

# Bounding the dependence measures for spatial uncertainties

Wim Verhaeghe, Wim Desmet, Dirk Vandepitte, Isaac Elishakoff, David Moens

> Katholieke Universiteit Leuven Department of Mechanical Engineering

> > http://www.mech.kuleuven.be/



REC-2012 conference June 14<sup>th</sup>, 2012



Dependence measures

Spatial dependence

Academic example

Conclusions

Introduction

2 Dependence measures



Spatial dependence



Academic example



Dependence measures

Spatial dependence

Academic example

Conclusions



Dependence measures

Spatial dependence



Academic example



Introduction

Dependence measures

Spatial dependence

Academic example

Conclusions

## Representation of spatial uncertainty in numerical modelling

- $\rightarrow$  Needed at *input* side of an analysis:
  - E.g., material properties, loads Framework to capture the available information?
  - (Spatial variation of) Bounds on parameter
  - Dependency between local values of parameter: limit the possible realisations in between the bounds.

### ightarrow Needed at *output* side of an analysis:

E.g., displacement field, temperature field How to accurately represent deterministic realisation? How to represent uncertainty without conservatism?

- Predicting correct bounds on local values
- Avoid impossible realisations





Dependence measures

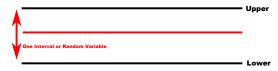
Spatial dependence

Academic example

Conclusions

Representation of spatial uncertainty in numerical modelling

• Assuming uniformity or homogeneity, total dependence:



- This representation is not sufficient.
- Assuming total independence:



This representation is not necessary and infeasible.

Introduction



KATHOLIEKE UNIVERSITEIT

#### Introduction

- Dependence measures
- Spatial dependence
- Academic example
- Conclusions

### Representation of spatial uncertainty in numerical modelling

### What is needed?

- Dependence measure
- Realisations
- Uncertainty propagation
  - Types:
    - $\bullet \ \ \text{scalar} \to \text{field}$
    - field  $\rightarrow$  scalar
    - $\bullet \ \ \text{field} \to \text{field}$
  - Optimisation problem: what to optimise?

### Representation of output

- $\bullet~$  Bounds with dependence measure  $\rightarrow$  realisations
- Analytical formulation



KATHOLIEKE UNIVERSITEIT

#### Introduction

Dependence measures

Probabilistic dependence measures

Non-probabilistic dependence measures

Spatial dependence

Academic example

Conclusions

#### Introduction

#### Dependence measures

- Probabilistic dependence measures
- Non-probabilistic dependence measures

### Spatial dependence



2



Dependence measures

Probabilistic dependence measures

Non-probabilistic dependence measures

Spatial dependence

Academic example

Conclusions

## Dependence measures

"We must be clearer about the abused word *dependence* and its relatives." [Drouet Mari and Kotz, 2001]

- 'Perfect' dependence:  $x = a \rightarrow y = b$
- 'Flexible' dependence:  $x \in x^s \subset x^s \rightarrow y \in y^s \subset y^s$

"... an essential part of uncertainty analysis is the analysis of dependence." [Kurowicka and Cooke, 2006]

"..., the only means to establish a relationship between variables was to deduce a causative connection. There was no way to discuss - let alone measure - the association between variables that lack a cause-effect relationship." [Rodgers and Nicewander, 1988]



Dependence measures

Probabilistic dependence measures

Non-probabilistic dependence measures

Spatial dependence

Academic example

Conclusions

#### Probabilistic dependence measures:

- Scalar aggregate (global) measure:
  - Product moment correlation
  - Rank correlation
  - Kendall's tau
  - Relative entropy
- Thorough (local) measure:
  - Copula

## Dependence measures

Probabilistic dependence measures



Dependence measures

Probabilistic dependence measures

Non-probabilistic dependence measures

Spatial dependence

Academic example

Conclusions

## Dependence measures

Probabilistic dependence measures

### Product moment correlation

$$p(X,Y) \equiv \frac{E(XY) - E(X)E(Y)}{\sigma_X \sigma_Y}$$

• Depends on marginal distributions

•  $-1 \le \rho(X, Y) \le 1$ 

- min & max (not necessarily -1 and 1) when countermonotonic or comonotonic
- Invariant under linear strictly increasing transformations
- X and Y are independent  $\rightarrow \rho(X, Y) = 0$



Dependence measures

Probabilistic dependence measures

Non-probabilistic dependence measures

Spatial dependence

Academic example

Conclusions

## Dependence measures

Probabilistic dependence measures

### Rank correlation

$$\rho_r(X, Y) \equiv \rho(F_X(X), F_Y(Y))$$

Independent of marginal distributions

$$-1 \le \rho_r(X, Y) \le 1$$

- min & max when countermonotonic or comonotonic
- Invariant under non-linear strictly increasing transformations
- X and Y are independent  $\rightarrow \rho_r(X, Y) = 0$

### Elucidation

$$\pi_{\frac{1}{2}}(X,Y) \equiv P\left(F_X(X) > \frac{1}{2}|F_Y(Y) > \frac{1}{2}\right)$$

• 
$$\pi_{\frac{1}{2}}(X, Y) = 0 \rightarrow \rho_r(X, Y) = -1$$
  
•  $\pi_{\frac{1}{2}}(X, Y) = 1/2 \rightarrow \rho_r(X, Y) = 0$   
•  $\pi_{\frac{1}{2}}(X, Y) = 1 \rightarrow \rho_r(X, Y) = 1$ 



KATHOLIEKE UNIVERSITEIT

## Dependence measures

Probabilistic dependence measures

#### Introduction

Dependence measures

Probabilistic dependence measures

Non-probabilistic dependence measures

Spatial dependence

Academic example

Conclusions

### Kendall's tau

 $\tau(X,Y) \equiv P[(X_1 - X_2)(Y_1 - Y_2) \ge 0] - P[(X_1 - X_2)(Y_1 - Y_2) < 0]$ 

Independent of marginal distributions

$$-1 \le \tau(X, Y) \le 1$$

 Invariant under non-linear strictly increasing transformations

• X and Y are independent  $\rightarrow \tau(X, Y) = 0$ 



KATHOLIEKE UNIVERSITEIT

## Dependence measures

Probabilistic dependence measures

Introduction

Dependence measures

Probabilistic dependence measures

Non-probabilistic dependence measures

Spatial dependence

Academic example

Conclusions

### **Relative entropy**

$$\delta_{X,Y} \equiv \int \int f(x,y) \log\left(\frac{f(x,y)}{f_1(x)f_2(y)}\right) dxdy$$

- Entropy of *f*(*x*, *y*) is compared with maximum attainable entropy when *X* and *Y* are independent
- *X* and *Y* are independent  $\rightarrow \delta_{X,Y} = 0$
- *X* and *Y* are perfect dependent  $\rightarrow \delta_{X,Y}$  tends to  $\infty$



Dependence measures

Probabilistic dependence measures

Non-probabilistic dependence measure

Spatial dependence

Academic example

Conclusions

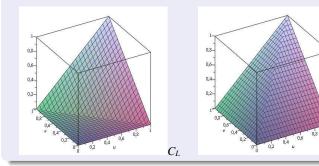
## Dependence measures

Probabilistic dependence measures

### Copula

$$F_{XY}(x, y) = C(F_X(x), F_Y(y))$$

- Seperates effect of dependence and marginal distributions
- Cumulative distribution function with uniform marginals on [0,1]
- $C_L = max(u + v 1, 0) \le C(u, v) \le C_U = min(u, v)$ with  $(u, v) \in [0, 1]^2$



 $C_{II}$ 



KATHOLIEKE UNIVERSITEIT

#### Introduction

Dependence measures

Probabilistic dependence measures

Non-probabilistic dependence measures

Spatial dependence

Academic example

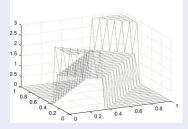
Conclusions

## Dependence measures

#### Probabilistic dependence measures

### Most promising two copulae

Diagonal band copula



- Minimum information copula: unique bivariate joint distribution with
  - marginal distribution uniform on  $I = \left| -\frac{1}{2}, \frac{1}{2} \right|$
  - rank correlation  $\rho_r \in \lfloor -1, 1 \rfloor$
  - minimal information relative to uniform distribution among all distributions with rank correlation *ρ<sub>r</sub>*
  - no closed functional form



Dependence measures

Probabilistic dependence measures

Non-probabilistic dependence measures

Spatial dependence

Academic example

Conclusions

## Dependence measures

Non-probabilistic dependence measures

### Non-probabilistic dependence measures:

• Independence and noninteraction dominate

Hartley measure of uncertainty

$$H(r_E) = \log_2 |E|, \quad r_E(x) = \begin{cases} 1 & \text{when } x \in E \\ 0 & \text{when } x \notin E \end{cases}$$

### Information transmission

 $T_H(X, Y) = H(X) + H(Y) - H(X \times Y)$ 

- Noninteractive  $\rightarrow T_H(X, Y) = 0$
- $H(X|Y) = H(Y|X) = 0 \rightarrow \text{maximum of } T_H(X,Y)$



Dependence measures

Spatial dependence

Academic example

Conclusions



Dependence measures

Spatial dependence



Academic example



## Spatial dependence

Link to spatial dependence

#### Introduction

Dependence measures

Spatial dependence

Academic example

Conclusions

### Link to spatial dependence:

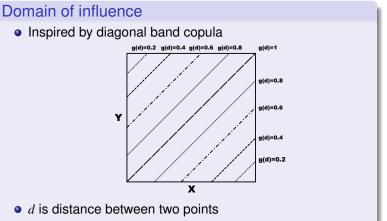
- A dependence description as a function of the distance between points
  - Prob: Covariance structure of Random Field
    - Well developed discretisation methods
    - Criteria to assess the discretisation
  - Non-prob: Domain of influence



- Dependence measures
- Spatial dependence
- Academic example
- Conclusions

## Spatial dependence

Link to spatial dependence



- $g(d) \rightarrow \text{set } R \subseteq X \times Y \text{ of possible values}$
- Other shapes for R possible



Dependence measures

Spatial dependence

Academic example

Conclusions

## Spatial dependence

Link to spatial dependence

### Domain of influence: g(d)

- $g(d): d \to \lfloor -\infty, 1 \rceil$
- $g(d) \leq 0$  then  $R = X \times Y$
- g(d) = 1 then *R* reduces to the single line X = Y.
- Conditions on g(d):  $\begin{cases} g(0) = 1 \\ g(d_1) > g(d_2) & \text{for } d_1 < d_2 \end{cases}$
- Example:  $g(d) = 1 \frac{d}{a}$ a > 0, a parameter specifying the domain of influence.
  - d < a then  $R \subset X \times Y$
  - d > a then  $R = X \times Y$



Dependence measures

Spatial dependence

Academic example

Conclusions

Introduction

Dependence measures

Spatial dependence



Academic example



- Introduction
- Dependence measures
- Spatial dependence
- Academic example
- Conclusions

## 

Input:

Academic example:

- uncertain flexibility, 2 point discretisation
- interval on correlation length
- interval on domain of influence a
- Output: displacement difference  $\Delta W(x_1, x_2)$ 
  - Prob: reliability
  - Non-prob: upper bound

## Academic example

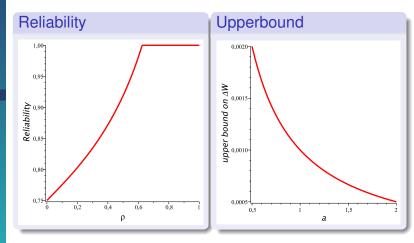


Dependence measures

Spatial dependence

Academic example

Conclusions



## Academic example



Dependence measures

Spatial dependence

Academic example

Conclusions

### What was given:

- Overview of dependence measures
- Link between set definition and spatial uncertainty What is still needed:
  - Non-probabilistic dependence measures needed
  - $\bullet$  Dependence measure  $\rightarrow$  realisations:
    - criteria for realisations

## Conclusions



#### International Conference on Noise and Vibration Engineering

The PMA Noise & Vibration research group organises :



The biennial ISMA conference on Noise and Vibration Engineering. ISMA2012 will be organised on September 17-19, 2012 in Leuven (Belgium), in conjunction with USD2012.

The 4th edition of the International Conference on Uncertainty in Structural Dynamics. <u>USD2012</u> will be organised on September 17-19, 2012 in Leuven (Belgium), in conjunction with ISMA2012.



2012

The annual ISMA course : "Modal Analysis, Theory and Practice". <u>ISMA37</u> will be organised on September 20-21, 2012 in Leuven (Belgium).



The annual ISAAC course : "Advanced Techniques in Applied and Numerical Acoustics". ISAAC23 will be organised on September 20-21, 2012 in Leuven (Belgium).

ev&vsDM

The course : "Verification & Validation of Structural Dynamics Models". <u>V&VSDM</u> will be organised on September 20-21, 2012 in Leuven (Belgium) and is taught by dr. F. Hemez of Los Alamos Dynamics, L.L.C. Registration now open for ISMA2012 & USD2012 conferences ISMA37, ISAAC23 & V&VSDM courses Leuven, Belgittin - 11-21 September 2017 • REGISTER



#### The latest information

% 150%