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Abstract. Parameters of mathematical models are most often represented by real numbers, while in practice
it is impossible or at least very difficult to get reliable information about their exact values. Hence, it is
unreasonable to take point data for that may lead to incorrect results, which is not welcome especially
when inaccuracy cannot be neglected. Depending on available information, one can use different ways
of modelling of uncertainty. Interval computing plays an important role in this field, because very often
the only available information are lower and upper bounds on a physical quantity. This paper focuses on
a transient dynamic analysis of a beam with uncertain parameters. Finite difference and finite element
methods are used to solve partial differential equation which represents the model for the motion of a straight
elastic beam. In order to compute the time-history response of the beam under uncertainty, interval dynamic
beam equations are solved using Search method, Gradient method, Taylor method, adaptive Taylor method,
direct optimisation and Direct method for solving parametric interval linear systems. The applicability, i.e.
effectiveness and accuracy, of those methods is illustrated through solution of beams with interval value of
modulus of elasticity and mass density and subjected to interval dynamic loading.

Keywords: Euler-Bernoulli beam, Dynamic response, Interval arithmetic, Search method, Gradient method,
Taylor method, adaptive Taylor method, Direct method, Direct optimisation.

1. Introduction

Airplane wings, high-rise buildings and suspension bridges are just some of the mechanical and structural
examples where vibration analysis of beams is essential for the safe design. Safety issues are the greatest
concern of structural engineering as the design and construction of secure and safe structures can prevent
disasters like the collapse of Tacoma Narrow Bridge November 7, 1940, just few month after it was fin-
ished. This was probably the most dramatic failure in bridge engineering history. Safety studies in structural
engineering are supposed to prevent failure during the lifetime of a structure.

Constantly increasing computational capabilities allow for detailed numerical models of structural sys-
tems. However, those models are built, inter alia, on a number of model parameters subject to uncertainty.
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The use of models that include the uncertainty, which is central to reliability/risk analysis of engineering
systems, is of great importance for a design engineer.

Uncertainty of structural parameters is mainly due to the scarcity or lack of data which may be resulted
from manufacturing/construction tolerances or caused by progressive deterioration of concrete and corro-
sion of steel. In engineering applications, uncertainty also exists in determining external loads. To make
a decision based on an inexact data say some parameter p̃, a measurement error ∆p = |p̃ − p| must known
at least. Very often, the only available information about the error is its upper bound ∆p 6 ∆. In this
case, once the measurement p̃ is obtained, one can conclude that the possible values p̃+∆p form an interval
p = [p̃−∆, p̃+∆] which is guaranteed to contain the exact value p of the parameter. Once interval quantities
are introduced, they must be handled appropriately to obtain the result which is guaranteed to contain the
exact solution.

Though interval arithmetic was introduced by Moore (Moore, 1966) already in 1966, the application of
interval concepts to structural analysis is more recent. Some important advances on reliability-based design
and modelling of uncertainty when data is limited were made during last years. Structural analysis using
interval variables has been used by several researchers to incorporate uncertainty into structural analysis
((Köylüoglu et al., 1995), (Nakagiri and Yoshikawa, 1996), (Rao and Sawyer, 1995), (Rao and Berke, 1997),
(Rao and Chen, 1998), (Mullen and Muhanna, 2001), (Neumaier and Pownuk, 2007), (Skalna, Pownuk and
Rama Rao, 2008)).

In this paper, the problem of vibrations of an Euler-Bernoulli beam with interval material properties
subjected to interval load is considered. Two different approaches are employed to obtain beam deflection in
time. In the first approach, the Euler-Bernoulli equation governing the behaviour of the beam is descretized
in space and time. The beam bending in the respective time step is obtained by solving a system of equations
with coefficient depending on interval parameters. Several methods are used for this purpose. Search method,
Gradient method ((Skalna, Pownuk and Rama Rao, 2008)), Taylor method and adaptive Taylor method
(Pownuk, 2011) utilise the fact that in many structural engineering problems relation between the solution
and uncertain parameters is monotone. In such a case, the extreme values of a solution are attained at
respective endpoints of given intervals. Monotonicity can be verified by using Taylor series or an interval
method (Hansen, 1992). Methods exploiting monotonicity tests are useful for solving large scale problems,
but they may underestimate. When monotonicity is not assumed, the solution can be obtained using methods
for solving parametric interval linear systems (Skalna, 2010)). Those methods give guaranteed enclosures,
but their usage is limited e.g. by the amount of uncertainty. In the second approach, the Finite Element
Method is a starting point for considerations. The Wilson-θ method and optimisation approach are used for
the solution of the problem (Rama Rao, Pownuk and Vandewalle, 2010).

The paper has the following structure. In Sections 3 and 6, the considered problem is described in terms
of the mathematical theory. Section 4 describes the discretization of the problem in time and space. Section
5 and 6.1 are devoted to the methods for solving interval linear systems obtained from the discretization of
the Euler-Bernoulli equation. Numerical examples are given in Section 7. The paper ends with concluding
remarks.
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2. Interval uncertainty

If only very limited knowledge about the value of some structural parameter pi is available, then this value
can be conveniently described by an interval number in the following way:

pi ∈ [p̃i −∆pi, p̃i + ∆pi] = [p
i
, pi] = pi, (1)

where p̃i can be considered as an approximation of the true value of pi and ∆pi as an approximation error.
Now, if some output quantity y is related to parameters p by a known relation y = f(p), then the

calculation of the result, assuming p vary within p, is numerically equivalent to finding the following solution
set:

yS = {y : y = f(p), p ∈ p}. (2)

The outcome of the interval analysis here is expressed as a set yS of possible solutions as, in general,
it cannot be described exactly by an interval or hypercube. The correct interpretation of this expression is
that the set yS contains all vectors y that are obtained from applying the function f on all possible vectors p
within the interval vector p.

An exact description of the solution set yS is often extremely difficult to find. Therefore, usually an
interval vector x∗ 3 yS , called outer solution/enclosure, is computed instead and the goal is x∗ to be as
narrow as possible. The tightest interval vector containing yS is called hull solution (or simply a hull). One
can also calculate inner solution/approximation which is defined as an interval vector which is included in the
hull. They are usually obtained using the ”straightforward” interval arithmetic. However, this usually leads
to large overestimation due to the so-called dependency problem. Keeping track of how intermediate results
on input data may decrease excess with. This idea was successfully implemented in several approaches, e.g.
affine arithmetic (Comba and Stolfi, 1993).

3. Forced vibration of a beam

Forced vibration of a beam is governed by Euler-Bernoulli equation (Ciarlet, 1997).

∂2

∂x2

(
EJ

∂2w

∂x2

)
= q − ρA∂

2w

∂t2
, (3)

where E is the elastic modulus, J is the second area moment, A is the cross-sectional area, ρ is mass
density of the material of the beam and q is an external load. The model (3) where the displacement w
depends only on one-dimensional spatial variable x and time t is obtained upon the use of Hookes law and
other simplifying assumptions. This model is a valid approximation for thin beams under small transverse
deformations. As a good rule-of-thumb, ’small’ is defined as deflections that are at least ten times smaller
than beam thickness.

For an uniform beam (EJ is constant), Eq. (3) reduces to

EJ
∂4w

∂x4
= q − ρA∂

2w

∂t2
. (4)

Because vibration is an initial-boundary value problem, therefore both initial and boundary conditions are
required to obtain a unique solutionw(x, t). Since the equation involves second order derivative with respect
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to time and fourth derivative with respect to a space coordinate, thus four boundary and two initial conditions
are necessary: 

w(0, t) = 0
w(L, t) = 0
∂2w

∂x2
(0, t) = 0

∂2w

∂x2
(L, t) = 0

,

{
w(x, 0) = w0(x)

v(x, 0) = ∂w
∂t (x, 0) = v0(x)

(5)

Endpoint displacements are equal to zero, which can be written as w(0, t) = w(L, t) = 0 for t ∈ [0, T ].

Because bending moments at both endpoints are equal to zero, therefore M(0, t) = EJ
∂2w

∂x2
(0, t) and

M(L, t) = EJ
∂2w

∂x2
(L, t), and consequently

∂2w

∂x2
(0, t) =

∂2w

∂x2
(L, t) = 0 for t ∈ [0, T ]. For t = 0, both

displacement and velocity are equal to zero and thus w0(x) = 0, v0(x) = 0 for x ∈ [0, L].

4. Implicit Finite Difference Discretization

In this paper implicit Finite Difference Method has been applied to the problem of dynamic beam vibrations
(Ciarlet, 1990). Discretization of Eq. (4) is performed at point (i, j + 1):(

EJ
∂4w

∂x4

)
i,j+1

= qi,j+1 −
(
ρA

∂2w

∂t2

)
i,j+1

(6)

which leads to the finite difference equation:

Ei,j+1Ji,j+1
wi+2,j+1 − 4wi+1,j+1 + 6wi,j+1 − 4wi−1,j+1 + wi−2,j+1

∆x4
+
ρi,j+1Ai,j+1

∆t2
wi,j+1 =

= qi,j+1 − ρi,j+1Ai,j+1
2wi,j − wi,j−1

∆t2

(7)

Similarly, it is possible to discretize initial and boundary conditions. Finally, one obtains:

w0,j+1 = 0
w0,j+1 − 2w1,j+1 + w2,j+1 = 0

Ei,j+1Ji,j+1
wi+2,j+1 − 4wi+1,j+1 + 6wi,j+1 − 4wi−1,j+1 + wi−2,j+1

∆x4
+
ρi,j+1Ai,j+1

∆t2
wi,j+1 =

= qi,j+1 − ρi,j+1Ai,j+1
2wi,j − wi,j−1

∆t2
wn−2,j+1 − 2wn−1,j+1 + wn,j+1 = 0
wn,j+1 = 0
wi,0 = w∗i
wi,1 = wi,0 + v∗i ∆t.

(8)

It is important to note that wi,j+1 = w(pi,j+1) where pi,j+1 = (Ei,j+1, ρi,j+1, qi,j+1). Discretization
reduces the problem of computing the dynamic response of a beam to the problem of solving a sequence of
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parametric linear systems. Assuming the uncertainty of the parameters, an sequence of parametric interval
linear systems must be solved. In order to increase the accuracy of the FDM, finite difference scheme of
order higher than 3 has been applied for the time step.(

∂2w

∂t2

)
i,j

≈ 2wi,j − 5wi,j−1 + 4wi,j−2 − wi,j−3

∆t2
(9)

5. Methods for solving parametric linear systems

Apart from the diversity caused by the nature of the numerical problem at hand, a clear distinction can
be made between fundamental approaches for tackling the interval uncertainty. The interval arithmetic
strategy approaches the exact hypercubic circumscription of the interval result from outside. It is based on
the calculation of guaranteed outer bounds. The global optimisation approach on the other hand calculates
an inner approximation. The interval arithmetic based methods proves to be computationally less expensive
than the approximate method, it very often results in a huge overestimation of the actual interval result,
due to the dependency problem. On the other hand, optimisation based approaches, though computationally
expensive and time-consuming, provide an acceptable solution for practical engineering problems.

5.1. INTERVAL SOLUTION AS A FUNCTION OF UNCERTAIN PARAMETERS

Each interval solution is in fact a function of some specific combinations of the parameters:

wi,j = wi,j(p
min
i,j ), wi,j = wi,j(p

max
i,j ). (10)

In the continuous case, one can write

w(x, t) = w(x, t, pmin(x, t)),
w(x, t) = w(x, t, pmax(x, t)).

(11)

In some situations, the interval solution depends only on one combination of parameters for some domain
Dα ⊆ [0, L]× [0, T ]

w(x, t) = w(x, t, pmin
α ), w(x, t) = w(x, t, pmax

α ). (12)

In such cases it is possible to calculate the interval solution exactly by using finite number of combinations
of the parameters pmin

1 , pmax
1 ,...,pmin

α , pmax
α ,...,pmin

q , pmax
q where D1 ∪ ... ∪Dq = [0, L]× [0, T ].

5.1.1. Search method
In order to find the interval solution the Search method is applied. The method relies on solving parametric
linear systems of equations corresponding to the specific combinations of the parameters. That is, each
interval parameter pi is replaced by the set of discrete points pi1, . . . , pik:

pi ≈ {pi1, . . . , pik}. (13)

A multidimensional interval p = [p1, . . . , pm] is approximated by the discrete set of points:

p = [p1, . . . , pm] ≈ {(p1,i1 , . . . , pm,ik) : 0 6 i1, . . . , ik 6 k} = Pm,k. (14)
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Number of elements in the set (14) equals km where m is the number of interval parameters and k is the
number of intermediate points in each interval pi (for k = 2 the method reduces to the endpoints combination
method). Then, an interval solution can be calculated in the following way:

wi,j ≈ wsearchi,j = min{wi,j(p1,i1 , . . . , pm,ik) : (p1,i1 , . . . , pm,ik) ∈ Pm,k}, (15)

wi,j ≈ wsearchi,j = max{wi,j(p1,i1 , . . . , pm,ik) : (p1,i1 , . . . , pm,ik) ∈ Pm,k}. (16)

The search method allows as well finding approximate values of pmin,search
i,j , pmax,search

i,j .

wi,j ≈ wsearchi,j = wi,j(p
min,search
i,j ), wi,j ≈ wsearchi,j = wi,j(p

max,search
i,j ) (17)

According to numerical experiments

pmin
i,j ≈ p

min,search
i,j , pmax

i,j ≈ p
max,search
i,j (18)

which means that the Search method can find approximate or exact values of pmin
i,j and pmax

i,j .

5.1.2. Gradient method
The value of pmin(x, t) and pmax(x, t) can be found as well by solving respectively the following minimi-
sation and maximisation problems

pmin(x, t) = arg min
p
w(x, t, p),

pmax(x, t) = arg max
p
w(x, t, p),

s.t.



EJ
∂4w

∂x4
= q − ρA∂

2w

∂t2
w(0, t) = 0
w(L, t) = 0
∂2w

∂x2
(0, t) = 0

∂2w

∂x2
(L, t) = 0

w(x, 0) = w0(x)

v(x, 0) =
∂w

∂t
(x, 0) = v0(x)

p ∈ p

(19)

Solutions wi,j are functions of uncertain parameters wi,j = wi,j(p). If the function wi,j = wi,j(p) is
monotone, then pmin

i,j and pmax
i,j can be calculated as:

pmin,gradient
i,j,k = p

k
, if

∂wi,j
∂pk

< 0 else pmin,gradient
i,j,k = pk, (20)

pmax,gradient
i,j,k = pk, if

∂wi,j
∂pk

≥ 0 else pmax,gradient
i,j,k = p

k
, (21)
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where ∂wi,j

∂pk
are partial derivatives with respect to all uncertain parameters. Thus obtained combinations of

endpoints can be utilised for calculation of upper and lower bounds of the solution

wi,j ≈ w
gradient
i,j = wi,j(p

min,gradient
i,j ), wi,j ≈ wgradienti,j = wi,j(p

max,gradient
i,j ). (22)

5.1.3. Taylor method
The interval solution can be also calculated by using first order Taylor model:

wi,j(p) ≈ T (1)
i,j (p) = wi,j(p0) +

∑
k

∂wi,j
∂pk

(p0) · (pk − p0). (23)

In this approach the interval solution can be calculated in the following way

wi,j ≈ w
Taylor
i,j = wi,j(p0)−

∑
k

∣∣∣∣∂wi,j∂pk
(p0)

∣∣∣∣ ·∆pk, (24)

wi,j ≈ wTaylori,j = wi,j(p0) +
∑
k

∣∣∣∣∂wi,j∂pk
(p0)

∣∣∣∣ ·∆pk, (25)

The result of the Taylor method can be calculated as well by using endpoint combinations and Taylor
polynomial

wTaylori,j = T
(1)
i,j (pmin,gradient

i,j ), wTaylori,j = T
(1)
i,j (pmax,gradient

i,j ). (26)

5.1.4. Adaptive Taylor approximation
It is possible to increase the accuracy of the Taylor method results by using adaptive approximation (Pownuk,
2011). It is necessary to calculate all different combinations of parameters L1 = {p∗,1, ..., p∗,n1} in the sets
pmin,gradient
i,j and pmax,gradient

i,j . For each combination p(∗,k) from the list L1 it is necessary to find a point
solution w(k) = w(p∗,k).

w
(1)
i,j ≈ min{w

(1)
i,j , ..., w

(n1)
i,j }, w

(1)
i,j ≈ max{w

(1)
i,j , ..., w

(n1)
i,j } (27)

For w(1)
i,j and w(1)

i,j it is necessary to calculate new values of pmin,gradient,1
i,j and pmax,gradient,1

i,j . In the sets

pmin,gradient,1
i,j and pmax,gradient,1

i,j it is necessary to find new combinations of parameters and add to the list
L. New list will be denoted as L2 and calculate new values of upper and lower bound from the formula (27).
Calculations will be stopped if no new combinations of parameters will be found in the next iteration i.e.
Li = Li+1.

5.2. DIRECT METHOD

To verify the results obtained using the approximate methods described in the previous sections, the direct
method (DM) (Skalna, 2010) for solving parametric interval linear systems is applied to the problem.
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5.2.1. Iterative approach
The system (8) can be written in matrix form as:

Kwj+1 = Qj +M2w
j +M1w

j−1, (j = 2, . . . , nt) (28)

with

Qj =



0
0

q2,j+1

q3,j+1
...

qn−2,j+1

0
0


, M1 = µ2



0 0 0 0
0 0 0 0

−1
. . .
−1

0 0 0
0 0 0


, M2 = µ2



0 0 0 0
0 0 0 0

2
. . .

2
0 0 0
0 0 0


, (29)

and

K =



1 0 0 0 0 0 0 ... 0 0 0 0 0
1 −2 1 0 0 0 0 ... 0 0 0 0 0
µ1 −4µ1 6µ1 + µ2 −4µ1 µ1 0 0 ... 0 0 0 0 0
0 µ1 −4µ1 6µ1 + µ2 −4µ1 µ1 0 . . . 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 0 . . . µ1 −4µ1 6µ1 + µ2 −4µ1 µ1

0 0 0 0 0 0 0 . . . 0 0 1 −2 1
0 0 0 0 0 0 0 . . . 0 0 0 0 1


, (30)

where µ1 = EJ
∆x4

, µ2 = ρA
∆t2

. As can be seen, the coefficients of the system (28) are polynomial functions of
the parameters E, ρ and q. Thus, the Direct Method can be applied. The interval result obtained in a given
iteration step enters into the right-hand of the system to be solved in the next step. The iterative approach is
quite efficient, however the overestimation of the result grows in successive iteration steps. This is mainly
due to the so-called dependency problem. Namely, starting from the second iteration, the dependency in the
right hand vector is lost since the solution enters the right-hand as an interval vector and not the affine one.
Therefore, in what follows a non-iterative approach is considered.

5.2.2. Non-iterative formulation
Consider the linear system (28). Taking into account boundary conditions, one obtains:

w0 = 0
w1 = 0
−M1w

0 −M2w
1 +Kw2 = Q1

. . .
−M1w

nt−2 −M2w
nt−1 +Kwnt = Qnt−1

, (31)
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where wj = [w0,j , w1,j , . . . , wnx,j ]. Finally, the following parametric linear system is obtained:

1 0 0 0 . . . 0
0 1 0 0 . . . 0
−M1 −M2 K 0 . . . 0

0 −M1 −M2 K . . . 0
...

...
...

...
...

...
0 0 . . . −M1 −M2 K





w0

w1

w2

w3

...
wnt


=



0
0
Q1

Q2

...
Qnt−1


(32)

The non-iterative approach is free from the accumulation error problem described above, but suffers from
the efficiency problem as a very large system (of size (nx + 1)nt) must be solved.

6. Wilson-θ method

Consider a discrete structural system with multi-degree of freedom (MDOF) described by equation

Mẅ + Cẇ +Kw = F (t) (33)

The damping matrix C is defined as
C = α0M + α1K, (34)

and the coefficients α0 and α1 are computed by considering damping ratios ξ1 and ξ2 in the first two modes
of vibration (with corresponding frequencies ω1 and ω2) as follows:[

α0

α1

]
=

1

2

[ 1
ω1

ω1
1
ω2

ω2

] [
ξ1

ξ2

]
(35)

Wilson-θ method is used for the solution of the transient dynamic problem. This method is an implicit
integration method and involves computation of dynamic response of a MDOF system by adopting a step by
step integration process in the time domain. The Wilson-θ method assumes a linear variation of acceleration
over the time interval [t, t + θδt], where θ ≥ 1.0 and δt is a small time step. It has been shown by Wilson
that the method becomes unconditionally stable for θ ≥ 1.38.

6.1. OPTIMISATION APPROACH

Uncertainty is considered in the values of Young’s modulus and mass density of steel and load. The solution
to the resulting interval MDOF system is obtained by an optimisation procedure. This is done by utilising the
fmincon function from the optimisation toolbox of MATLAB (The Mathworks, 2011) which seeks to find
the minimum of a constrained non-linear multivariate function. The fmincon function finds a constrained
minimum of a function f(x) of several variables by solving a problem of the form:

{x} = fmincon(objfun, {x0}, [A], [B], [Aeq], {beq}, {lb}, {ub}) (36)

subject to the inequality constraints
Ax 6 b, (37)
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equality constraints
Aeqx0 = beq (38)

and bounds
lb ≤ x ≤ ub (39)

with x0 being the starting point for search. The last condition (39) defines a set of lower and upper bounds on
the design variables {x}, so that a solution is found in the range lb ≤ x ≤ ub. Wilson-θ method is extended
to compute the interval displacement response as a function of time by formulating it as a MATLAB function
objfun yielding a single output describing the deterministic transient vertical displacement of a given node
of the structure. The displacement response is optimised and the bounds for the displacement response are
obtained at each time step δt for 0 ≤ t ≤ tmax. The normalised uncertainties associated with mass and
stiffness and load terms are represented by normalised interval parameters p1, p2 and p3 respectively. These
upper and lower bounds of these interval parameters form the vertices of an uncertainty hypercube pI . Any
point (p1, p2, p3) inside this bounds {lb} and {ub} described in equation (39) are defined as

lb =

 p1
p

2
p

3

 and ub =

 p1

p2

p3

 (40)

Equation (33) is recast in interval parametric form as

p1 Mẅ + Cw + p2Kw = p3F (t) (41)

where parameters pi are defined as
pi = [p

i,
pi], (i = 1, 2, 3). (42)

The objective function can be computed at any point p defined by coordinates (p1, p2, p3) within the hy-
percube pI that forms the search domain. Thus, using the procedure described above, the deterministic
algorithm is translated to an interval algorithm using the global optimisation based approach. In this ap-
proach, the lower and upper bounds of interval displacement wn at a given node n is determined, taking
into account that the uncertain parameters p can vary within their intervals pI . This interval wn of this
displacement is determined by a minimisation and a maximisation over the uncertainty interval pI .

wn =

[
min
p∈pI

(wn),max
p∈pI

(wn)

]
(43)

This is done by computing the displacement {w(x, t)} at any location x along the span of the beam at a
given time t, using the following deterministic matrix equation,by implementing Wilson-θ approach. :

p1Mẅ + Cw + p2Kw = p3F (t). (44)

The time history of the displacement response is obtained by computing the minimum and maximum values
of the response at each time step. To compute the displacement at a certain time, it has to be computed at all
earlier time steps too. However, in order to reduce the computational cost of the optimisations using the local
optimisation algorithm fmincon , all function evaluations of the objective function are stored in a database
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Figure 1. Geometry of the uniform beam with symmetrical load.

to enable the optimiser to reuse them for future optimisations without performing the same finite element
analysis again. This database is also used to start optimisations from the point with the best function value
found so far the lowest function value for minimisation and the highest function value for maximisation. All
optimisations are performed from the highest to the lowest membership level.

7. Numerical experiments

In order to show the interval solutions obtained using the methods described in the paper, an example of
the dynamically loaded beam with the load uniformly distributed over the entire span will be considered.
Different cases of the amount of uncertainty are investigated.

Example 1. Consider Euler Bernoulli beam shown in Figure 1 with uniform load of 2.5kN applied for a
short time of 0.009s. The beam has a span L = 4m, area of cross section A = 0.01m2, second moment of
area J = 8.333× 10−6 m4 and Young’s modulus E = 200GPa. It is assumed that mass density is uncertain
±0.5% and the load is uncertain ±20%. This gives 2 interval parameters p = (p1, p2) = (ρ, q).

The following discretization is applied nx = 20, (∆x = L/nx), number of time steps is equal to
nt = 100 and time step is ∆t = 0.0015s. The load is applied for 0.009s.
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Figure 2. Search method result form = 2, k = 7: (a) the lower and upper bound of the interval solution, (b) the difference between
upper and lower bound, wsearch − wsearch.

(a) (b)
Figure 3. Combinations of parameters which correspond to pmin: (a) Search Method, (b) comparison of the Search Method and
the Gradient Method. The colours which represent each particular combination for the Search Method and the Gradient Method are
different

From the Fig. 3 it is possible to see that the parameters which are calculated by using the Search Method
and the Gradient Method are very similar. Only for one time step combinations of parameters were predicted
incorrectly by the Gradient Method.

pmin,gradient
i,j ≈ pmin,search

i,j . (45)

The interval solution depends mostly on the endpoints of the intervals. In order to show this, pmin,search
i,j ,

pmax,search
i,j is calculated with 2, 5 and 7 intermediate points in the given intervals. For nx = 20, nt = 100

the results are identical:
wsearch,2i,j = wsearch,5i,j = wsearch,7i,j . (46)
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(a) (b)
Figure 4. Difference between the results of the search methodwsearch,7

i,j −wsearch,2
i,j for k = 2 and k = 5 for different discretization

of the problem. nx = 20, nt = 100 (a), nx = 100, nt = 200 (b).

Of course, it is possible to find examples in which there are some difference between the solution for k = 2
and k > 2. However, according to numerical experiments for the equation which is discussed in this paper
wsearch,2i,j ≈ wsearch,ki,j and wsearch,2i,j ≈ wsearch,ki,j where k > 2.

Figure 5 compares the results of the Direct Method and the Search Method. The solution for point data
(solid black line) is presented as well.

Figure 5. Vertical displacement of the midspan; comparison of the results of Direct method and Search method for the case:
E = 200[GPa], ρ = 7850[kg/m2]±0.5%, q = 2.5[kN]±20%, nx = 20, nt = 100, ∆t = 0.0015.

As can be seen, the results of Direct method and Search method coincide. This proves the quality of the
results of both methods.

Example 2. A beam similar to the one used in Example 1 is considered for analysis once again. The beam
is acted upon by a load of 5kN/m uniformly distributed over the whole span suddenly for a duration of 0.4
seconds. Five percent damping is considered to be present. The transient dynamic response of the beam is
computed using the procedure outlined in section 6.1 and results are presented . Figure 6 shows the time
history plot of vertical displacement of the beam at mid-span corresponding to the case with p1 = p2 =
[0.95, 1.05]and p3 = [1.0, 1.0]. This corresponds to deterministic load and interval values of stiffness and
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mass matrices. Figure 7 shows the time history plot of vertical displacement corresponding to the case
p1 = p2 = [1.0, 1.0] and p3 = [0.8, 1.2]. Figure 6 clearly depicts the shifting of peaks of response and
increase of uncertainty of response as time progresses as uncertainty in mass and stiffness causes a large
uncertainty in the eigenfrequencies of the structure. However, no such shifting of peaks is observed in
Figure 7 because mass and stiffness properties are deterministic and eigenfrequencies remain deterministic
even as time progresses.

Figure 6. Vertical displacement of the midspan with p1 = p2 = [0.95, 1.05], p3 = [1.0, 1.0] and 5 percent damping.

Figure 7. Vertical displacement of midspan with p1 = p2 = [1.0, 1.0], p3 = [0.8, 1.2] and 5 percent damping
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8. Conclusions

Several methods for solving beam vibrations problem under interval uncertainty were considered. Based on
illustrative examples, it can be stated that in the case of symmetrically loaded beam, the interval solution
depends on very few combinations of uncertain parameters. In the example, the interval solution depends
only on 4 combinations of parameters. This means that in practice it is possible to find four point solutions
in order to compute the exact values of the interval solution. Appropriate combinations of parameters can
be predicted by using the gradient of the solution. Moreover, it is possible to increase the accuracy of the
calculations by using adaptive approximation (Pownuk, 2011) which will be a topic of future research. In
more complex cases, as seen in Example 1, it is possible to find large areas in which the interval solution
depends only on specific combinations of parameters. It is possible to use this information in order to
improve accuracy of the interval solution. There are also situations in which the interval solution depends on
infinite number of combinations of the parameters. According to numerical results, in considered example,
the solution depends only on the endpoints of the parameters. In such situations it is possible to calculate
the exact solution by using the gradient method (Pownuk, 2004). In this case it is possible to calculate the
interval solution approximately using Taylor method, which is especially useful for narrow intervals. The
guaranteed solution can be obtained using the Direct method for solving parametric interval linear systems,
however the method requires some improvement do deal with large scale problems. Direct formulation of the
iterative problems can eliminate the wrapping effects from the interval calculations. Optimisation approach
is time consuming but produces acceptable results even with large intervals of input parameters.
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