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Abstract. The analysis and design of mechanical engineering systems requires to take into account the
influence of uncertainties on the system’s performance. Depending on the available amount of information,
the designer or analyst can choose from a wide variety of methods in the probabilistic (see e.g. (Schuéller,
2001)) or non-probabilistic (see e.g. (Elishakoff and Ohsaki, 2010), (Moens and Hanss, 2011)) approaches
to describe the uncertainties. However, the selection of a suitable uncertainty model for the different uncer-
tainties most often is not enough to yield satisfactory information on the reliability or bounds of the system’s
performance. A crucial piece of information appears to be the dependence of the uncertain variables. This
is especially the case for uncertainties with a spatial character, e.g. material properties or distributed loads.

The study gives an overview of the existing probabilistic and non-probabilistic methods to represent this
kind of dependencies. In the probabilistic setting the concepts of the covariance function associated with
a random field, a copula and several correlation measures are treated. In the non-probabilistic setting the
concepts of interval fields, convex modeling and interactive fuzzy numbers are reviewed. Of special interest
is the ability to bound these dependence measures. For the case of a spatial uncertainty, this generally
comes down to specifying the maximum distance between points that are influencing each other. Points
further away from each other than this distance are considered practically independent. For points closer to
each other than this distance the interaction may be described, introducing a notion of perfect dependence.
Finally, of utmost importance is to study the effect of the bounds on the dependence on the uncertainty in
the system’s performance.

Keywords: Random field, Interval field, Finite Element analysis

1. Introduction

A description of dependence can take many faces. First of all, the word itself has different meanings.
Mosteller and Tukey (1977) emphasize: “We must be clearer about the abused word dependence and its
relatives.” (Drouet Mari and Kotz, 2001) On the one hand, dependence may mean perfect dependence, i.e.
if one knows the value of z, then one knows exactly the value of y. On the other hand, dependence can
be more flexible, i.e. when we know z, we may know something more about y as opposed to the situation
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when we know nothing about the value of x. This piece of information can be expressed in a probabilistic
framework (section 2) as well as a non-probabilistic framework (section 3).

The modeling of a spatial uncertainty exemplifies the need for a proper description of dependence in
uncertainty modeling. It is a given that spatially distributed model parameters for locations adjacent to each
other assume uncertain but very similar values. The uncertain values for points further away from each other
can be very dissimilar. The crucial piece of information is the notion of spatial closeness. This notion consists
in actually two things. The first is being able to measure how close points are to each other in a numerical
model. The second is to be able to compare this distance to a reference to assess whether higher or lower
dependence is assumed between these two points. For the details of a distance measuring method in a finite
element model, the reader may consult (De Mulder et al., 2012). Specifying a value for the reference distance
depends on the actual uncertainty modeling framework in use. In a probabilistic framework, the concept
of correlation length is widely used, whereas in the non-probabilistic world a related concept does not
(yet) exist. Next issue is to take into account this dependence when propagating input uncertainty to output
uncertainty: According to (Kurowicka and Cooke, 2006) “...an essential part of uncertainty analysis is the
analysis of dependence. Indeed, if all uncertainties are independent, then their propagation is mathematically
trivial (though perhaps computationally challenging). Sampling and propagating independent uncertainties
can easily be trusted to the modellers temselves. However, when uncertainties are dependent, things become
much more subtle, and we enter a domain for which the modellers’ training has not prepared them.” From a
practical perspective, a tool is needed to translate the spatial dependence information given by an expert to a
representative set of realisations of the uncertain model parameter. Section 4 sheds some light on this topic.

An important feature of the spatial dependence modeling is yet untouched. Although the more flexible
notion of dependence (i.e. not the perfect dependence: if x = a then y = b) and its related probabilistic
and non-probabilistic descriptions allows a more versatile treatment of the dependence phenomenon, it
becomes increasingly clear that the assignment of one single value to a dependence descriptor is still far
from feasible. Either because the data set on which such a single value assignment could be made is too
small or the data set simply does not exist and the dependence information is based on expert knowledge.
To quote again (Kurowicka and Cooke, 2006) “Engineers and scientists sometimes cover their modesty
with churlish acronyms designating the source of ungrounded assessments. ‘Wags’ (wild-ass guesses) and
‘bogsats’ (bunch of guys sitting around a table) are two examples found in published documentation.” It
is suggested in section 5 to put bounds on the dependence measures, instead of assigning a single value to
them.

Finally, in section 6 a numerical example is given to show the effect of such bounds on a probabilistic
and non-probabilistic dependence measure in the context of spatial uncertainty modeling.

2. Probabilistic dependence measures

In scientific literature notions and definitions of independence preceded the notion of dependence (the latter
was just regarded as the negation of the former). Related to this seems the fact that it was easier to understand
independence. “Saying that variables are not independent does not say much about their joint distribution.
What is the nature of this dependence? How dependent are they? How can we measure the dependence?
These questions must be addressed in building a dependence model.” (Kurowicka and Cooke, 2006) The
first probabilistic concept of dependence (correlation) emerged at the end of the 19** century in the field of
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social study and psychology. “The concept of correlation (and its modifications) introduced by F. Galton in
1885 dominated statistics during some 70 years of the 20-th century, practically serving as the only measure
of dependence, often resulting in somewhat misleading conclusions.” (Drouet Mari and Kotz, 2001) On the
other hand, the correlation has great merit. “By now, over a century later, contemporary scientists often take
the correlation coefficient for granted. It is not appreciated that before Galton and Pearson, the only means
to establish a relationship between variables was to deduce a causative connection. There was no way to dis-
cuss - let alone measure - the association between variables that lack a cause-effect relationship.” (Rodgers
and Nicewander, 1988) In the following, an overview of several dependency measures is given. First, the
scalar aggregate (global) measures of bivariate dependence product moment correlation, rank correlation,
Kendall’s tau and relative entropy are discussed. Next, the more thorough (local) measure of dependence
copula is discussed.

2.1. PRODUCT MOMENT CORRELATION

A historic account of the product moment correlation, together with as much as 13 ways to look at it can be

found in (Rodgers and Nicewander, 1988). The product moment correlation of random variables X,Y with

finite expectations F(X ), E(Y') and finite variances 0%, 0%, is

E(XY) - E(X)E(Y)

0X0y

p(X,Y)

©)

Some properties of the product moment correlation are listed below:
— The product moment correlation depends on the marginal distribution functions F'x and Fy-.

— The product moment correlation is bounded by —1 < p(X,Y) < 1 and it’s minimum and maximum
(not necessarily —1 and 1, as in the example (Kurowicka and Cooke, 2006), pages 29-30) are attained
for X and Y countermonotonic and comonotonic, respectively. We say that random variables X and
Y are comonotonic if there is a strictly increasing function G such that X = G(Y). X and Y are
countermonotonic if X and —Y are comonotonic.

— The product moment correlation is invariant under linear strictly increasing transformations of X or Y,
but is not invariant under non-linear strictly increasing transformations.

— If X and Y are independent, then p(X,Y’) = 0. The reverse is not generally true.

2.2. RANK CORRELATION

The rank correlation or Spearman correlation was introduced by Spearman in 1904. The rank correlation of
random variables X, Y with cumulative distribution functions F'x and Fy is

pr(X,Y) = p(Fx(X), Fy (Y)) 2

Since for any X with a continuous invertible Fx, Fix(X) is uniform on |0, 1], the rank correlation is
a correlation of random variables transformed to uniform random variables. This leads to the following
properties:

5th International Conference on Reliable Engineering Computing (REC 2012) 601



Wim Verhaeghe et al.
— The rank correlation is independent of marginal distributions.

— The rank correlation is bounded by —1 < p,.(X,Y) < 1 and it’s minimum (—1) and maximum (1) are
attained for X and Y countermonotonic and comonotonic, respectively.

— The rank correlation is invariant under non-linear strictly increasing transformations.
— If X and Y are independent, then p,(X,Y") = 0. The reverse is not generally true.

In (Kurowicka and Cooke, 2006) an efficient technique is presented to extract information on the rank
correlation from experts. The technique is based on an indirect question: “Suppose Y were observed in a
given case and its values were found to lie above the median value for Y'; what is your probability that, in
this same case, X would also lie above its median value?”” Formally this comes down to assess

™

(X,Y)=P (FX(X) > %]FY(Y) > ;) 3)

1
2

Based on the minimum information copula (see below), the probability assigned by the expert can be directly
related to a rank correlation. It is obvious that a probability 0 would mean X and Y are anti-correlated, a
value % would suggest a rank correlation equal to 0 whereas a value 1 leads to completely rank-correlated
XandY.

2.3. KENDALL’S TAU

Let (X7,Y7) and (X2, Y2) be two independent pairs of random variables with joint distribution function F'
and marginal distributions F'y and Fy . Kendall’s rank correlation, also called Kendall’s tau (1938) is given
by

T=P [(Xl — XQ)(Yl — YQ) > O] - P [(Xl — XQ)(Yl — YQ) < O] (4)

The following properties hold for Kendall’s tau:
— Kendall’s tau is independent of marginal distributions.
— Kendall’s tau assumes values between —1 and 1.
— Kendall’s tau is invariant under non-linear strictly increasing transformations.
— If X and Y are independent, then 7(X,Y") = 0. The reverse is not generally true.

For a discussion of two correlation measures, namely sup correlation and monotone correlation, where
a zero value implies independence, see (Devroye, 1986) pp.574-576.

2.4. RELATIVE ENTROPY

Consider the pair of random variables (X, Y') with f(x, y) the joint density and f; (z) and f(x) the marginal
densities. Then the relative entropy is defined as:

Sxy = / / f(,) log (M) ddy 5)
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The entropy of the density f(z,y) is compared with the maximum attainable entropy, namely when X and
Y are independent. For independent X and Y, dx y is zero, and for maximal dependence, ¢ x y approaches
infinity. The concept of maximum entropy or equivalently minimum information will be reappearing in the
next section on copulae.

2.5. CoprULA

Copulae are tools for modeling dependence of several random variables. In particular a copula allows to
seperate the effect of dependence from the effect of marginal distributions in a joint distribution. The term
copula was first introduced by Sklar in 1959 (Schmidt, 2006). A copula C' is defined as a function which is
a cumulative distribution function with uniform marginals. Random variables X and Y are joined by copula
C' if their joint distribution can be written as

Fyy(z,y) = C(Fx(z), Fy (y)) (6)

For the bivariate case, a copula is the joint distribution of two random variables that are each converted to
the uniform distribution by means of their respective marginal distribution functions. A copula is always
contained in between the Fréchet-Hoeffding bounds C, and Cy; (see Figure 1). C', represents the case when
all of the probability mass is spread uniformily on the main diagonal v = 1 — u and Cy; is attained when all
of the mass is on the main diagonal v = u.

Crp =maz(u+v—1,0) < C(u,v) < Cy = min(u,v) (7)

with (u,v) € |0,1]2. Next, two copulae from a sheer endless list of copulae are described (based on (Kurow-

Figure 1. The lower and upper Frchet-Hoeffding bounds C'r, and Cy
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icka and Cooke, 2006)) as they are of particular interest in next section’s discussion on non-probabilistic
dependence measures.

2.5.1. Diagonal band copula

One natural generalization of the bounding copula Cj; is the diagonal band copula introduced by Cooke and
Waij in 1986. In contrast to C, for possitive correlation the mass is concentrated on the diagonal band with
vertical bandwidth b = 1 — a. Mass is distributed uniformly on the inscribed rectangle and is uniform but
‘twice as thick’ in the triangular corners. A clear relationship exists between the product moment correlation
and the parameter a of the diagonal band copula.

2.5.2. Minimum information copula

The minimum information copula was introduced and studied by Meeuwissen in 1993. The construction
is based on the fact that for any p, € |—1,1] there is a unique bivariate joint distribution satisfying the
following constraints:

—  the marginal distributions are uniform on I = [—3, 1]
— the rank correlation is p, € [—1,1]

— the distribution has minimal information relative to uniform distribution (or maximum entropy as
defined higher) among all distributions with rank correlation p,..

The minimum information copula is attractive because it realizes a specified rank correlation by ‘adding as
little information as possible’ to the product of the marginals. Its main disadvantage is that it does not have
a closed functional form. All calculations with this copula must involve numerical approximations.

3. Non-Probabilistic dependence measures

All too often the following typical ‘jump of thought’ is made, it is first noted that *..., the dependence is
obviously not deterministic but of a stochastic nature.” (Drouet Mari and Kotz, 2001), and then a book all
about probabilistic dependence follows. Present authors maintain however that if something is not determin-
istic it is not necessarily probabilisitic. The non-probabilistic methods cover a very large set of alternative
uncertainty treatments, of which (together with probabilistic theory) an excellent overview is given in (Klir,
2006). We will limit our focus to crisp and so called graded possibilities. In crisp possibilities a clear
distinction is made between members and non-members of a set, by assigning membership level one and
zero, respectively. A typical example of a crisp set is an interval. In graded possibilities the full range of
membership degrees between zero and one is available. A typical example of a graded set is a fuzzy number.

In this framework, the treatment of independence and noninteraction overshadows, to the best of our
knowledge, study in the field of dependence descriptions and measures. We follow mainly the description
by (Klir, 2006) on both crisp possibilities and graded possibilities.
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3.1. CRISP POSSIBILITIES AND INFORMATION TRANSMISSION

For finite sets (generalization to infinite sets is given in (Klir, 2006)) of possible alternatives Hartley proposed
in 1928 to measure the amount of uncertainty of such a set by

1 whenx € £
H(?"E) = 10g2 |E|a TE($) = { 0 when z ¢ E (8)

with |E| the cardinality of the set E. Assume two sets X and Y and the set R C X x Y that describe
possible alternatives in some situation of interest. Then following relations between the marginal, joint and
conditional Hartley measures hold:

H(X]Y) = HX xY)— H(Y) 9)
H(Y|X) =H(X xY)— H(X) (10)

If possible alternatives from X do not depend on selections from Y, and vice versa, then R = X X Y and
the sets Rx and Ry (the projections of R on X and Y, respectively) are called noninteractive:

H(X|Y) — =H(X) (11)
H(Y|X) =H(Y) (12)
HXxY) =H(X)+H®Y) (13)

In the general case of unknown interactivity, these equalities become inequalities <. To indicate the strength
of constraint between possible alternatives in sets X and Y, the information transmission is defined as

Tu(X,Y)=H(X)+ H(Y) - HX xY) (14)

When the sets are noninteractive, T (X, YY) = 0; otherwise, it is positive. Its maximum value is obtained if
H(X|Y)= H(Y|X) = 0, or in other words, if the value of X is specified, only one value for Y is possible.
This indicator can be considered a measure of dependence in this paper.

3.2. GRADED POSSIBILITIES

In the framework of graded possibilities a value between zero and one is assigned to every singleton of a
set X by the basic possibility function r(x), with the requirement of possibilistic normalization to assign at
least to one x the value 1. The possibility assigned to a subset A of X is determined by

Pos(A) = r;leaj({r(x)} (15)

Based on a joint possibility function r(x,y) defined over X x Y the marginal possibility functions are
defined as

rx(r) =maxyey{r(z,y)}, VreX (16)
ry(y) = maxgex{r(z,y)}, VyeyY (17)

5th International Conference on Reliable Engineering Computing (REC 2012) 605



Wim Verhaeghe et al.
If it is known that variables X and Y do not interact, then the joint possibility function r is defined by
r(xz,y) = min{rx (), ry (y)} (18)

Among all joint possibility profiles that are consistent with the given marginal possibilities, this one based
on the assumption of noninteractive marginals, is the largest one. The definition of conditional possibilities
can go many ways (Fonck, 2006). We follow the definition by (Hisdal, 1978):

_ ’I”((L’7y) when TY(y) > (xay)

"Xy = { 1 when ry (y) = r(z,y) (19)
_ T’(Z’,y) when T’X(III) > 7"( 7y)

"Yix = { 1 when rx (z) = r(z,y) (20)

To define possibilistic independence based on this definition of conditional possibilities, one can again
go many ways. The key is to compare ry () and x|y (z|y), this can be done in at least three ways as
suggested in (de Campos and Huete, 1999). Possibilistic independence can be defined based on: equality
rx(z) = rxy(z|y) (not modifying information), inequality 7x (=) < rx|y (x|y) (not gaining information)
or similarity 7x () =~ rx|y (7|y) (obtaining similar information, but specification of the similarity measure
is needed). Here, as in (Klir, 2006), the equality operator is adopted. With such a definition possibilistic
independence implies possibilistic noninteraction, but not the other way around.

This definition of noninteraction or independence does not give us a measure of interaction or depen-
dence. First attempts to come up with such a measure are apparently found in (Fuller and Majlender,
2004).

4. Spatial uncertainties and dependence measures

As mentioned in the introduction, the modeling of a spatial uncertainty calls for a dependence measure. In
particular, one needs a dependence description in function of the distance between points.

4.1. PROBABILISTIC SPATIAL UNCERTAINTY AND CORRELATION LENGTH

In the probabilistic framework, the concept of a random field (Vanmarcke, 1993) is well developed. In its
application the crucial element is the specification of the correlation structure. For homogeneous random
fields, this correlation structure describes the value of the correlation as a function of the distance between
two points. A crucial parameter in this function is the correlation length as made clear in the illustrative
sensitivity study (Charmpis et al., 2007). The parameter largely dominates the discretization of a random
field. For an overview of discretization methods applicable to finite element analysis, the reader is referred
to the excellent report by (Sudret And Der Kiureghian, 2000). Three groups of discritization are identified:
point discretization, average discretization and series expansion methods.
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Figure 2. The possible values of R C X X Y as a function of g(d). The limits on the possible values are given by identically
dashed lines.

4.2. NON-PROBABILISTIC SPATIAL UNCERTAINTY AND DOMAIN OF INFLUENCE

Apparently a link between a crisp possibilistic measure of dependence and spatial uncertainty is not yet
formulated in literature. Our suggestion consists in specifying a function g(d) : d — |[—o0, 1] with d the
(non-negative) distance between two points in a model. To every value g(d) corresponds aset R C X x Y
of possible values. For g(d) < 0 the set R = X x Y, for g(d) = 1 the set R reduces to the single line
X =Y. In other words, the information transmission becomes maximal and the possible alternatives for
X given Y reduce to one, if the distance between X and Y reduces to zero. All this leads to the following

conditions on g(d):
{ 9(0) =1 1)

g(d1) > g(dz) fordy < d
A simple example of such a function g(d) is

gd)=1-2 )
a

with a > 0 a parameter specifying the domain of influence. If d < athen R C X xY,ford > a R = X xY.
For values 0 < g(d) < 1 the domain of possible values R can take many shapes, our focus is restricted

to two cases. The first is a shape similar to the diagonal copula discussed above. Figure 2 illustrates the
concept, where the limits on the possible values are given by identically dashed lines. A clear link between
this representation and bounding the spatial derivative 0 < |X’| < z of a model parameter (in addition to
bounding its value | < X < wu) can be established. Let two locations in a model seperated by a distance d
be given index 1 and 2. Given a value for x1, the value of x5 is bounded by x; — zd and x; + zd as long as
x1 — zd >l and 21 + zd < u. These bounds can be directly related to the model for g(d) in Eq. (22) with
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a = (I — u)/z. An example where the bounds on the spatial derivative of an uncertain model parameter are
used to describe the spatial dependence can be found in (Ben-Haim and Elishakoff, 1990).

The second shape is a nesting of ellipses for 0 < g(d) < 1, that degenerate to a square for g(d) = 0
and degenerate to a line for g(d) = 1. The basis of a practical method to calculate the ellipses based on
experimentally measured spatial data can be found in (Zhu et al., 1996).

5. Bounding dependence measures for spatial uncertainties

The actual value of the correlation length or the parameter a in Eq. (22) is seldomly known. For this reason,
it is suggested to treat them as intervals. For a study of the influence of an interval correlation length on
the series expansion of a random field, the reader is referred to (Verhaeghe et al., 2011). In the example
below a similar analysis is performed for a point discretization of a random field. After the discretization is
fixed, the interval on the correlation length, actually results in intervals on the correlations between all the
discretization points.

For the non-probabilistic case, after fixing the discretization, the interval on a results in a set of domains
of influence. Points that are not influencing eachother for small values of a, become important to each
other with increasing a. Depending on the studied output, its interval can increase or decrease in size with
increasing a.

6. Numerical example

In this section, the influence of bounds on a dependence measure for both a probabilistic and a non-
probabilistic analysis is studied in the context of a numerical example.

6.1. RELIABILITY OF BEAM WITH RANDOM FLEXIBILITY

& R

< .
< >

1

Figure 3. A simply supported beam of length [, loaded with constant moment M

A beam of length [ is simply supported at its both ends and loaded with a constant moment M (see
Figure 3). The flexibility h(x) is characterized by

h(z) = Hi¢1(z) + Haga(x) (23)

where ¢ (x), takes value 1 for the left half (0 < x < 0.50) and has value O for the right half of the beam.
Conversely, the function ¢2(x) takes value 1 for the right half of the beam and O for the left half. The
amplitudes H; and Hs are each a uniformly distributed random variable. As such, the flexibility is modelled
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by a very coarse point discretisation (only the two points x = 0.25] and x = 0.75] are considered) of the
random field for the flexibility.

The performance of the beam in this case is determined by the displacement difference between two
points symmetrically located on both sides of its mid-point. The displacement is calculated using

W) = My / / w)dudy — Mo / / w)dudy
— M, [Hl /O / o1 (u)dudv + Hy /0 / 2 (u)dudv
—§ <H1 /O l /O " 0 (u)dudv + Ho /0 l /0 ’ qﬁg(u)dudv)} (24)

The displacement difference between points x1 and x is thus found by
AWJ?LM = W(xl) - W(x2) (25)
Defining A(z) = [ [ ¢1(u)dudv and B(z) = [ [ ¢2(u)dudv, the reliability can be calculated as:
R =P (‘AW$1,902| < AWspecified)
_ _n _n
= P (1Mo [ H (A1) = AW ) + Hs (Bla) - TB())
9 €2
— _ e _ _ e < L
Hy (Alws) = Z2AW)) = Ha (Blaz) = Z2BW)) || € AWopeciica)
x x
P (1Mo [Hy (A1) = Ala2) - 2240 + 2240))
x
+H2 (B($1) - B(x2) - TIB(D + B(l)>] | < AWspecified)
=P (‘MO [HIA* + HQB*] | < AWspecified)

Wspecz fzed/IWO §1 A*

Hy
/ /AWSPeclfzed/]”O §1A* fH(§17€2)d€2d§1

speczfzed/MO EQB*

Hy
/ /AWSPemfwd/]VIO —£2B* fH(£1’§2>d§1d£2 (26)

with A* and B* the weights of the random variables due to the integrals of ¢;(x) and ¢o(z) respectively;
H; and H> the upper bounds of the random variables.

Let us assume [ = 1, My = 1, both H; and Hj uniform on [0.95,1.05], ;1 = 0.4, zo = 0.6
and AWpecifiea = 0.001. The joint density fz(&1,&2) is chosen equal to the diagonal band copula dis-
cussed above. The density is characterised by the parameter b = 1 — a. For b = 1, the copula represents
independence. For b = 0, the copula represents perfect positive dependence. The density is described by

1

Ca(“l, U2) = m

(fa—1,1—q)(u — ) + I 1—_a) (u + v) + T4 09 (w4 v)) (27)
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Figure 4. The reliability of the beam as a function of the correlation

With I 4, the indicator function of A. Parameter b is a function of the (rank) correlation as found in (Kurow-

icka and Cooke, 2006):
2 4 1 2 11
bzl—a:3—3sin<3arcsin[1gp—16}) (28)

Figure 4 shows the reliability for the correlation varying between 0 and 1. For a higher correlation coefficient
the reliability tends to 1. If both variables H; and H» are completely independent, the reliability is only 0.75.
If one is able to bound the correlation between the two variables, the corresponding bounds on the reliability
can be found from the figure.

6.2. BOUNDS ON THE DISPLACEMENT DIFFERENCE OF THE BEAM WITH INTERVAL FLEXIBILITY

The same beam as above is considered, but now H; and Hs are intervals between 0.95 and 1.05. The
quantity of interest is again the displacement difference between the same two points symmetrically located
on both sides of the mid-point. The dependence between the two intervals is characterised by a joint set as
illustrated in Figure 2, with g(d) as in Eq. (22) with d = 0.5/, the distance between the two discretization
points on the beam and a € |0.5(, 2]. This interval description for a results in a situation where one of the
two discretization points is just on the boundary of the domain of influence of the other point when a = 0.51
and ¢(0.50) = 0. In the other extreme case, the other point resides on the g(05/) = 0.75 (with a = 2) limit
in the domain of influence.

The upper bound for the absolute value of the displacement difference as a function of a is shown in
Figure 5. The lower bound is always 0.
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0,0020

0,00154

0,0010-

upper bound on AW

0,0005-%,

Figure 5. The upper bound on the displacement difference

7. Conclusion

The paper presents a review of dependence measures for both probabilistic and non-probabilistic descrip-
tions of uncertainty. The link with numerically modeling a spatial uncertainty is established based on the
functional relation between the dependence measure and a distance measure in a numerical model. The
additional uncertainty related to this functional relationship is treated by representing the reference distance
(i.e. correlation length or domain of influence) as an interval. The procedure is illustrated on a numerical
example.
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