 
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Table VI. The POF of a  geometrically ideal pipeline, calculated by the GCE method, using international codes for pipeline 

design 

Code 
All pipeline 

parameters are RV 

All parameters of PL are RV except 

Diameter Pipe wall thickness SMYS or UTS Operating pressure 

B31G 2.39·10-23 2.27·10-23 6.16·10-28 1.30·10-33 3.80·10-44 

B31Gmod 1.34·10-34 1.20·10-34 2.13·10-44 1.41·10-46 1.76·10-66 

Battelle 1.83·10-48 1.53·10-48 5.15·10-65 1.49·10-87 6.61·10-66 

DNV 1.88·10-41 1.64·10-41 2.14·10-53 7.05·10-71 3.52·10-61 

Shell92 1.55·10-47 1.31·10-47 1.44·10-62 9.28·10-86 5.63·10-66 

 

 

According to Table VI, as in the previous example, for all codes the POF of an ideal pipeline has the 

maximal value, when all the pipeline parameters are considered as RVs. The POF of an ideal pipe is most 

sensitive to pressure, for SMYS-based codes (B31G, B31Gmod), and to the ultimate strength, for UTS-

based codes (Battelle, DNV, Shell92), since in these cases the POF is minimal. Further down, in order of 

decreasing sensitivity of the POF, are SMYS and pipe wall thickness, for the SMYS-based codes, and 

operating pressure and pipe wall thickness, for the UTS-bases codes. In both cases, POF is not sensitive to 

the pipeline diameter. 

 

 

4. Analysis of sensitivity of pipeline defects  POF to the randomness of its parameters 

 

Now consider the same pipeline with some typical (representative) dangerous defects. Assume that as a 

result of a pipeline inspection two most dangerous characteristic defects of the metal loss type were found, 

with depths equal to 20% wt (1.8 mm) and 42% wt (3.78 mm) and lengths - 246 mm and 70 mm, 

respectively. Distribution parameters of sizes of these defects are shown in Table VII. 

 
Table VII. Initial data. Distribution parameters of sizes of most dangerous defects 

Parameter Symbol Distribution law Mean, mm SD, mm  

Parameters of defect #1 

Depth 1d  Normal 2.25 0.92 

Length 1l  Normal 246.00 15.63 

Parameters of defect #2 

Depth 2d  Normal 5.62 0.99 

Length 2l  Normal 70.00 15.63 

 

 

Calculate the POF of these defects, varying the number of pipeline and defects parameters, which are 

considered as RVs. This allows tracing the contribution of each parameter of the pipeline system to the POF 

of the pipeline defective cross section. 

Calculate now the failure pressure for these two defects, using the nominal values of the defect sizes, as 

listed in Table III. The obtained results are shown in Table VIII and Fig. 1. 
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Table VIII. The burst pressure of most dangerous defects 

Code 
Burst pressure, MPa, for 

Defect #1 Defect #2 

B31G 11.20 11.83 

B31Gmod 14.57 12.98 

Battelle 18.80 17.40 

DNV 19.29 17.78 

Shell92 16.30 12.95 

 

 
Figure 1. Burst pressure of defects under consideration 

 

According to Fig. 1 and Table VIII, the most conservative code is the B31G, and, according to this 

code, the longer defect (#1) is more dangerous than the deeper. Further, in descending order of 

conservatism, follow codes B31Gmod, Shell92, Battelle and DNV. 

Now calculate POF of the defects under consideration, varying the number of parameters of the defects 

and the pipeline, which are considered as RVs. The obtained results are presented in Table IX and Figs. 2 

and 3. 
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Table IX. The POF of the defects under consideration, depending on the number of parameters 

of the pipeline and the defects, considered to be RVs 

Code 
Probability of failure 

defect #1 defect #2 

Case #1: all parameters are RVs, except diameter 

B31G 3.55·10-3 2.06·10-6 

B31Gmod 4.23·10-8 4.40·10-5 

Battelle 1.46·10-10 1.88·10-8 

DNV 1.81·10-10 3.53·10-6 

Shell92 1.31·10-7 1.59·10-3 

Case #2: all parameters are RVs, except pipe wall thickness 

B31G 9.71·10-4 5.22·10-7 

B31Gmod 1.23·10-8 2.05·10-5 

Battelle 2.29·10-11 2.62·10-9 

DNV 2.92·10-11 1.31·10-6 

Shell92 5.25·10-8 1.21·10-3 

Case #3: all parameters are RVs, except defect length and depth 

B31G 3.53·10-3 1.64·10-11 

B31Gmod 1.49·10-21 1.38·10-13 

Battelle 3.48·10-32 3.74·10-24 

DNV 5.07·10-33 2.44·10-22 

Shell92 2.14·10-25 2.29·10-11 

Case #4: all parameters are RVs, except SMYS or UTS 

B31G 3.54·10-3 2.49·10-10 

B31Gmod 1.68·10-8 7.43·10-7 

Battelle 1.83·10-11 1.23·10-8 

DNV 2.53·10-11 3.35·10-6 

Shell92 4.86·10-8 1.88·10-3 

Case #5: all parameters are RVs, except operating pressure 

B31G 3.53·10-3 7.70·10-8 

B31Gmod 2.76·10-9 1.55·10-5 

Battelle 2.16·10-11 4.68·10-9 

DNV 3.25·10-11 2.12·10-6 

Shell92 3.75·10-8 1.32·10-3 

Case #6: all parameters are RVs 

B31G 3.54·10-3 2.06·10-6 

B31Gmod 4.24·10-8 4.41·10-5 

Battelle 1.47·10-10 1.89·10-8 

DNV 1.82·10-10 3.53·10-6 

Shell92 1.31·10-7 1.59·10-3 
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Figure 2. The POF of defect #1, depending on used codes and the number of considered design cases (logarithmic scale) 

 
Figure 3. The POF of defect #2, depending on used codes and the number of considered design cases (logarithmic scale)  

 

According to Fig. 2 and Table IX for the first, longer defect following conclusions could be made: 

 

─ The B31G code is the most conservative. Next follow codes Shell92, B31Gmod. The codes DNV and 

Battelle are least conservative. 

─ With respect to POF, the B31G code is absolutely not sensitive to any of the considered cases except 

for the second, when the pipe wall thickness was assumed to be a deterministic value (DV). This can be 
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explained by the fact that the formula for calculating longer defects does not depend on the Folias 

factor. 

─ Assessments of the POF, obtained using codes Battelle and DNV are almost identical. 

─ Methods of the Battelle, DNV, and Shell92 codes are equally sensitive to randomness of the pipe wall 

thickness and operating pressure, because in cases #2 and #5 the assessments of the POF, obtained by 

using these codes, are practically identical. 

 

The results shown in the Fig. 3 and Table IX for the second, deeper defect lead to the following 

conclusions: 

 

─ The Shell92 code is the most conservative. Next follow B31Gmod and DNV. 

─ Codes B31Gmod, Battelle, DNV, and Shell92 are equally sensitive to the randomness of pipe wall 

thickness and operating pressure, due to the fact that in cases #2 and #5 the values of POF are almost 

identical. 

─ The Shell92 code is sensitive only to randomness of defect parameters (case #3), because in other cases 

the assessments of POF are the same. 

 

Summarizing the overall results of the conducted research, for a given pipeline with only two 

characteristic defects permits following generalized, but conditional (due to limited scope of analysis) 

conclusions: 

 

─ All standards, except B31G, were found to be very sensitive to case #3, in which the  defects 

parameters were considered as DV. In this case the assessments of POF are minimal for all the used 

codes. 

─ All codes are not sensitive to the randomness of the pipe diameter. This is shown by the fact that the 

assessment of POF for the case #1 coincides with the assessment for case #6, where all parameters are 

considered as RVs. 

─ With respect to POF, all codes are most sensitive to the randomness of the defect depth and length. The 

difference between the POF for the case when the defect parameters are considered as DVs and the case 

when they are RVs is very significant. When the parameters of defects are DV, the POF is minimal, 

even when considering deep and long defects. 

─ For all codes the second most sensitive parameter of the POF is pipe wall thickness. All codes are less 

sensitive to the randomness of SMYS / UTS and the operating pressure. 

 

It should be noted that quantitatively the sensitivity of the POF will change with the change of the 

stochastic characteristics of parameters in consideration, but the ranking of cases in Table IX will remain 

the same. 

 

The results of the above analysis demonstrate that it is not prudent to consider the most important pipeline 

parameters (pipe wall thickness, SMYS and UTS), load (pressure) and the defects parameters (depth and 

length) as deterministic values. Using deterministic approach is fraught with inconsistent estimates of 

pipeline reliability and the degree of danger of its defects. 
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Abstract. The analysis and design of mechanical engineering systems requires to take into account the
influence of uncertainties on the system’s performance. Depending on the available amount of information,
the designer or analyst can choose from a wide variety of methods in the probabilistic (see e.g. (Schuëller,
2001)) or non-probabilistic (see e.g. (Elishakoff and Ohsaki, 2010), (Moens and Hanss, 2011)) approaches
to describe the uncertainties. However, the selection of a suitable uncertainty model for the different uncer-
tainties most often is not enough to yield satisfactory information on the reliability or bounds of the system’s
performance. A crucial piece of information appears to be the dependence of the uncertain variables. This
is especially the case for uncertainties with a spatial character, e.g. material properties or distributed loads.

The study gives an overview of the existing probabilistic and non-probabilistic methods to represent this
kind of dependencies. In the probabilistic setting the concepts of the covariance function associated with
a random field, a copula and several correlation measures are treated. In the non-probabilistic setting the
concepts of interval fields, convex modeling and interactive fuzzy numbers are reviewed. Of special interest
is the ability to bound these dependence measures. For the case of a spatial uncertainty, this generally
comes down to specifying the maximum distance between points that are influencing each other. Points
further away from each other than this distance are considered practically independent. For points closer to
each other than this distance the interaction may be described, introducing a notion of perfect dependence.
Finally, of utmost importance is to study the effect of the bounds on the dependence on the uncertainty in
the system’s performance.

Keywords: Random field, Interval field, Finite Element analysis

1. Introduction

A description of dependence can take many faces. First of all, the word itself has different meanings.
Mosteller and Tukey (1977) emphasize: “We must be clearer about the abused word dependence and its
relatives.” (Drouet Mari and Kotz, 2001) On the one hand, dependence may mean perfect dependence, i.e.
if one knows the value of x, then one knows exactly the value of y. On the other hand, dependence can
be more flexible, i.e. when we know x, we may know something more about y as opposed to the situation
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when we know nothing about the value of x. This piece of information can be expressed in a probabilistic
framework (section 2) as well as a non-probabilistic framework (section 3).

The modeling of a spatial uncertainty exemplifies the need for a proper description of dependence in
uncertainty modeling. It is a given that spatially distributed model parameters for locations adjacent to each
other assume uncertain but very similar values. The uncertain values for points further away from each other
can be very dissimilar. The crucial piece of information is the notion of spatial closeness. This notion consists
in actually two things. The first is being able to measure how close points are to each other in a numerical
model. The second is to be able to compare this distance to a reference to assess whether higher or lower
dependence is assumed between these two points. For the details of a distance measuring method in a finite
element model, the reader may consult (De Mulder et al., 2012). Specifying a value for the reference distance
depends on the actual uncertainty modeling framework in use. In a probabilistic framework, the concept
of correlation length is widely used, whereas in the non-probabilistic world a related concept does not
(yet) exist. Next issue is to take into account this dependence when propagating input uncertainty to output
uncertainty: According to (Kurowicka and Cooke, 2006) “. . . an essential part of uncertainty analysis is the
analysis of dependence. Indeed, if all uncertainties are independent, then their propagation is mathematically
trivial (though perhaps computationally challenging). Sampling and propagating independent uncertainties
can easily be trusted to the modellers temselves. However, when uncertainties are dependent, things become
much more subtle, and we enter a domain for which the modellers’ training has not prepared them.” From a
practical perspective, a tool is needed to translate the spatial dependence information given by an expert to a
representative set of realisations of the uncertain model parameter. Section 4 sheds some light on this topic.

An important feature of the spatial dependence modeling is yet untouched. Although the more flexible
notion of dependence (i.e. not the perfect dependence: if x = a then y = b) and its related probabilistic
and non-probabilistic descriptions allows a more versatile treatment of the dependence phenomenon, it
becomes increasingly clear that the assignment of one single value to a dependence descriptor is still far
from feasible. Either because the data set on which such a single value assignment could be made is too
small or the data set simply does not exist and the dependence information is based on expert knowledge.
To quote again (Kurowicka and Cooke, 2006) “Engineers and scientists sometimes cover their modesty
with churlish acronyms designating the source of ungrounded assessments. ‘Wags’ (wild-ass guesses) and
‘bogsats’ (bunch of guys sitting around a table) are two examples found in published documentation.” It
is suggested in section 5 to put bounds on the dependence measures, instead of assigning a single value to
them.

Finally, in section 6 a numerical example is given to show the effect of such bounds on a probabilistic
and non-probabilistic dependence measure in the context of spatial uncertainty modeling.

2. Probabilistic dependence measures

In scientific literature notions and definitions of independence preceded the notion of dependence (the latter
was just regarded as the negation of the former). Related to this seems the fact that it was easier to understand
independence. “Saying that variables are not independent does not say much about their joint distribution.
What is the nature of this dependence? How dependent are they? How can we measure the dependence?
These questions must be addressed in building a dependence model.” (Kurowicka and Cooke, 2006) The
first probabilistic concept of dependence (correlation) emerged at the end of the 19th century in the field of
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social study and psychology. “The concept of correlation (and its modifications) introduced by F. Galton in
1885 dominated statistics during some 70 years of the 20-th century, practically serving as the only measure
of dependence, often resulting in somewhat misleading conclusions.” (Drouet Mari and Kotz, 2001) On the
other hand, the correlation has great merit. “By now, over a century later, contemporary scientists often take
the correlation coefficient for granted. It is not appreciated that before Galton and Pearson, the only means
to establish a relationship between variables was to deduce a causative connection. There was no way to dis-
cuss - let alone measure - the association between variables that lack a cause-effect relationship.” (Rodgers
and Nicewander, 1988) In the following, an overview of several dependency measures is given. First, the
scalar aggregate (global) measures of bivariate dependence product moment correlation, rank correlation,
Kendall’s tau and relative entropy are discussed. Next, the more thorough (local) measure of dependence
copula is discussed.

2.1. PRODUCT MOMENT CORRELATION

A historic account of the product moment correlation, together with as much as 13 ways to look at it can be
found in (Rodgers and Nicewander, 1988). The product moment correlation of random variables X ,Y with
finite expectations E(X), E(Y ) and finite variances σ2X , σ2Y , is

ρ(X,Y ) ≡ E(XY )− E(X)E(Y )

σXσY
(1)

Some properties of the product moment correlation are listed below:

− The product moment correlation depends on the marginal distribution functions FX and FY .

− The product moment correlation is bounded by −1 ≤ ρ(X,Y ) ≤ 1 and it’s minimum and maximum
(not necessarily −1 and 1, as in the example (Kurowicka and Cooke, 2006), pages 29-30) are attained
for X and Y countermonotonic and comonotonic, respectively. We say that random variables X and
Y are comonotonic if there is a strictly increasing function G such that X = G(Y ). X and Y are
countermonotonic if X and −Y are comonotonic.

− The product moment correlation is invariant under linear strictly increasing transformations of X or Y ,
but is not invariant under non-linear strictly increasing transformations.

− If X and Y are independent, then ρ(X,Y ) = 0. The reverse is not generally true.

2.2. RANK CORRELATION

The rank correlation or Spearman correlation was introduced by Spearman in 1904. The rank correlation of
random variables X , Y with cumulative distribution functions FX and FY is

ρr(X,Y ) ≡ ρ(FX(X), FY (Y )) (2)

Since for any X with a continuous invertible FX , FX(X) is uniform on b0, 1e, the rank correlation is
a correlation of random variables transformed to uniform random variables. This leads to the following
properties:
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− The rank correlation is independent of marginal distributions.

− The rank correlation is bounded by −1 ≤ ρr(X,Y ) ≤ 1 and it’s minimum (−1) and maximum (1) are
attained for X and Y countermonotonic and comonotonic, respectively.

− The rank correlation is invariant under non-linear strictly increasing transformations.

− If X and Y are independent, then ρr(X,Y ) = 0. The reverse is not generally true.

In (Kurowicka and Cooke, 2006) an efficient technique is presented to extract information on the rank
correlation from experts. The technique is based on an indirect question: “Suppose Y were observed in a
given case and its values were found to lie above the median value for Y ; what is your probability that, in
this same case, X would also lie above its median value?” Formally this comes down to assess

π 1
2
(X,Y ) ≡ P

(
FX(X) >

1

2
|FY (Y ) >

1

2

)
(3)

Based on the minimum information copula (see below), the probability assigned by the expert can be directly
related to a rank correlation. It is obvious that a probability 0 would mean X and Y are anti-correlated, a
value 1

2 would suggest a rank correlation equal to 0 whereas a value 1 leads to completely rank-correlated
X and Y .

2.3. KENDALL’S TAU

Let (X1, Y1) and (X2, Y2) be two independent pairs of random variables with joint distribution function F
and marginal distributions FX and FY . Kendall’s rank correlation, also called Kendall’s tau (1938) is given
by

τ ≡ P [(X1 −X2)(Y1 − Y2) ≥ 0]− P [(X1 −X2)(Y1 − Y2) < 0] (4)

The following properties hold for Kendall’s tau:

− Kendall’s tau is independent of marginal distributions.

− Kendall’s tau assumes values between −1 and 1.

− Kendall’s tau is invariant under non-linear strictly increasing transformations.

− If X and Y are independent, then τ(X,Y ) = 0. The reverse is not generally true.

For a discussion of two correlation measures, namely sup correlation and monotone correlation, where
a zero value implies independence, see (Devroye, 1986) pp.574-576.

2.4. RELATIVE ENTROPY

Consider the pair of random variables (X,Y ) with f(x, y) the joint density and f1(x) and f2(x) the marginal
densities. Then the relative entropy is defined as:

δX,Y ≡
∫ ∫

f(x, y) log

(
f(x, y)

f1(x)f2(y)

)
dxdy (5)
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The entropy of the density f(x, y) is compared with the maximum attainable entropy, namely when X and
Y are independent. For independent X and Y , δX,Y is zero, and for maximal dependence, δX,Y approaches
infinity. The concept of maximum entropy or equivalently minimum information will be reappearing in the
next section on copulae.

2.5. COPULA

Copulae are tools for modeling dependence of several random variables. In particular a copula allows to
seperate the effect of dependence from the effect of marginal distributions in a joint distribution. The term
copula was first introduced by Sklar in 1959 (Schmidt, 2006). A copula C is defined as a function which is
a cumulative distribution function with uniform marginals. Random variables X and Y are joined by copula
C if their joint distribution can be written as

FXY (x, y) = C(FX(x), FY (y)) (6)

For the bivariate case, a copula is the joint distribution of two random variables that are each converted to
the uniform distribution by means of their respective marginal distribution functions. A copula is always
contained in between the Fréchet-Hoeffding bounds CL and CU (see Figure 1). CL represents the case when
all of the probability mass is spread uniformily on the main diagonal v = 1− u and CU is attained when all
of the mass is on the main diagonal v = u.

CL = max(u+ v − 1, 0) ≤ C(u, v) ≤ CU = min(u, v) (7)

with (u, v) ∈ b0, 1e2. Next, two copulae from a sheer endless list of copulae are described (based on (Kurow-

Figure 1. The lower and upper Frchet-Hoeffding bounds CL and CU
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icka and Cooke, 2006)) as they are of particular interest in next section’s discussion on non-probabilistic
dependence measures.

2.5.1. Diagonal band copula
One natural generalization of the bounding copula CU is the diagonal band copula introduced by Cooke and
Waij in 1986. In contrast to CU , for possitive correlation the mass is concentrated on the diagonal band with
vertical bandwidth b = 1 − a. Mass is distributed uniformly on the inscribed rectangle and is uniform but
‘twice as thick’ in the triangular corners. A clear relationship exists between the product moment correlation
and the parameter a of the diagonal band copula.

2.5.2. Minimum information copula
The minimum information copula was introduced and studied by Meeuwissen in 1993. The construction
is based on the fact that for any ρr ∈ b−1, 1e there is a unique bivariate joint distribution satisfying the
following constraints:

− the marginal distributions are uniform on I = [−1
2 ,

1
2 ]

− the rank correlation is ρr ∈ b−1, 1e

− the distribution has minimal information relative to uniform distribution (or maximum entropy as
defined higher) among all distributions with rank correlation ρr.

The minimum information copula is attractive because it realizes a specified rank correlation by ‘adding as
little information as possible’ to the product of the marginals. Its main disadvantage is that it does not have
a closed functional form. All calculations with this copula must involve numerical approximations.

3. Non-Probabilistic dependence measures

All too often the following typical ‘jump of thought’ is made, it is first noted that “. . . , the dependence is
obviously not deterministic but of a stochastic nature.” (Drouet Mari and Kotz, 2001), and then a book all
about probabilistic dependence follows. Present authors maintain however that if something is not determin-
istic it is not necessarily probabilisitic. The non-probabilistic methods cover a very large set of alternative
uncertainty treatments, of which (together with probabilistic theory) an excellent overview is given in (Klir,
2006). We will limit our focus to crisp and so called graded possibilities. In crisp possibilities a clear
distinction is made between members and non-members of a set, by assigning membership level one and
zero, respectively. A typical example of a crisp set is an interval. In graded possibilities the full range of
membership degrees between zero and one is available. A typical example of a graded set is a fuzzy number.

In this framework, the treatment of independence and noninteraction overshadows, to the best of our
knowledge, study in the field of dependence descriptions and measures. We follow mainly the description
by (Klir, 2006) on both crisp possibilities and graded possibilities.

 

 
 
 
604

 
 
 
 
 

 
 
 
5th International Conference on Reliable Engineering Computing (REC 2012)



Bounding the dependency measures for spatial uncertainties

3.1. CRISP POSSIBILITIES AND INFORMATION TRANSMISSION

For finite sets (generalization to infinite sets is given in (Klir, 2006)) of possible alternatives Hartley proposed
in 1928 to measure the amount of uncertainty of such a set by

H(rE) = log2 |E|, rE(x) =

{
1 when x ∈ E
0 when x /∈ E (8)

with |E| the cardinality of the set E. Assume two sets X and Y and the set R ⊆ X × Y that describe
possible alternatives in some situation of interest. Then following relations between the marginal, joint and
conditional Hartley measures hold:

H(X|Y ) = H(X × Y )−H(Y ) (9)
H(Y |X) = H(X × Y )−H(X) (10)

If possible alternatives from X do not depend on selections from Y , and vice versa, then R = X × Y and
the sets RX and RY (the projections of R on X and Y , respectively) are called noninteractive:

H(X|Y ) = H(X) (11)
H(Y |X) = H(Y ) (12)

H(X × Y ) = H(X) +H(Y ) (13)

In the general case of unknown interactivity, these equalities become inequalities≤. To indicate the strength
of constraint between possible alternatives in sets X and Y , the information transmission is defined as

TH(X,Y ) = H(X) +H(Y )−H(X × Y ) (14)

When the sets are noninteractive, TH(X,Y ) = 0; otherwise, it is positive. Its maximum value is obtained if
H(X|Y ) = H(Y |X) = 0, or in other words, if the value of X is specified, only one value for Y is possible.
This indicator can be considered a measure of dependence in this paper.

3.2. GRADED POSSIBILITIES

In the framework of graded possibilities a value between zero and one is assigned to every singleton of a
set X by the basic possibility function r(x), with the requirement of possibilistic normalization to assign at
least to one x the value 1. The possibility assigned to a subset A of X is determined by

Pos(A) = max
x∈A
{r(x)} (15)

Based on a joint possibility function r(x, y) defined over X × Y the marginal possibility functions are
defined as

rX(x) = maxy∈Y {r(x, y)}, ∀x ∈ X (16)
rY (y) = maxx∈X{r(x, y)}, ∀y ∈ Y (17)
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If it is known that variables X and Y do not interact, then the joint possibility function r is defined by

r(x, y) = min{rX(x), rY (y)} (18)

Among all joint possibility profiles that are consistent with the given marginal possibilities, this one based
on the assumption of noninteractive marginals, is the largest one. The definition of conditional possibilities
can go many ways (Fonck, 2006). We follow the definition by (Hisdal, 1978):

rX|Y =

{
r(x, y) when rY (y) > r(x, y)
1 when rY (y) = r(x, y)

(19)

rY |X =

{
r(x, y) when rX(x) > r(x, y)
1 when rX(x) = r(x, y)

(20)

To define possibilistic independence based on this definition of conditional possibilities, one can again
go many ways. The key is to compare rX(x) and rX|Y (x|y), this can be done in at least three ways as
suggested in (de Campos and Huete, 1999). Possibilistic independence can be defined based on: equality
rX(x) = rX|Y (x|y) (not modifying information), inequality rX(x) ≤ rX|Y (x|y) (not gaining information)
or similarity rX(x) ' rX|Y (x|y) (obtaining similar information, but specification of the similarity measure
is needed). Here, as in (Klir, 2006), the equality operator is adopted. With such a definition possibilistic
independence implies possibilistic noninteraction, but not the other way around.

This definition of noninteraction or independence does not give us a measure of interaction or depen-
dence. First attempts to come up with such a measure are apparently found in (Fuller and Majlender,
2004).

4. Spatial uncertainties and dependence measures

As mentioned in the introduction, the modeling of a spatial uncertainty calls for a dependence measure. In
particular, one needs a dependence description in function of the distance between points.

4.1. PROBABILISTIC SPATIAL UNCERTAINTY AND CORRELATION LENGTH

In the probabilistic framework, the concept of a random field (Vanmarcke, 1993) is well developed. In its
application the crucial element is the specification of the correlation structure. For homogeneous random
fields, this correlation structure describes the value of the correlation as a function of the distance between
two points. A crucial parameter in this function is the correlation length as made clear in the illustrative
sensitivity study (Charmpis et al., 2007). The parameter largely dominates the discretization of a random
field. For an overview of discretization methods applicable to finite element analysis, the reader is referred
to the excellent report by (Sudret And Der Kiureghian, 2000). Three groups of discritization are identified:
point discretization, average discretization and series expansion methods.
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X

Y

g(d)=0.2

g(d)=0.2

g(d)=0.4

g(d)=0.4

g(d)=0.6 g(d)=0.8

g(d)=0.6

g(d)=0.8

g(d)=1

Figure 2. The possible values of R ⊆ X × Y as a function of g(d). The limits on the possible values are given by identically
dashed lines.

4.2. NON-PROBABILISTIC SPATIAL UNCERTAINTY AND DOMAIN OF INFLUENCE

Apparently a link between a crisp possibilistic measure of dependence and spatial uncertainty is not yet
formulated in literature. Our suggestion consists in specifying a function g(d) : d → b−∞, 1e with d the
(non-negative) distance between two points in a model. To every value g(d) corresponds a set R ⊆ X × Y
of possible values. For g(d) ≤ 0 the set R = X × Y , for g(d) = 1 the set R reduces to the single line
X = Y . In other words, the information transmission becomes maximal and the possible alternatives for
X given Y reduce to one, if the distance between X and Y reduces to zero. All this leads to the following
conditions on g(d): {

g(0) = 1
g(d1) > g(d2) for d1 < d2

(21)

A simple example of such a function g(d) is

g(d) = 1− d

a
(22)

with a > 0 a parameter specifying the domain of influence. If d < a thenR ⊂ X×Y , for d > aR = X×Y .
For values 0 < g(d) < 1 the domain of possible values R can take many shapes, our focus is restricted

to two cases. The first is a shape similar to the diagonal copula discussed above. Figure 2 illustrates the
concept, where the limits on the possible values are given by identically dashed lines. A clear link between
this representation and bounding the spatial derivative 0 < |X ′| ≤ z of a model parameter (in addition to
bounding its value l ≤ X ≤ u) can be established. Let two locations in a model seperated by a distance d
be given index 1 and 2. Given a value for x1, the value of x2 is bounded by x1 − zd and x1 + zd as long as
x1 − zd > l and x1 + zd < u. These bounds can be directly related to the model for g(d) in Eq. (22) with
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a = (l − u)/z. An example where the bounds on the spatial derivative of an uncertain model parameter are
used to describe the spatial dependence can be found in (Ben-Haim and Elishakoff, 1990).

The second shape is a nesting of ellipses for 0 < g(d) < 1, that degenerate to a square for g(d) = 0
and degenerate to a line for g(d) = 1. The basis of a practical method to calculate the ellipses based on
experimentally measured spatial data can be found in (Zhu et al., 1996).

5. Bounding dependence measures for spatial uncertainties

The actual value of the correlation length or the parameter a in Eq. (22) is seldomly known. For this reason,
it is suggested to treat them as intervals. For a study of the influence of an interval correlation length on
the series expansion of a random field, the reader is referred to (Verhaeghe et al., 2011). In the example
below a similar analysis is performed for a point discretization of a random field. After the discretization is
fixed, the interval on the correlation length, actually results in intervals on the correlations between all the
discretization points.

For the non-probabilistic case, after fixing the discretization, the interval on a results in a set of domains
of influence. Points that are not influencing eachother for small values of a, become important to each
other with increasing a. Depending on the studied output, its interval can increase or decrease in size with
increasing a.

6. Numerical example

In this section, the influence of bounds on a dependence measure for both a probabilistic and a non-
probabilistic analysis is studied in the context of a numerical example.

6.1. RELIABILITY OF BEAM WITH RANDOM FLEXIBILITY

l

M0 M0

Figure 3. A simply supported beam of length l, loaded with constant moment M0

A beam of length l is simply supported at its both ends and loaded with a constant moment M0 (see
Figure 3). The flexibility h(x) is characterized by

h(x) = H1φ1(x) +H2φ2(x) (23)

where φ1(x), takes value 1 for the left half (0 ≤ x < 0.5l) and has value 0 for the right half of the beam.
Conversely, the function φ2(x) takes value 1 for the right half of the beam and 0 for the left half. The
amplitudesH1 andH2 are each a uniformly distributed random variable. As such, the flexibility is modelled

 

 
 
 
608

 
 
 
 
 

 
 
 
5th International Conference on Reliable Engineering Computing (REC 2012)



Bounding the dependency measures for spatial uncertainties

by a very coarse point discretisation (only the two points x = 0.25l and x = 0.75l are considered) of the
random field for the flexibility.

The performance of the beam in this case is determined by the displacement difference between two
points symmetrically located on both sides of its mid-point. The displacement is calculated using

W (x) = M0

∫ x

0

∫ v

o
h(u)dudv −M0

x

l

∫ l

0

∫ v

0
h(u)dudv

= M0

[
H1

∫ x

0

∫ v

o
φ1(u)dudv +H2

∫ x

0

∫ v

o
φ2(u)dudv

−x
l

(
H1

∫ l

0

∫ v

0
φ1(u)dudv +H2

∫ l

0

∫ v

0
φ2(u)dudv

)]
(24)

The displacement difference between points x1 and x2 is thus found by

∆Wx1,x2 = W (x1)−W (x2) (25)

Defining A(x) =
∫ x
0

∫ v
o φ1(u)dudv and B(x) =

∫ x
0

∫ v
o φ2(u)dudv, the reliability can be calculated as:

R = P (|∆Wx1,x2 | ≤ ∆Wspecified)

= P
(
|M0

[
H1

(
A(x1)−

x1
l
A(l)

)
+H2

(
B(x1)−

x1
l
B(l)

)
−H1

(
A(x2)−

x2
l
A(l)

)
−H2

(
B(x2)−

x2
l
B(l)

)]
| ≤ ∆Wspecified

)
= P

(
|M0

[
H1

(
A(x1)−A(x2)−

x1
l
A(l) +

x2
l
A(l)

)
+H2

(
B(x1)−B(x2)−

x1
l
B(l) + B(l)

)]
| ≤ ∆Wspecified

)
= P (|M0 [H1A

∗ +H2B
∗] | ≤ ∆Wspecified)

=

∫ H1

0

∫ ∆Wspecified/M0−ξ1A
∗

B∗

−∆Wspecified/M0−ξ1A∗

B∗

fH(ξ1, ξ2)dξ2dξ1

=

∫ H2

0

∫ ∆Wspecified/M0−ξ2B
∗

A∗

−∆Wspecified/M0−ξ2B∗

A∗

fH(ξ1, ξ2)dξ1dξ2 (26)

with A∗ and B∗ the weights of the random variables due to the integrals of φ1(x) and φ2(x) respectively;
H1 and H2 the upper bounds of the random variables.

Let us assume l = 1, M0 = 1, both H1 and H2 uniform on b0.95, 1.05e, x1 = 0.4, x2 = 0.6
and ∆Wspecified = 0.001. The joint density fH(ξ1, ξ2) is chosen equal to the diagonal band copula dis-
cussed above. The density is characterised by the parameter b = 1 − a. For b = 1, the copula represents
independence. For b = 0, the copula represents perfect positive dependence. The density is described by

Ca(u1, u2) =
1

2(1− a)

(
I[a−1,1−a](u− v) + I[0,1−a](u+ v) + I[1+a,2](u+ v)

)
(27)
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Figure 4. The reliability of the beam as a function of the correlation

With IA, the indicator function of A. Parameter b is a function of the (rank) correlation as found in (Kurow-
icka and Cooke, 2006):

b = 1− a =
2

3
− 4

3
sin

(
1

3
arcsin

[
27

16
ρ− 11

16

])
(28)

Figure 4 shows the reliability for the correlation varying between 0 and 1. For a higher correlation coefficient
the reliability tends to 1. If both variablesH1 andH2 are completely independent, the reliability is only 0.75.
If one is able to bound the correlation between the two variables, the corresponding bounds on the reliability
can be found from the figure.

6.2. BOUNDS ON THE DISPLACEMENT DIFFERENCE OF THE BEAM WITH INTERVAL FLEXIBILITY

The same beam as above is considered, but now H1 and H2 are intervals between 0.95 and 1.05. The
quantity of interest is again the displacement difference between the same two points symmetrically located
on both sides of the mid-point. The dependence between the two intervals is characterised by a joint set as
illustrated in Figure 2, with g(d) as in Eq. (22) with d = 0.5l, the distance between the two discretization
points on the beam and a ∈ b0.5l, 2le. This interval description for a results in a situation where one of the
two discretization points is just on the boundary of the domain of influence of the other point when a = 0.5l
and g(0.5l) = 0. In the other extreme case, the other point resides on the g(05l) = 0.75 (with a = 2) limit
in the domain of influence.

The upper bound for the absolute value of the displacement difference as a function of a is shown in
Figure 5. The lower bound is always 0.
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Figure 5. The upper bound on the displacement difference

7. Conclusion

The paper presents a review of dependence measures for both probabilistic and non-probabilistic descrip-
tions of uncertainty. The link with numerically modeling a spatial uncertainty is established based on the
functional relation between the dependence measure and a distance measure in a numerical model. The
additional uncertainty related to this functional relationship is treated by representing the reference distance
(i.e. correlation length or domain of influence) as an interval. The procedure is illustrated on a numerical
example.
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Interval quasi-Monte Carlo method for reliability assessment with
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Abstract. Reliability analysis of structures is often performed on the basis of limited data. Under this
circumstance, there are practical difficulties in identifying unique distributions as input for a probabilistic
analysis. However, the selection of realistic probabilistic input is critical for the quality of the results of the
reliability analysis. This problem can be addressed by using an entire set of plausible distribution functions
rather than one single distribution for random variables based on limited data. An imprecise probability
distribution can be modeled by a probability box, i.e., the bounds of the cumulative distribution function
for the random variable. Sampling-based methods have been proposed to perform reliability analysis with
probability boxes. Direct sampling of probability boxes requires a large number of samples. The computa-
tional cost can be very high as each simulation involves an interval analysis. This study proposes an interval
quasi-Monte Carlo simulation methodology to efficiently compute the bounds of structure failure probabil-
ities. The methodology is based on deterministic low-discrepancy sequences, which are distributed more
regularly than the (pseudo) random points in direct Monte Carlo simulation. The efficiency and accuracy of
the present method is illustrated using two examples. The reliability implications of different approaches for
construction of probability boxes are also investigated through the example.

Keywords: epistemic uncertainty, imprecise probability, interval, low-discrepancy sequence, probability
box, quasi-Monte Carlo, structural reliability.

1. Introduction

The building process of civil engineering structures and infrastructure is complicated by the various sources
of uncertainties in structural resistance and loads, as well as in computational models. These uncertainties are
treated as random variables when using established probabilistic methods for reliability analysis. Structural
reliability is then measured by a probability of failure, denoted Pf (Melchers, 1999).

Although the mathematical formulation as well as the basic numerical techniques for the calculation of
Pf appears to be straightforward, difficulties appear in practical applications. For one thing, the evaluation
of the involved multi-dimensional integral can be challenging. Development of numerical techniques target
at a high numerical efficiency and concern advanced concepts of Monte Carlo (MC) simulation such as
subset simulation (Au and Beck, 2001) and line sampling (Koutsourelakis et al., 2004). Particular attention
is currently paid to simulation schemes for high-dimensional problems. Moreover, there are practical diffi-
culties in identifying the proper distribution for the random variables particularly to model their extremes
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(“tails”) which are of greatest concern in reliability assessment. Structural failure probabilities, generally
very small, are sensitive to the choice of probability distributions (Ellingwood, 2001). However, available
data on structural strength and loads are typically limited, and competing distributions often cannot be
distinguished by standard statistical tests. When observational data are limited, the analyst may not be able to
identify the type of the distribution of a random variable, or precise values for the distribution parameters, or
there may be competing probabilistic models. The selection of a distribution for the probabilistic input is so
generally realized based on ambiguous information and indications. This may lead to a wrong model choice
and a strong overestimation of structural reliability resulting in critical decisions with severe consequences.

It is advisable to consider the distribution itself as uncertain. These statistical uncertainties are epistemic
(knowledge-based) in nature (Der Kiureghian and Ditlevsen, 2009). Because of the distribution sensitivity
problem, the failure probability calculated on the basis of small data samples is only a “notional” value and
should not be interpreted as a relative frequency in an absolute sense (Ellingwood, 2001; Der Kiureghian
and Ditlevsen, 2009). To overcome the distribution sensitivity problem, the development of first-generation
probability-based structural design codes utilized a process of calibration to existing practice. The notional
reliabilities associated with existing and new practices were computed in the same model universe of proba-
bility distributions and used as a means of comparison (Ellingwood et al., 1982). If the calculated reliabilities
are notional and only used for the purpose of reliability comparison, then the uncertainty in the distributions
is generally of minor importance and can be ignored. A reliability comparison in this sense represents a
ranking of alternatives, whereby the uncertainties in the distributions associated with the alternatives are
normally not significantly different in magnitude since they origin from the same source (same model
universe of probability distributions). The effects of the uncertainties in the distributions, hence, cancel
out one another on an ordinal (ranking) scale almost completely.

However, there are circumstances where epistemic uncertainties due to limited availability of data need
to be included explicitly in reliability analysis and, further on in risk assessment. One such case is the risk-
informed decision-making, in which the regulatory authorities often see a need to quantify the confidence
in the results of the risk assessment, particularly if the event is rare but the consequence is severe. Another
case is the performance-based approach to structural design. In this new paradigm of structural engineering,
it is necessary to establish explicit reliability/risk terms to rationalize the selection of performance levels
in structural design. Designers using innovative building materials and technologies are also concerned
with computing realistic structural reliabilities because they cannot rely on past experience to calibrate
the reliabilities. In all these circumstances a notional reliability measure without taking into account the
epistemic uncertainty in the distributions is not very helpful.

Within a pure probabilistic framework, epistemic uncertainty can be handled with Bayesian approaches.
Uncertain parameters of a probabilistic model can be described with prior distributions and updated by
means of limited data. They can then be introduced formally, with the remaining (aleatory) uncertainties,
in the reliability calculation (Der Kiureghian and Ditlevsen, 2009; Ellingwood and Kinali, 2009). In the
case where competing probabilistic models exist, each model is considered separately with an assigned
probability mass. A failure probability can be computed for each probabilistic model. The expectation
of the failure probability can then be calculated as a characteristic result, and the frequency distribution
(or variance) of the failure probability can be evaluated to separate the effects of aleatory and epistemic
uncertainty. In practical applications, this requires a high numerical effort or statistical approximations.

Alternatively, an imprecisely known probability distribution can be modeled by a family of all candidate
probability distributions which are compatible with available data. This is the idea of the theory of imprecise
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probabilities (Walley, 1991). Dealing with a set of probability distributions is essentially different from a
Bayesian approach. A practical way to represent the distribution family is to use a probability bounding
approach by specifying the lower and upper bounds of the imprecise probability distribution. This corre-
sponds to the use of an interval to represent an unknown but bounded number. Consequently, a unique
failure probability cannot be determined. Instead, the failure probability is obtained as an interval whose
width reflects the imprecision of the distribution model in the calculated reliability.

A popular uncertainty model using the probability bounding approach is the probability box (p-box for
short) structure (Ferson et al., 2003). A p-box is closely related to other set-based uncertainty models such
as random sets, Dempster-Shafer evidence theory and random intervals. In many cases, these uncertainty
models can be converted into each other, and thus considered to be equivalent (Walley, 2000; Ferson et al.,
2003; Joslyn and Ferson, 2004; Möller and Beer, 2008; Baudrit et al., 2008). Therefore, the methodology
presented in this paper is also applicable to other set-based uncertainty models.

Within the reliability analysis context, simulation-based methods have been suggested to propagate p-
boxes (Alvarez, 2006; Baraldi et al., 2008; Batarseh and Wang, 2008; Zhang et al., 2010a). Direct sampling
of p-boxes requires a large number of samples to control the sampling uncertainty. The total computational
cost can be very high as each simulation may involve an expensive range-finding problem. The issue of
computational cost becomes more serious when the limit state function is only implicitly known through
a computational model. Another concept follows the idea of global optimization to directly identify the
bounds of probabilistic results (Möller and Beer, 2004). Although this concept is general and can be applied
in association with variance-reduction methods (Zhang et al., 2010b), the computations are still numerically
demanding. There is some urgency for further developments towards efficient methodologies for analysis
with imprecise probabilities.

This study focuses on the reduction of sampling uncertainty with quasi-Monte Carlo technique. Quasi-
MC method is typically used for multidimensional numerical integration problems. It performs in a similar
manner as the Monte Carlo integration with the exception that samples used are a systematically constructed
deterministic sequence instead of random samples. This deterministic sequence, known as low-discrepancy
sequence, has the property that its points approximate the uniform distribution as closely as possible, so that
a better sampling of the function can be achieved (Lemieux, 2009). As compared to MC method, Quasi-
MC method can often achieve a desired tolerance of the result variance using much less simulation effort.
In addition, the implementation of quasi-MC is as simple as replacing the pseudo-random numbers in MC
method by low-discrepancy sequences.

Quasi-Monte Carlo has been traditionally used in computational finance and computational physics. Its
applications in structural reliability analysis have been more recent (Nie and Ellingwood, 2004; Shinoda,
2007; Dai and Wang, 2009). In this paper the quasi-Monte Carlo technique is combined with the inter-
val sampling to develop a simple, yet efficient sampling procedure for reliability analysis with p-boxes.
Variance-type error estimates for the proposed method are calculated. Different approaches for constructing
p-boxes are investigated and compared.

2. Construction of probability box

An imprecise distribution can be represented by the bounds on its cumulative distribution function (CDF).
Let FX(x) denote the CDF for a random variable X . With an imprecise distribution, for any reference
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number x it is assumed that a closed interval [Fx(x), Fx(x)] can be found to bound the possible values of
Fx(x), i.e., Fx(x) ≤ Fx(x) ≤ Fx(x). Fx(x) and Fx(x) thus form the envelopes of the probability family

P = {P |∀x ∈ R, Fx(x) ≤ Fx(x) ≤ Fx(x)}. (1)

Such a pair of two CDF’s Fx(x) and Fx(x) defines a “probability box”. Detailed background can be found
in (Ferson et al., 2003).

Various ways have been suggested to construct bounds on cumulative distribution functions. Depending
on the amount of available information, the analyst may choose among the following options to construct a
p-box.

2.1. KOLMOGOROV-SMIRNOV (K-S) CONFIDENCE LIMITS

K-S confidence limits on an empirical distribution have been proposed in (Ferson et al., 2003) to define
bounds of the CDF as

Fx(x) = min(1, max(0, Fn(x)−Dα
n)),

Fx(x) = min(1, max(0, Fn(x) + Dα
n)), (2)

in which Fn(x) is the empirical cumulative frequency function, and Dα
n is the K-S critical value at signifi-

cance level α with a sample size of n.

2.2. CHEBYSHEV’S INEQUALITY

If only knowledge of the first two moments (µ and σ) for the random variable is available, Chebyshev’s
inequality is proposed in (Oberguggenberger and Fellin, 2008) to define a p-box as

Fx(x) =

{
0, x < µ− σ,

1− σ2

(x−µ)2
, x ≥ µ + σ,

Fx(x) =

{
σ2

(x−µ)2
, x < µ− σ,

1, x ≥ µ− σ.
(3)

2.3. DISTRIBUTIONS WITH INTERVAL PARAMETERS

Probability families can also be defined by distributions with interval parameters as described in (Zhang
et al., 2010a). This concept corresponds to the bunch parameter representation of fuzzy random variables
described in (Möller and Beer, 2004). Confidence intervals on statistics (e.g., mean, variance) provide a
natural way to define interval bounds of the distribution parameters. Based on the observational data, a
confidence interval can be established using classical statistical approaches, such that the (unknown) distri-
bution parameter is located within the interval at a specified level of confidence. Let Θ denote the (unknown)
statistical parameter of the distribution, and its interval range is [θ, θ], thus the p-box can be constructed as

Fx(x) = min{Fx(x|θ) : θ ≤ θ ≤ θ},
Fx(x) = max{Fx(x|θ) : θ ≤ θ ≤ θ}, (4)
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in which Fx(x|θ) is the conditional CDF, given that the parameter Θ takes the value of θ. A related concept
for the quantification of fuzzy random variables can be found in (Beer, 2009).

2.4. ENVELOPE OF COMPETING PROBABILISTIC MODELS

When there are multiple candidate distribution models which cannot be distinguished by standard goodness-
of-fit tests, the envelope of the candidate distributions may be used as the p-box (Fu et al., 2011), i.e.,

Fx(x) = min{Fi(x), i = 1, . . .},
Fx(x) = max{Fi(x), i = 1, . . .}, (5)

where Fi(x) denotes the ith candidate CDF.

2.5. SUMMARY

One important observation about p-box is that although its construction still needs some subjective judge-
ment, such as selecting an appropriate confidence level in the approach of K-S confidence limit, it generally
requires less subjective information than the Bayesian approaches.

Among the above four approaches of deriving p-boxes, the K-S approach and Chebyshev’s inequality are
non-parametric and do not require a distribution assumption, in contrast to the third approach “distributions
with interval parameters”. The fourth approach “envelope of competing probabilistic models” may be para-
metric or non-parametric. As will be seen in the second example, the p-boxes obtained from these approaches
may differ significantly from each other, leading to different results. This brings us to an important question:
for a given set of small samples, how should we construct an appropriate p-box for reliability assessment?
We will return to this question in our discussion of Example 2.

3. Direct interval Monte Carlo simulation

Reliability analysis with probability boxes can be performed using sampling-based methods (Alvarez, 2006;
Baraldi et al., 2008; Batarseh and Wang, 2008; Zhang et al., 2010a). We start with the conventional MC
simulation, in which the failure probability Pf is estimated by

Pf ≈ P̂f =
1
n

n∑

j=1

1[g(xj) ≤ 0], (6)

where n is the total number of simulations conducted, and xj represents the jth simulated vector of basic
random variables in accordance to their joint probability density function fx(). g() is the limit state function
and failure occurs when g(X) ≤ 0. 1[ ] is the indicator function, having the value 1 if [ ] is “true” and the
value 0 if [ ] is “false”.

As a basis for our development we use the inverse transform method (Lemieux, 2009) for generation of
random numbers:

xj = F−1
x (rj), j = 1, 2, . . . , n (7)
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with Fx( ) being the target CDF of X, and r1, . . . rn a sample of independent and identically distributed
(i.i.d.) standard uniform random variates.

Now consider the situation in which Fx( ) is unknown but bounded by Fx( ) and Fx( ). Since only
bounds of Fx( ) are known, it is not possible to generate point samples but only interval samples. Let

xj = F
−1
X (rj),

xj = F −1
X (rj), j = 1, . . . , n, (8)

it follows that xj ≤ xj ≤ xj . Note that the inverse of a CDF, F−1
X ( ), is monotonically decreasing. Eq. (8)

suggests that for a given rj , the interval [xj , xj ] contains all possible simulated numbers from the probability
family represented by the p-box. Define

g
j
(x) = min{g(X) : xj ≤ X ≤ xj},

gj(x) = max{g(X) : xj ≤ X ≤ xj}, (9)

one has
1[gj(x) ≤ 0] ≤ 1[g(xj) ≤ 0] ≤ 1[g

j
(x) ≤ 0]. (10)

Applying the inequality (10) to Eq. (6) yields

1
n

n∑

j=1

1[gj(x) ≤ 0] ≤ Pf ≤ 1
n

n∑

j=1

1[g
j
(x) ≤ 0]. (11)

Therefore, a lower and an upper bound for Pf can be estimated as:

P f =
1
n

n∑

j=1

1[gj(x) ≤ 0],

P f =
1
n

n∑

j=1

1[g
j
(x) ≤ 0]. (12)

Because the randomly generated samples are intervals, this procedure is referred to as direct interval Monte
Carlo simulation (Zhang et al., 2010a).

3.1. VARIANCE OF DIRECT INTERVAL MONTE CARLO

The accuracy of the reliability bounds as obtained from Eq. (12) can be measured by their variance. An
estimator for the variance of P f , denoted V̂ar(P f ), is constructed by calculating its sample variance

V̂ar(P f ) = 1
n(n−1)

(∑n
j=1 12[gj ≤ 0]− P 2

f

)
=

P f−P 2
f

n−1 . (13)

Similarly, the variance of P f can be estimated as

V̂ar(P f ) = 1
n(n−1)

(∑n
j=1 12[g

j
≤ 0]− P

2
f

)
= P f−P

2
f

n−1 . (14)
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4. Interval quasi-Monte Carlo simulation

The starting point of our development is the difficulty to implement ideally uniform random variates in
the simulation procedure as described in Section 3. The accuracy of Monte Carlo sampling relies on the
“uniformity” (equidistribution) of the used uniform random numbers, i.e., the better the samples approximate
the uniform distribution the more precise the Monte Carlo result is (Kalos and Whitlock, 1986). In practice,
pseudo uniform random numbers which are produced by deterministic algorithms are used. Unfortunately,
the pseudo uniform random numbers commonly have poor equidistribution properties, and accordingly, a
good result is only achievable, if possible at all, with a large number of samples. Hence, the computational
cost of interval Monte Carlo simulations can be very high as each simulation may involve an expensive
range-finding problem (i.e., Eq. 9).

4.1. LOW-DISCREPANCY SEQUENCES

Consider a general multivariate integral

I(h) =
∫

Cs
h(u)du, (15)

where u = (u1, . . . , us) is an s-dimensional vector in the hypercube Cs = [0, 1)s, and h : Cs → R is a
real-valued function. Note that, in general, the integration problem characterizing the reliability assessment
can always be reformulated as an equivalent one with the integration domain defined over the unit hypercube
Cs (Lemieux, 2009). Given some sample points Pn = {uj , j = 1, . . . , n} ⊂ Cs, an estimator Qn for the
integral I(h) can be calculated as

I(h) ≈ Qn =
1
n

n∑

j=1

h(uj). (16)

With Monte Carlo method, the points uj are i.i.d. samples from the uniform distribution in Cs. Alternatively,
deterministic low-discrepancy sequences can be used as uj to improve sampling efficiency. The theoretical
background of this can be seen from the Koksma-Hlawka inequality (as discussed in Niederreiter, 1992),
which gives the upper bound on the absolute error of Qn:

|I(h)−Qn| ≤ V (h)D(s)
n (17)

where V (h) is the bounded total variation of function h over Cs in the sense of Hardy and Krause (see
Niederreiter, 1992). The term D

(s)
n is defined as

D(s)
n = sup

u∈Cs |Fn(u)− F (u)|, (18)

in which u = {u1, . . . , us} ∈ Cs, F (u) is the CDF of the uniform distribution in Cs, i.e.,

F (u) =
s∏

i=1

ui, (19)

and Fn(u) represents the empirical CDF induced by the sample points Pn, i.e.,

Fn(u) =
1
n

n∑

j=1

1(uj ≤ u). (20)
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It may be observed that D
(s)
n is actually the Kolmogorov-Smirnov statistics. In analytical number theory,

D
(s)
n is known as the discrepancy of the point set Pn. D

(s)
n can be thought of as a measure of the uniformity

of Pn. The inequality (17) suggests that the absolute error of the integration estimator is bounded and
dominated by D

(s)
n as V (h) is a constant as far as h is given. Therefore, the quality of the estimator Qn

depends only on the discrepancy D
(s)
n , and the sample points with the smallest discrepancy (i.e., the so-

called low-discrepancy sample) are the optimal sampling points in this sense. Since the low-discrepancy
sequences are deterministic, simulation with low-discrepancy sequences is often referred to as quasi-Monte
Carlo simulation.

It is possible to construct low-discrepancy sequence points for a given dimension (s) and number of
samples (n) such that the deterministic error bound for Qn is in O(n−1(log(n))s) (Fang and Wang, 1994).
This is a substantial improvement of the direct Monte Carlo convergence rate of O(n−1/2), particularly when
the dimension s is not too large. The most commonly used low-discrepancy point sets and sequences include
good lattice points (GLP), Halton sequence, Hammersley sequence, Sobol’ sequence, Faure sequence, etc.
Among them GLP is a type of lattice points, and the others are digital sequences. Dai and Wang (2009)
have compared the efficiency of various digital sequences and GLP in the context of structural reliability
assessment. This study uses GLP, Halton, and Faure sequences. The construction of these point sets is
presented in Appendix. Details can be found, for example, in (Niederreiter, 1992) and (Lemieux, 2009).

The uniformity of a low-discrepancy sequence may be visualized by plotting its two-dimensional projec-
tion (Morokoff and Caflisch, 1994). Fig. 1 shows two-dimensional scatter plots for random sampling, GLP,
Halton and Faure sequences. It is evident that the low-discrepancy points fill in C2 more uniformly than the
pure random samples.

4.2. INTERVAL QUASI-MONTE CARLO SAMPLING PROCEDURE

The proposed interval quasi-Monte Carlo method performs in the same manner as the direct interval Monte
Carlo method, except that the random uniform variates are replaced by deterministic low-discrepancy se-
quences. With the interval quasi-Monte Carlo method, the bounds of failure probability are given by:

P f =
1
n

n∑

j=1

1[gj(uj) ≤ 0],

P f =
1
n

n∑

j=1

1[g
j
(uj) ≤ 0], (21)

in which the sequence u1, . . . , un is a low-discrepancy point set, and

g
j
(uj) = min{g(X) : F

−1
X (uj) ≤ X ≤ F −1

X (uj)},
gj(uj) = max{g(X) : F

−1
X (uj) ≤ X ≤ F −1

X (uj)}. (22)

The interval quasi-MC sampling procedure can be summarized as follows.

Step 1: Generate a low-discrepancy point set Pn = {uj , j = 1, . . . , n}.

Step 2: Generate interval samples [F −1
X (uj), F −1

X (uj)].
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    a) Random samples (n = 100)                   b) GLP (n = 89) 

   c) Halton sequence (n = 100)                d) Faure sequence (n = 100) 

Figure 1. 2D scatter plots of different point sets.

Step 3: For the jth simulation, compute the extrema of g(X) for X ∈ [F −1
X (uj), F −1

X (uj)].

Step 4: Compute the lower and upper bounds for Pf by Eq. (21).

The proposed method requires the additional computational cost for constructing low-discrepancy se-
quences, as compared to the direct interval MC method. However, in a practical structural reliability analysis,
the CPU time needed for the construction of low-discrepancy sequences is generally negligible in compari-
son with that of performing multiple simulations (Dai and Wang, 2009). Open-source libraries/routines for
computer implementation of popular low-discrepancy point sets are available in programming environments,
such as C++, Fortan, Matlab and others (Burkardt, 2011).

Step 3 in the proposed method involves the calculation of the range of the limit state function g when the
inputs vary in certain closed intervals. The problem of finding the range of values of a function is solved on
the basis of interval analysis (Moore, 1966). In many practical cases of structural reliability assessment, the
limit state of interest (e.g., stress, displacement) is computed through finite element (FE) analysis, thus the
limit state function is only implicitly known. In this case, an interval FE analysis is needed for the purpose of
evaluating Eq. (9). An implementation of these techniques in the proposed method is straightforward. Theory
and algorithms for linear elastic interval FE analysis are well developed. Reliable methods are available
to compute the bounds of responses of realistic structures with reasonable accuracy when the structural
stiffness and geometrical properties and loads vary in relatively narrow intervals. Reviews of interval FE
analysis can be found in (Zhang, 2005) and (Moens and Vandepitte, 2005). It should be noted that, even
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with the relatively efficient interval FE analysis, the computing cost is generally considerably higher than
the corresponding deterministic FE analysis. It is crucial to limit the number of simulations needed.

At present, the proposed interval quasi-MC method can only handle independent p-boxes, but extensions
to handle problems with dependencies are under development. Dependence information between p-boxes
can be implemented via copulas as discussed in Ferson et al. (2004). Another option for consideration of
dependencies in the p-box framework is the construction of multivariate models for associated random sets
(Fetz and Oberguggenberger, 2010). Or one may consider the p-boxes as generated by a parametrized set
of real-valued random variables and implement the dependencies between them in the traditional manner.
This is associated with the concept proposed in (Möller et al., 2004) for fuzzy probabilities. In general, these
concepts of imprecise probabilities provide even more flexibility in specifying dependencies compared to
traditional probabilistic concepts. They can handle vaguely defined, i.e. imprecise, dependencies, such as a
fuzzy correlation (Möller et al., 2006), and even cases in which only marginals are known but the copula
unknown (Klir, 2006). In those cases, the indeterminacy, or imprecision, in the dependencies are translated
into imprecision in CDF’s, i.e. into p-boxes.

4.3. VARIANCE FOR INTERVAL QUASI-MONTE CARLO

Because standard low-discrepancy sequences are deterministic, a variance-type error estimate cannot be
calculated directly for the interval quasi-MC using Eq. (13). This is one of the limitations of using low-
discrepancy sequences. To address this issue, we randomize the low-discrepancy sequences to create a
random sample of low-discrepancy sequences, each will be used to compute a reliability bound. Empirical
variances of the obtained results can then be calculated to measure the quality of the interval quasi-MC.

A simple randomization method is to use a random shift (Cranley and Patterson, 1976). Consider an s-
dimensional low-discrepancy point set Pn = {uj , j = 1, . . . , n}. Let v be an s-dimensional uniform random
vector. The randomized points ũj can be constructed as

ũj = (uj + v) mod 1, for j = 1, . . . , n (23)

in which the modulo 1 operation is taken componentwise. Other more advanced randomization methods
include random scrambling and permutations, see (Lemieux, 2009).

Using the random shift method, we can create m independent randomized copies of Pn, i.e., {ũj,1, j =
1, . . . , n}, . . ., {ũj,m, j = 1, . . . , n}. For the lth copy of Pn, a lower and an upper bound of Pf are calculated
as:

P f, l =
1
n

n∑

j=1

1[gj(ũj, l) ≤ 0],

P f, l =
1
n

n∑

j=1

1[g
j
(ũj, l) ≤ 0]. (24)

The variance of P f, l can be estimated by its empirical variance

V̂ar(P f, l) =
1

m− 1

m∑

l=1

(P f, l − P f )2, (25)
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where

P f =
1
m

m∑

l=1

P f, l. (26)

The empirical variance of the upper bound P f, l can be calculated in a similar manner.

5. Examples

5.1. RIGID-PLASTIC PORTAL FRAME

A rigid-plastic portal frame, shown in Fig. 2, is subjected to a horizontal load H and a vertical load V . The
example is adopted from (Melchers, 1999). The failure probability of the structure is mainly controlled by
three limit states defined as follows:

g1(X) = M1 + 2M3 + 2M4 −H − V,

g2(X) = M2 + 2M3 + M4 − V,

g3(X) = M1 + M2 + M4 −H,

in which M1,. . . ,M4 are the plastic bending capacities at the joints. Since this is a series system, the system
limit state function g is the minimum of the above, i.e.,g = min(g1, g2, g3). The basic random variables are
X = (M1, . . . , M4,H, V ). All the variables are normally distributed and mutually independent. Assume that
because of limited knowledge, the mean values of Xi can only be estimated as intervals. Table I summarizes
the statistics for the basic random variables.

Figure 2. A rigid-plastic portal frame.

The proposed quasi-interval Monte Carlo method is applied using the GLP, Halton and Faure points with
different numbers of samples. The random shift method (Eq. 23) was used to randomize the sample points.
The first 10,000 points in the Halton and Faure sequences were omitted, as suggested in (Shinoda, 2007).
The Halton points were also leaped with L = 61. As an independent check, direct interval Monte Carlo
simulation was conducted. Table II compares the computed reliability bounds from the two methods with
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Table I. Random variables for the rigid
frame.

Variable Mean Standard dev.

Mi [0.98,1.02] 0.15
H [1.87,1.93] 0.45
V [1.18,1.22] 0.3

different numbers of simulations. With the direct interval Monte Carlo, the failure probability is found to
be [0.0118, 0.0287] after 105 simulations. It can be seen from Table II that the interval quasi-Monte Carlo
methods with GLP, Halton and Faure sequences all give reasonable results after 3,000 simulations. The
results were somewhat improved when the number of simulations was increased to 10,000.

To achieve a variance-type error estimate, each method was then repeated 30 times to obtain a sample of
30 results. On the basis of the 30 calculations, the sample variance for the estimated reliability bounds by
each method were calculated and compared in the last two columns of Table II. For the direct interval Monte
Carlo results, the estimates of variance calculated using Eqs. (13) and (14) are also presented to compare
with the empirical results. It is evident that with the same number of simulations, the (randomized) interval
quasi-Monte Carlo results have less variance than the direct interval Monte Carlo results. For instance,
with 3000 simulations, the sample variance for P f is 0.00224 for direct interval Monte Carlo; it reduces to
around 0.001 for the present method. From Table II, it can also be seen that for the direct interval Monte
Carlo, variance estimates obtained from Eqs. (13) and (14) agree well with the empirical results.

Table II. Reliability bounds and their empirical variances (Example 1: rigid frame).

Method-No Simul. P f × 102 P f × 102 V̂arP f
× 102 V̂arP f

× 102

GLP-3001 1.13 2.87 0.105 0.140
GLP-5003 1.12 2.96 0.895 0.124
GLP-10007 1.19 2.86 0.051 0.045

Halton-3000 1.20 2.70 0.109 0.169
Halton-5000 1.18 3.06 0.083 0.132
Halton-104 1.19 2.94 0.043 0.075

Faure-3000 1.27 2.57 0.118 0.175
Faure-5000 1.28 2.78 0.104 0.161
Faure-104 1.21 2.83 0.076 0.123

interval MC-3000 1.33 3.03 0.224 (0.195) * 0.302 (0.302)
interval MC-104 1.11 2.84 0.112 (0.109) 0.182 (0.167)
interval MC-105 1.18 2.87 0.038 (0.034) 0.061 (0.053)

* values in parentheses are based on Eqs. (13) and (14).
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5.2. TEN-BAR TRUSS UNDER WIND LOAD

The second example is a planar 10-bar truss subject to wind load, as shown in Fig. 3. The structure layout
and member sizes are adopted from (Nie and Ellingwood, 2005). The response of the truss is assumed to be
linear elastic. The limit state in question is the roof drift with a limit value of 17.78 mm. We are interested
in finding the failure probability under the (annual maximum) wind load. The member cross-sectional areas
and the wind load are taken to be random variables. Let Ai denote the cross-sectional area for the ith
member. The basic random variables are X = (A1, . . . , A10,W ). Table III summarizes the statistics for the
cross-sectional areas. All cross-sectional areas are assumed to be mutually statistically independent.

Figure 3. Ten-bar plane truss subject to wind load.

Table III. Statistics for the cross-sectional ar-
eas for the 10-bar truss (unit: cm2).

Variable Mean COV Distribution

A1 −A4 53.226 0.1 Normal
A5 −A8 45.677 0.1 Normal
A9, A10 9.548 0.1 Normal

Suppose that a 30-year record of the annual maximum wind speed at the location of the structure is
available, which represents a sample of size 30 for the load, see Table IV. The sample mean and sample
standard deviation for the wind load W are 112.99 kN and 35.51 kN, respectively.

Based on this rather restricted set of wind load data, the probability boxes for the wind load were
constructed using the four approaches introduced in Section 2. Fig. 4 shows the p-boxes derived by the
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Table IV. Samples of annual maximum wind load, W
(kN).

Year W Year W Year W

1 81.33 11 128.79 21 149.51
2 121.94 12 97.37 22 80.05
3 175.01 13 72.13 23 134.91
4 91.50 14 88.03 24 74.02
5 101.02 15 110.05 25 150.12
6 110.66 16 130.78 26 100.81
7 106.58 17 114.06 27 86.55
8 83.71 18 69.09 28 198.92
9 94.88 19 123.18 29 80.61

10 151.61 20 198.16 30 84.17

�� ��� ��
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Figure 4. CDF bounds for the wind load W constructed using different methods.

Kolmogorov-Smirnov confidence limits (at 5% significance level) and Chebyshev’s inequality. Since the
K-S confidence limits only give the p-box for the range of the samples, it is necessary to assume a smallest
and a largest possible value to truncate the K-S limits. In this example, the wind load samples have a range
of 69.09 to 198.92 kN. The K-S limits are truncated at 50 and 220 kN. These two limit values were chosen
based on the authors’ engineering judgement.

Next, the confidence interval on the mean value was used to define the p-box. Assuming the population
standard deviation σW is equal to the sample standard deviation, the 95% confidence interval on the popula-
tion mean is approximately [100.28, 125.69] kN. Assume that based on experience, the (annual maximum)
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Figure 5. Candidate distributions for the wind load (upper tails).

wind load can be properly modeled by a Type 1 Largest (T1 Largest) extreme value distribution. The p-
box for the T1 Largest with an interval mean [100.28, 125.69] kN and a standard deviation of 35.51 kN is
illustrated in Fig. 4.

The wind load p-box can also be constructed using the envelope of a set of candidate distributions.
Five candidate distributions were chosen to fit the wind load data, i.e., the T1 Largest, lognormal, Gamma,
Normal and Weibull distributions. The Kolmogorov-Smirnov goodness-of-fit tests were performed to test
the validity of these assumed distributions. It can be shown that all candidate distributions passed the K-S
goodness-of-fit tests at the significance level of 5%. As the K-S statistics for the different distributions are
relatively similar, their CDFs would hardly be distinguished if plotted in one figure. However, the difference
between the five candidate distributions in their upper tails can be clearly seen from Fig. 5. As the structural
reliability is dominated by the upper tail of the distribution of the wind load, it is expected that the failure
probabilities obtained from different wind models will differ significantly.

The proposed interval quasi-Monte Carlo method is applied with the four different p-box models for the
wind load. The results by GLP, Halton and Faure sequences are very similar. Only the latter is presented
herein. The first 10,000 points in the Faure sequence were omitted. The next 5,000 points were then used for
the simulation. The results were verified by direct interval Monte Carlo simulation with 105 samples. The
two sets of the results are compared in Table V. It may be observed from Table V that the results from the
present method agree well with those from direct interval Monte Carlo.

It is more interesting to note that the bounds of Pf for different wind load p-box models vary consider-
ably. Using Chebyshev’s inequality yields the widest Pf , i.e., Pf = [0, 0.37]. It is unlikely that the analyst
will find such a wide Pf practically useful. This is because the wind load p-box based on Chebyshev’s
inequality is very wide, particularly in the upper tail as can be seen in Fig. 4. It is due to the fact that only
the information of the first two moments about the random variable is used. Note that the p-box derived by
Chebyshev’ inequality (Eq. 3) is independent of the sample size given that the first two moments are known.
Two sets of data, one with limited samples and a second with comprehensive samples, would lead to the
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same p-box if the first two moments from the two sets of data were the same. This lack of distinction is
undesirable. Moreover, with Chebyshev’s inequality, the p-box will not necessarily become narrower when
additional data are available. This does not agree with the general conception that epistemic uncertainty can
be reduced when the quality of data is refined. Because of these limitations, it appears that Chebyshev’s
inequality is not suitable for the construction of p-box in structural reliability assessment.

With the wind load p-box constructed using the K-S confidence limits, Pf is found to vary in a wide range
between 0 and 0.246. Unlike Chebyshev’s inequality, the K-S confidence limits will become narrower as the
number of samples increase. However, the K-S approach has a main drawback, i.e., the derived p-boxes have
to be truncated at the tails, and the result may be influenced strongly by the values of the truncation, which
are often chosen arbitrarily. In this example the K-S limits are truncated at 220 kN at the upper end, and
P f is found to be 0.246. If the tail is truncated at 198.92 kN, i.e. the maximum of the sampled wind loads,
P f will reduce from 0.246 to 0.0288. Similar observation is made in (Ferson et al., 2003). Because of the
sensitivity of results to the truncation, it is not practical to use the Kolmogorov-Smirnov confidence limit to
construct p-boxes for the purpose of reliability analysis.

Table V. Reliability bounds of the 10-bar truss.

P-box quasi-interval MC interval MC
construction (Faure, n = 5000) (n = 105)

K-S limits [0, 0.246] [0, 0.246]
Chebyshev [0, 0.368] [0, 0.359]
P-box 3 [1.16, 2.66]× 10−2 [1.1, 2.67]× 10−2

P-box 4 [0.06, 1.62]× 10−2 [0.052, 1.73]× 10−2

P-box 3: T1 Largest with interval mean.
P-box 4: envelope of 5 candidate distributions.

If the effect of small sample size is considered through the confidence interval of the first-order statistics,
the wind load is modeled by a Type 1 Largest with an interval mean of [100.28, 125.69] kN (95% confidence
interval). Under this assumption, Pf varies between 0.0116 and 0.0266. This interval bound clearly demon-
strates the effect of small sample size on the calculated structural reliability. It indicates that confidence
intervals on distribution parameters is a reasonable way to define p-boxes, provided that the appropriate
distribution form can be discerned.

In the case where the wind load p-box is constructed using the envelope of five candidate distributions,
the variation of Pf is from 6 × 10−4 to 0.0162. The very small lower bound of Pf is contributed by the
Weibull distribution. As evidenced from Fig. 5, the Weibull distribution is the least conservative one in the
upper tail region. If the Weibull is discarded, the bounds of Pf will become [0.32, 1.62] ×10−2. These
results highlight the sensitivity of the failure probability to the choice of the probabilistic model for the wind
load. Although the candidate distributions all passed the K-S goodness-of-fit test and their K-S statistics are
relatively similar, their tails can be different, leading to very different reliability results.
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6. Conclusions

A new interval quasi-Monte Carlo method has been developed to perform structural reliability analysis
with probability boxes. The methodology is based on deterministic low-discrepancy sequences, which are
more uniformly distributed than pure random samples. Compared with the direct interval Monte Carlo
method, the present method can effectively reduce the required number of simulations to achieve comparable
accuracy. The proposed interval quasi-Monte Carlo method can also be randomized so that variance-type
error estimates can be obtained. The implementation of the present method is relatively straightforward;
it replaces the pseudo random numbers in interval Monte Carlo by the low-discrepancy sequences. It is a
general technique that can be applied to a variety of uncertainty models, including probability boxes, random
sets, random intervals, Dempster-Shafer evidence theory, fuzzy random variables, etc.

A frame and a truss have been analyzed to demonstrate the efficiency and accuracy of the proposed
method. For both problems, the present method yields reasonably good results with at least one order-of-
magnitude less computational effort than the direct interval Monte Carlo simulation.

For the truss example, the wind load p-box was constructed using four different approaches suggested in
the literature, i.e., the Kolmogorov-Smirnov confidence limits, Chebyshev’s inequality, confidence interval
on the mean value, and the envelope of five candidate distributions which all pass K-S goodness-of-fit tests.
The reliability results suggest that the K-S approach or Chebyshev’s inequality do not lend themselves to the
practical construction of probability boxes in the context of structural reliability analysis. The p-boxes based
on these two approaches seem to be too conservative. It is unlikely that the analysts/decision-makers will
find such conservative Pf practically useful. There are also practical difficulties in using the K-S confidence
limits and Chebyshev’s inequality to define p-boxes. The most reasonable method to construct p-boxes
for the purpose of reliability assessment seems to be their construction based on confidence intervals of
statistics.

Appendix. Low-discrepancy sequences

This section briefly introduces the constructions of the GLP, Halton, and Faure sequences. See (Niederreiter,
1992) and (Lemieux, 2009) for details.

GOOD LATTICE POINT

Let n be an integer ≥ 2, a = (a1, . . . , as) be an integer vector, and gcd(ai, n)=1 for all i, where gcd =
greatest common divisor. A point set Pn = {uj , j = 1, . . . , n} can be constructed by

uj = frac(
j − 1

n
a) for j = 1, . . . , n (27)

where frac(z) denotes the fractional part of z. Such a point set is known as a lattice point set with the
generating vector a. Among all possible lattice point sets, the one that has the smallest discrepancy is called
the GLP point set. It has been suggested that for a prime number n, the generating vector can be taken as
(Korobov, 1959):

a = (1, a, . . . , as−1) mod n, (28)
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where a is an integer, 1 ≤ a ≤ n − 1, and gcd(a, n) = 1. It was shown that an optimal value of a

exists for given values of s and n such that the resulting good lattice point set has a discrepancy D
(s)
n =

O(n−1(log(n))s). The method for determining the optimal generating vectors can be found in (Fang and
Wang, 1994).

HALTON SEQUENCE

Let b ≥ 2 be an integer, then any integer n ≥ 0 has a unique digit expansion in base b as

n =
r∑

j=0

aj(n)bj = a0(n) + a1(n)b + . . . + ar(n)br, (29)

where aj(n) ∈ {0, 1, . . . , b− 1} for all i, and br ≤ n < br+1. Thus, r can be calculated as

r = blogbnc, (30)

in which bxc denotes the integral part of x. Define the radical-inverse function φb(n) in base b as

φb(n) =
r∑

j=0

aj(n)b−j−1

= a0(n)b−1 + a1(n)b−2 + . . . + ar(n)b−r−1. (31)

Note that for all integers n ≥ 0, φb(n) ∈ [0, 1). With this definition of radical-inverse function, the nth
vector of the s-dimensional Halton sequence is defined as

un = (φb1(n), φb2(n), . . . , φbs(n)), n = 1, 2, . . . (32)

with the bases b1, . . . , bs > 1 being pairwise relatively prime. In practice, the first s primes are usually used
as the bases. It has been shown that the Halton sequence formed by the first n points (n > max(b1, . . . , bs))
has the discrepancy O(n−1(log(n))s) (Halton, 1960).

FAURE SEQUENCE

The construction of Faure sequence appears to be like the Halton sequence, but it uses only one base for all
dimensions. Given a dimension s, let b be a prime number such that b ≥ s and b ≥ 2. The first dimension of
the Faure sequence corresponding to n is given by

φ1
b(n) =

r∑

j=0

a1
j (n)b−j−1, n = 1, 2, . . . (33)

in which the superscript 1 denotes the first dimension, and a1
j (n) equals to the expansion coefficient defined

in Eq. (29), i.e.,
a1

j (n) = aj(n). (34)
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The elements of the higher dimensions of the Faure sequence are then constructed as

φk
b (n) =

r∑

j=0

ak
j (n)b−j−1, 2 ≤ k ≤ s, n = 1, 2, . . . (35)

and the coefficients ak
j (n) are calculated recursively from those of the lower dimensions:

ak
j (n) =

r∑

i≥j

C(i, j)ak−1
i (n) mod b (36)

in which C(i, j) = i!/j!(i − j)! is the combinatorial function. Thus the nth vector of the sample points in
the sequence is

un = (φ1
b(n), φ2

b(n), . . . , φs
b(n)), n = 1, 2, . . . (37)

With digital sequences such as Halton and Faure sequences, it has been suggested to omit some initial
sequence points as they often exhibit undesirable correlations among different dimensions. Another tech-
nique is to use “leaped” sequence points, i.e., to use only every Lth points in the sequence, where L is the
leap (Kocis and Whiten, 1997).
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Sýkora, M., 547

Tada, Y., 387
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