

INTERNATIONAL CONFERENCE ON RELIABLE ENGINEERING COMPUTING PRACTICAL APPLICATIONS AND PRACTICAL CHALLENGES JUNE 13-15. 2012 | BRNO. CZECH REPUBLIC University of Natural Resources and Life Sciences Dept. of Civil Eng. + Natural Hazards Institute for Structural Engineering Vienna, Austria

Gamma Process- Lifecycle analysis of the Neumarkt Bridge

STRAUSS, A.; ADEBE DEMISSIE, H.

Content

- Structural lifetime performance
 - Concrete lifetime degradation
 - Degradation model
 - Model parameters
- Stochastic analysis
 - Random variable vs random process approach
- Gamma process
 - Gamma process modeling
 - Gamma process based assessment

Concrete lifetime degradation

Degradation model (Elligwood and Mori, 1997)

$$\alpha(t) = c(t - Ti)^{b}$$

t = time,

- Ti = deterioration initiation time
- c= rate parameter ,
- *b* = time- order parameter

Model application

- for behavioural limit state of interest where the structural resistance can be related to $\alpha(t)$

Model parameters

•empirically determined from laboratory experiments linear shape (b=1) for the corrosion of concrete reinforcement,

parabolic (b = 2) for the sulphate attack,

square root (b = 0.5) for the diffusioncontrolled aging

Calibration of model parameters

structural inspection and monitoring techniques

Random variable approach

Uncertainties in structural systems

- load and material properties
- human actions
- model structures and parameters

- Several efforts are being made to include uncertainties in the life time assessment of concrete structures
 - \succ Stochastic analysis \rightarrow random variables approach

Gamma process

- Uncertainties associated with the deterioration in lifetime are possibly expressed by gamma process
 - \succ a continuous time stochastic process that begins with 0
 - > allows stationary independent jump of increment

This continuous time stochastic process incorporates a number of *gamma distributed increments*

Gamma Process

• The probability density function:

$$Ga(x|\alpha,\beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \cdot x^{\alpha-1} \cdot \exp(-\beta \cdot x)$$

• where

$$\Gamma(\alpha) = \int_{z=0}^{\infty} z^{\alpha-1} \cdot e^{-z} \cdot dz$$

is the Gamma function for $\alpha > 0$

Modeling of Gamma process

- A continuous-time stochastic process {X(t), t ≥ 0} is characterized by independent increments
- Probability distribution function of X(t), with the time variable t,

$$f_{X(t)}(x) = Ga(x, \alpha(t), \beta)$$

• The expected value

$$E(X(t)) = \frac{\alpha(t)}{\beta}$$

Modeling of Gamma process

- A continuous-time stochastic process {X(t), t ≥ 0} is characterized by independent increments
- Probability distribution function of X(t), with the time variable t,

$$f_{X(t)}(x) = Ga(x, \alpha(t), \beta)$$

• The expected value

$$E(X(t)) = \frac{\alpha(t)}{\beta}$$

• Variance:

$$Var(X(t)) = \frac{\alpha(t)}{\beta^2}$$

$$COV(X(t)) = \frac{\sqrt{Var(X(t))}}{E(X(t))} = \frac{1}{\sqrt{\alpha(t)}}$$

REC 2012: Gamma Process- Lifecycle analysis of the Neumarkt bridge Authors: Strauss A., Abebe Demissie H.

Gamma process modeling of deterioration process

• Degradation model $\alpha(t)$

$$\alpha(t) = ct^{b}$$

- The deterioration rate X(t) at the time t, with t ≥ 0 can be described by:
 - the shape parameter $\alpha(t) = ct^{b}$
 - the scale parameter β
 - *C* = random rate of degradation (unknown)
 - β = scale parameter (unknown)

The unknown determined by using experts' judgment and statistic

Parameters estimation

Statistical methods

Method of Moments

provides estimators by equating

- sample moments with the corresponding distribution moments (unobservable population moments)
- > computing equations for the quantities to be estimated

Method of Moments

• Estimation of parameters \hat{c} and $\hat{\beta}$:

Method of Moments

• Estimation of parameters \hat{c} and $\hat{\beta}$:

$$\frac{\hat{c}}{\hat{\beta}} = \frac{\sum_{i=1}^{n} \gamma_i}{\sum_{i=1}^{n} w_i} = \frac{x_n}{t_n^b}$$

$$\frac{\hat{c}}{\hat{\beta}} = \bar{\gamma} \cdot \frac{x_n}{\hat{\beta}} \cdot \left(1 - \frac{\sum_{i=1}^n w_i^2}{\left[\sum_{i=1}^n w_i\right]^2} \right) = \sum_{i=1}^n \left(\gamma_i - \bar{\gamma} \cdot w_i \right)^2$$

• where
$$W_i = t_i^b - t_{i-1}^b$$
, $\gamma_i = X_i - X_{i-1}$

REC 2012: Gamma Process- Lifecycle analysis of the Neumarkt Bridge Authors: Strauss A., Abebe Demissie H.

Case Study (Neumarkt bridge)

- Crosses the A22, the Italian section of the Brenner highway,
 - between the provincial towns of Neumarkt and Auer

• A three-span bridge constructed from precast elements

The four V-shaped precast elements mounted side by side carry a thin concrete slab

Statistical characteristics of the structural response

Characteristica	Time t _P	R		S(60% LM1)			S(83% LM1)		
	[Years]	Mean	COV	Mean	COV	β	Mean	COV	β
Deflection, u _z [m]	0 30 50	0.11 0.11 0.11		-0.07 -0.07 -0.08	0.04 0.04 0.04	+ + 8.7	-0.09 -0.10 -0.12	0.04 0.05 0.05	5.1 2.0 -
Crack width w [mm2]	0 30 50	0.20 0.20 0.20		0.07 0.05 0.01	0.17 0.20 0.11	+ + +	0.06 0.07 0.02	0.11 0.14 0.08	+ + +
Concrete stress σ [Mpa]	0 30 50	18.00 18.00 18.00		-14.12 -15.34 -17.10	0.01 0.01 0.01	+ + 7.5	-19.02 -20.25 -21.83	0.01 0.01 0.01	-
Bearing Capacity [load step]	0 30 50	48.30 45.10 39.00	0.08 0.01 0.06	20.0 20.0 20.0	7.3 5.6 8.1		30.0 30.0 30.0	4.7 3.3 3.8	

Geometry

(a)

REC 2012: Gamma Process- Lifecycle analysis of the Neumarkt bridge Strauss A., Abebe Demissie H. Authors:

Gamma process prediction of statistical characteristics of structural response; evaluated for 83% of the LM1 load model

Characteristica	Time tp	R		S(83% LM1)		
	[Years]	Mean	COV	β	С	
	0	0.09	0.04	-	-	
	30*	0.10	0.04	13.12	0.044	
	50	0.12	0.04	34.22	0.082	
Deflection,	35	0.08	0.08	1.764	0.006	
u _z [m]	40	0.09	0.07	3.086	0.010	
	50	0.12	0.06	5.967	0.020	
	60	0.14	0.06	8.573	0.029	
	70	0.16	0.05	10.87	0.036	
	80	0.21	0.05	15.32	0.051	
	100	0.23	0.05	17.49	0.058	

Gamma process based condition assessment

 The evolution or progression of structural deterioration is modelled by gamma process

 Independent deterioration increments are characterized by with different shape and scale parameters

• Any estimation of parameters during the early years is best established by experts.

Thank you for your attention!

REC 2012: Gamma Process- Lifecycle analysis of the Neumarkt bridge Authors: Strauss A., Abebe Demissie H.

Reliable Engineering Computing 22/xx

