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Abstract. In this contribution, multi-objective optimization methods are applied together with uncertainty
quantification approaches in order to provide a concept for a robust structural design. The concept enhances
the utilization of numerical simulation methods (Finite Element analysis) and as such can be useful for the
computer-aided engineering. In this study, the application of the approach for a design of tires is shown. The
proposed methodology enables the consideration of fragmentary or dubious information within the design
process, which leads to the introduction of fuzzy variables into the optimization task. The application of
fuzzy set theory is motivated by the epistemic character of available uncertain data. The proposed concept
enables the optimization of multiple objectives and simultaneously the uncertainty reduction in the opti-
mization results, which leads to the robustness improvement. In order to increase the numerical efficiency
of the proposed design approach, a response surface approximation based on artificial neural networks is
applied.
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1. Introduction

The intensive development of multi-objective optimization methods in the past decades, as well as the coup-
ling of these methods with numerical simulation approaches, e.g. Finite Element method (FEM), enables
currently the solution of complex design problems in numerous engineering fields. The main feature of
these design tasks is that the considered multiple objectives are predominantly in conflict with each other.
This means, that generally no ideal solution exists.

There are two well established optimization approaches, which yield a solution for these kind of prob-
lems. The first approach encloses the formulation of an aggregate objective function (AOF), which combines
all considered objectives through the application of the weighted sum method. Within AOF, each single
objective function is preserved with a weighting factor, which is chosen subjectively by the decision maker
in order to express the preference of this objective. Thereby, the choice of weighting factors, which are
gathered into a preference vector, strongly affects the optimization result.

In order to avoid the insertion of subjective decisions into the optimization process, some objective
approaches are proposed. They enable the identification of a well distributed set of trade-off solutions
(Pareto-optimal set), instead of finding one suboptimal solution (Pareto, 1971). The solutions in Pareto-
optimal set P ∗ are satisfying the criterion of Pareto optimality. That means, that in the set of solutions P ,
the Pareto-optimal set P ∗ contains solutions, which are not dominated by any member of set P .
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After the completion of optimization, the decision maker can choose one solution from the Pareto-optimal
set P ∗, according to defined preferences. The main advantage of this approach, compared to the AOF method
is that the expression of preferences occurs in the post-optimization step. A detailed description of the
Pareto-optimality concept as well as the dominance concept is presented in Section 3.1.

The optimization approaches shortly described above are deterministic. Thereby, in the engineering de-
sign tasks, uncertainty has to be taken into account. Uncertainty is present in different forms: e.g. geometry
parameters of structural parts can be regarded as uncertain, as well as the properties of materials utilized
for the components. In some cases also the loads applied to the designed structure can be considered as
uncertain. Thereby, the sources of uncertainty can be various, e.g. the uncertainty in geometry or material
properties is caused by unstable production conditions of structural elements. The source of uncertainty in
loading is vague information or variability, e.g. in the case of tire design, considered here, the vertical load
applied to the tire changes in dependency on the car weight, which is different for diverse car models.

According to the uncertainty sources, it is distinguished between three characteristics of uncertainty:
variability, imprecision and incompleteness. In this study, the focus is set on the incompleteness as in many
engineering tasks we have to handle with vague information, leading to assumptions and expert evaluations.
A suitable model for describing this kind of uncertainty is the uncertainty model fuzziness. In this paper, the
application of fuzzy variables to the mentioned multi-objective optimization concepts will be studied.

If uncertainty is considered in the optimization process, a quantification of robustness can be accom-
plished subsequently, which is shown within the proposed optimization approach.

2. Modelling uncertain quantities

In order to properly consider the uncertainty within the design task, a suitable uncertainty model should be
chosen, dependent on the type of available information. Commonly, the probabilistic uncertainty models
are utilized (Benjamin and Cornell, 1970), which employ the random variables for the description of non-
deterministic parameters. The application of probabilistic models is preconditioned by the availability of
extensive statistical information. If this prerequisites are not met, other uncertainty models should be taken
into account, especially enabling the consideration of subjective information.

These models account for the Bayesian methods (Bernardo and Smith, 1994) or approaches based on
the fuzzy set theory. The uncertainty model fuzziness (Dubois and Prade, 1997) and (Zadeh, 1965) employs
the fuzzy set theory for modelling the vague, incomplete or subjective information. Within fuzzy sets, the
gradual membership of elements to the set is defined, which enable a subjective weightening of informa-
tion inside the set. Alternatives for modelling with fuzzy sets represent the convex modelling (Elishakoff,
1995) and interval mathematics (Alefeld and Herzberger, 1983). Though, the last concepts are based on
the assumption of crisp membership of the elements to the set and, therefore, provide limited modelling
capabilities in comparison to fuzzy sets.

A generalized uncertainty model, enabling accounting for objective and subjective information simul-
taneously – fuzzy-randomness is described in (Kwakernaak, 1978) and (Möller and Beer, 2004). Fuzzy-
randomness can be utilized for modelling of imprecise probabilities. Within this model, fuzziness and
randomness might be considered as special cases. Another approach, which allows the consideration of
uncertainty – the chaos theory (Kapitaniak, 2000) makes an attempt to describe the unpredictable behaviour
of dynamical systems.
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From the uncertainty models, mentioned above, the uncertainty model fuzziness is chosen for further
investigation and applied within the multi-objective optimization approach. The choice of fuzziness is
motivated by the capability of the model to describe vague, incomplete or subjective information, which
is predominant in engineering design tasks.

The formulation of a fuzzy set refers to the definition of a crisp set. The membership to a crisp setA ⊆ X ,
where X = Rn can be defined in a binary way, an element either belongs to the set or not. Thereby, the
membership µÃ to a fuzzy set Ã is defined gradually, see Fig. 1. If µÃ takes values within the interval [0,1]
and, at least, once the value 1 is achieved, than such a set is called a normalized fuzzy set Ã or a fuzzy
number on X

µÃ : X −→ [0,∞). (1)

Figure 1. Fuzzy variable.

A fuzzy set is defined by its support S(Ã) and the membership function µÃ. According to Fig. 1, S(Ã)
is a crisp set, which contains elements

S(Ã) = {x ∈ X,µÃ(x) > 0}. (2)

In the optimization approach considered here, the fuzzy quantities are defined as normalized fuzzy sets.
Thereby, the convexity of fuzzy sets is presumed. Convexity can be stated, if for every x1, x2 ∈ X and
λ ∈ [0, 1]

µÃ(λx2 + (1− λ)x1) > min(µÃ(x1), µÃ(x2)). (3)

The numerical treatment of a fuzzy quantity Ã occurs by means of the discretization of Ã by numerous crisp
sets Cα(Ã) – so-called α-level sets

Cα(Ã) = {x ∈ X : µÃ > α}, (4)

Ã = (Cα(Ã))α∈(0,1]. (5)

Fuzzy quantities regarded in this study are n-dimensional. They are enclosed in the set of all fuzzy quantities
F(Rn).
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3. Multi-objective optimization

3.1. DETERMINISTIC MULTI-OBJECTIVE OPTIMIZATION APPROACHES

In the deterministic multi-objective optimization (MOO) task, we consider design variables, described in
terms of design vectors xd = (xd1, xd2, ..., xdn), which are defined in the design space Xd = Rn. The
design vectors xd are mapped by means of the evaluation function f : Xd → Z onto the objective vectors
z(z1, z2, ..., zk) in the objective space Z = Rk. Due to the fact, that the evaluation function f is vector-
valued, the objective space is k-dimensional. The multi-objective optimization task with objective functions
fi, i = 1, ..., k, subjected to equality constraints h(xd) and inequality constraints g(xd) is formulated as

min{f(xd) | h(xd) = 0, g(xd) ≤ 0} , f(xd) = [f1(xd), ..., fk(xd)]
T . (6)

Thereby, it should be pointed out, that if k = 1, a single objective optimization problem is to solve, or
accordingly a multi-objective optimization problem reduced by means of an aggregate function to a single
objective problem. If k = 1, a direct comparison of one-dimensional objective vectors is accomplished
within the optimization process. For k > 1, the k-dimensional objective vectors shall be compared, which
can be carried out only through the utilization of the dominance concept.

Dominance: an objective vector z∗ = f(x∗d) dominates another objective vector z′ = f(x′d) if no
component of z∗ is greater than the corresponding component of z′ and at least one component is smaller

∀i ∈ {1, ..., k} : fi(x∗d) ≤ fi(x′d) ∧ ∃i ∈ {1, ..., k} : fi(x∗d) < fi(x′d). (7)

The dominance is formulated as z∗ � z′.
Pareto-optimal set: the goal of the multi-objective optimization approach is to find a set of solutions,

which are not dominated with respect to each other (non-dominated set). According to the definition pro-
vided in Section 1, if P is the entire design space Xd, than the non-dominated set P ∗ (or X∗d ) is a Pareto-
optimal set. The visualization of the Pareto-optimal set X∗d in the objective space is the Pareto-front Z∗ =
f(X∗d) ⊆ Z.

As mentioned in Section 1, the state of the art in the multi-objective optimization methods are approaches
that either evaluate the aggregate objective function and refer to single objective optimization methods or
approximate the Pareto-optimal set in different manners.

According to (Deb, 2002a), within the available multi-objective optimization methods it is distinguished
between classical methods and evolutionary algorithms. The classical methods transform the multi-objective
optimization problem into a single-objective optimization task by the application of different user-specified
techniques. In this group, the weighted sum method, enabling the formulation of an aggregate function or
the ε-constraint method, converting all objective functions, except of one, into constraints can be identified.
These methods yield, after completing the optimization, one sub-optimal objective vector. An aggregate
function, created, using the weighted sum method is formulated

fobj(xd) =
k∑
i=1

wifi(xd). (8)

Thereby, wi defines a user-specified weight vector. Some approaches are proposed, which presume, that
through the utilization of the weighted sum method and an appropriate choice of the weight vector, a Pareto-
optimal solution can be identified. A purposeful manipulation of the weight vector components in multiple
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optimization runs, could provide a whole Pareto-optimal set. Though, the evaluation of the optimization
procedure numerous times, required for the identification of the whole Pareto-optimal set, is quite inefficient.
Therefore, evolutionary algorithms, which enable providing the Pareto-optimal set in one optimization run,
are commonly employed for the solution of multi-objective optimization problems.

The multi-objective evolutionary algorithms (MOEAs) provide not optimal trade-offs but an approxi-
mation of the Pareto-set. In general, MOEAs are expected to fulfil two tasks: guide the search through the
Pareto-set and keep a diverse set of non-dominated solutions. The first goal is achieved by assigning the
fitness to the population, based on the non-dominated sorting method, while the second goal by including
the density information into the selection process. In 1990s several methods, e.g. the Nondominated Sort-
ing Genetic Algorithm (NSGA) (Srinivas and Deb, 1995) or Multi-objective Genetic Algorithm (MOGA)
(Fonseca and Fleming, 1993) were proposed, which were able to identify multiple diverse Pareto solu-
tions. In further developments of MOEA, elitism was introduced in order to obtain a better convergence.
Elitism enables the prevention of non-dominated solutions from being lost. Among the developed methods,
which include elitism, three main approaches should be mentioned: NSGA-II (Deb, 2002b), the Strength-
Pareto Evolutionary Algorithm (SPEA-2) and the Pareto-Archieved Evolution Strategy (PAES) (Knowles
and Corne, 1999).

In the presented contribution, the application of fuzzy quantities within the weighted sum method (ag-
gregate function) and to methods, providing the trade-off solutions will be studied.

3.2. MULTI-OBJECTIVE OPTIMIZATION WITH CONSIDERATION OF UNCERTAIN QUANTITIES

3.2.1. Problem formulation
In the literature, several methods were proposed which evaluate uncertainty within the multi-objective opti-
mization. Thereby, referring to (Das et al., 2009), different sources of uncertainty are taken into account, e.g.
noisy data, objective function evaluation errors or user indecision concerning the prioritization of objective
functions. Generally, within the available approaches it is distinguished between methods, which evaluate
aleatory uncertainty and utilize probabilistic concepts and methods, which account for epistemic uncertainty
and employ concepts based on the fuzzy set theory. Recently, ideas and algorithms for the simultaneous
consideration of different types of uncertainty and different uncertainty models (polymorphic uncertainty)
within the optimization task are developed.

The main difference between deterministic multi-objective optimization approaches and approaches
considering uncertainty, is expressed within the formulation of dominance. In the probabilistic concepts,
the dominance of vector u over the vector v is expressed by the probability of dominance pr(u � v).
Exemplary, such approaches model the random error, present by the evaluation of objective functions.
Among the epistemic procedures, the idea proposed by (Farina and Amato, 2004) for the introduction of
a fuzzy measure for the comparison of two non-dominated solutions, is worth mentioning. The comparison
is accomplished through the evaluation of the number of objectives, in which one solution dominates another
one. Further developments enabled the comparison of two solutions, which do not have to be Pareto-optimal
– like in the previous approach – by the application of the concept of a fuzzy dominance.

In this study, instead of employing the concept of fuzzy dominance, ideas for obtaining and evaluation
of a Fuzzy-Pareto-Front will be discussed. A Fuzzy-Pareto-Front contains fuzzy objective vectors, gained
from the optimization with the application of fuzzy variables. The method for obtaining fuzzy results will
be first introduced within the multi-objective optimization, using the weighted sum method for the creation
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of the aggregate function. Subsequently, a method for evaluating fuzzy objective vectors within the Fuzzy-
Pareto-Front will be discussed.

3.2.2. Aggregate objective function evaluating fuzzy variables
In the proposed methodology, a distinction is made within the definition of input quantities for the optimiza-
tion task, between uncertain a-priori parameters p̃

a
∈ F(Rnp) and design variables xd ∈ Rn. Uncertain

a-priori parameters p̃
a

are quantities, influencing the optimization task, which can not be modelled as crisp
quantities due to information deficits. Therefore, they are considered as fuzzy numbers. Design variables xd
are defined within the user-specified ranges and can be arbitrarily chosen during the optimization.

The scheme of the optimization with fuzzy quantities is presented in Figure 2. The method is a three
level approach. Optimization establishes the first level, that is the outer loop of the approach. Within the
optimization loop, the fuzzy analysis is performed. The numerical realization encloses the execution of fuzzy
analysis for every design vector xd. In consequence, if k objective functions are considered, k fuzzy result
quantities are obtained for each design vector. These fuzzy result quantities are gathered into k-dimensional
fuzzy objective vector z̃ ∈ F(Rk).

Figure 2. Optimization scheme.

Within the fuzzy analysis, the deterministic solution, that is a FE-solution or a response surface is evalu-
ated numerous times. The fuzzy analysis uses the α-level optimization approach for the computation of
membership functions of all fuzzy result quantities. For the α-level optimization, the modified evolution
strategy is utilized, which was proposed in (Möller, Graf and Beer, 2000). In order to be able to evaluate
the fuzzy result quantities, obtained for several designs, an aggregate objective function, enclosing the
information reducing measuresMj is formulated

fobj : Rn ×F(Rnp)→ R (9)

(xd, p̃a) 7→
k∑
i=1

u∑
j=1

wij Mj(fi(xd, p̃a)). (10)

In Eq. (10), wij defines the weighting factors, which enable the prioritization of chosen components
(objectives). The information reducing measures Mj map the fuzzy result quantities onto real numbers
and allow their quantification. AsMj , uncertainty measures for fuzzy variables can be applied, e.g. the area
(zeroth moment) of a fuzzy variable, variance or the Shannon’s entropy. The uncertainty measureM1, based
on the Shannon’s entropy (Beer and Liebscher, 2008) and applied to the quantification of a one-dimensional
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fuzzy result quantity z̃, is formulated as

M1 = HU = −
z=+∞∫
z=−∞

[µ(z) · lnµ(z) + (1− µ(z)) · ln (1− µ(z))] dz. (11)

An uncertainty measure M2, evaluating the variance of a fuzzy variable z̃ is proposed in (Wu and
Mendel, 2007)

M2 = V =
z=+∞∫
z=−∞

(z − z)2 · µ(z)dz ·

 z=+∞∫
z=−∞

µ(z)dz

−1

. (12)

Another uncertainty measure M3, which assesses the area under the membership function µ(z) of a
fuzzy variable is defined by

M3 = A =
z=+∞∫
z=−∞

µ(z)dz. (13)

For the optimization approach, described in this study two information reducing measures are employed.
The first measure is the uncertainty measureM3. The second information reducing measureM4 assesses
the position of the first element of the fuzzy quantity support S(z̃) and can be regarded as a performance
measure. Through the minimization of the smallest element of the support S(z̃), the minimization of the
fuzzy result quantity z̃ is achieved.

In Fig. 3, the application of the information reducing measures for the comparison of two fuzzy result
quantities z̃1 and z̃2, obtained for two different designs – A and B – is shown. Once the criteria for the
comparison of uncertain quantities are formulated and included into the aggregate objective function, the
optimization can succeed. The application of the method for single-objective optimization tasks is shown in
(Pannier, 2011).

Figure 3. Comparison of fuzzy result quantities for design A and B.
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3.2.3. Fuzzy-Pareto solutions
In Subsection 3.2.2., a method for handling fuzzy results within the optimization is presented, which focused
on bringing together the fuzzy results from several objectives into one aggregate objective function, enclos-
ing the information reducing measuresMj . Another crucial issue, when regarding the objective space with
numerous k-dimensional fuzzy objective vectors, is to find the Fuzzy-Pareto-Front. Fuzzy-Pareto-Front is
the image of the Fuzzy-Pareto set in the objective space. In the context of the optimization approach with
fuzzy variables, described above, the search for the best design should be coupled with the identification of
the set of fuzzy result quantities, which are not dominated by any other fuzzy quantity from the set of all
fuzzy quantities F(Rk).

The objective space, containing k-dimensional fuzzy result vectors z̃1 − z̃5, obtained for corresponding
design vectors xd1 − xd5 is shown in Fig. 4 (here k = 2). Thereby, fuzzy result vectors z̃1 − z̃3 are not
dominated by any other fuzzy result vector in the objective space.

Figure 4. Fuzzy-Pareto-Front.

The k-dimensional fuzzy objective vector z̃∗ is formulated

z̃∗ = {(z∗ = (z1, ..., zk), µ∗ = (µ∗1, ..., µ
∗
k)) | zi ∈ Rk}. (14)

The support S(z̃∗) is defined by

S(z̃∗) = {(z∗ = (z1, ..., zk), µ∗ = (µ∗1, ..., µ
∗
k)) ∀ i ∈ [1, k], µ∗i (zi) > 0}. (15)

The identification of the set of non-dominated k-dimensional fuzzy objective vectors prerequires the for-
mulation of non-dominance criteria for fuzzy variables. A fuzzy objective vector z̃∗ is non-dominated, if in
the set of all fuzzy objective vectors F(Rk), there exists no other fuzzy objective vector z̃′, so that every
element z′ ∈ S(z̃′) dominates all elements z∗ ∈ S(z̃∗).

The proposed concept enables the check of dominance in the postcomputation step. Though, an approach
is required, which would allow a dominance check for fuzzy quantities during the multi-objective optimiza-
tion. In this way, the information concerning the dominance can influence the selection and variation step
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in the evolutionary optimization algorithm. First attempts are made to extend the non-dominated sorting
procedure, applied within NSGA II for the consideration of the domination criteria for fuzzy variables.

3.3. COUPLING OF MULTI-OBJECTIVE OPTIMIZATION APPROACHES WITH FE SOLUTION

According to Fig. 2, if FE simulation is applied as deterministic solution d, the evaluation function f for-
mulated in Eq. (6) as well as the aggregate function fobj defined in Eq. (10), depend on the solution of a
mechanical system, especially depend on displacements ϕ(xd, p̃a) gained from the FE analysis. ϕ(xd, p̃a)
are obtained from the evaluation of the nonlinear equation of motion. In the case of a stationary rolling body
(tire analysis), the equation of motion is formulated as

(K −W ) ·∆ϕ = f − f
σ

+ f
T
. (16)

In Eq. (16), K denotes the tangential stiffness matrix, W the Arbitrary Lagrangian Eulerian inertia matrix,
f nodal forces of external loads, f

σ
nodal forces resulting from internal stress state and f

T
nodal forces due

to inertia. The dependency of the aggregate function fobj on displacements ϕ(xd, p̃a) is defined as

fobj : Rn ×F(Rnp)→ R, (17)

(xd, p̃a) 7→
k∑
i=1

u∑
j=1

wij Mj(fi(ϕ(xd, p̃a))). (18)

3.4. IMPLICIT ROBUSTNESS QUANTIFICATION WITHIN THE MULTI-OBJECTIVE OPTIMIZATION

Due to the consideration of one uncertainty measure –M3 – within the aggregate objective function fobj , the
minimization of fobj will automatically cause the reduction of uncertainty in the fuzzy results. This concept
refers to the robustness measure R[p]

l,k, proposed in (Beer and Liebscher, 2008) and in (Graf et al., 2010),
which quantifies the ratio of the uncertainty of input quantities versus the uncertainty of result quantities for
each design. R[p]

l,k adapted for the application within the multi-objective optimization is defined

R
[p]
l,k =

np∑
p=1

wp
(
Mj

(
p̃
a

))
l∑

q=1
wq

k∑
i=1

wi
(
Mj

(
fi
(
xd, p̃a

))) . (19)

In Eq. (19), R[p]
l,k denotes the robustness measure of [p]-th structural design under consideration of l load

cases and k objective functions.Mj indicates the [j]-th uncertainty measure (here j = 3) and wp, wq, wi the
weighting factors. The configuration of uncertain a-priori parameters does not change during the optimiza-
tion task. Therefore, the numerator of the fraction in Eq. (19) remains constant and can be neglected. Only
the expression in the denominator of the fraction is considered within the aggregate objective function fobj .

The proposed design approach enables beside of optimization of numerous objectives also the uncertainty
reduction within the fuzzy results, which contributes to the robustness improvement. The application of the
developed method to the structural tire design is shown by the way of an example.
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4. Example

The goal of this study is the optimization and the robustness improvement of a passenger car tire 195/60 R15.
Generally, within the tire structure the tread layer, made of rubber, several reinforcement layers – capplies
and belts – as well as the bead, consisting of numerous steel cords can be identified, see Fig. 5.

Figure 5. Tire cross-section.

Through the modifications of these structural parts, two objective functions f1 and f2 will be improved.
The first objective function f1 aims at providing regular tire wear, whereas f2 at improving the fatigue
performance. Regular tire wear is obtained, if a uniform contact pressure distribution in the tire-road contact
zone occurs. Therefore, a ratio of the contact pressure in the shoulder region versus the contact pressure
in the central region of the tire cross-section will be optimized. Within f2, a fatigue criterion based on the
evaluation of the strain energy density at the critical area – the belt edge – is applied.

The optimization of mentioned objectives is accomplished by the consideration of three design variables
– the belt angle xd1, the thickness of the tread layer xd2 and the number of capplies xd3 as well as three
uncertain a-priori parameters – the tire inner pressure p̃a1, the fiber spacing in bodyply p̃a2 and the stiffness
of the tread compound p̃a3. The following ranges for the design variables are specified: xd1: 〈18◦; 30◦〉,
xd2: 〈−1.5; 1.5〉mm and xd3: 〈0; 2〉. The uncertain a-priori parameters are defined as fuzzy numbers – p̃a1:
〈0.23; 0.25; 0.27〉N/mm2, p̃a2: 〈1.17; 1.304; 1.44〉mm and p̃a3: 〈0.875; 0.976; 1.075〉N/mm2.

In the first analysis step, the design of experiments (DOE) is performed. For each of the sampling points
a 3D Finite Element tire model is evaluated in steady state rolling situation. The steady state rolling analysis
is executed in terms of the Arbitrary Lagrangian Eulerian approach (Kaliske et al., 2003) and (Nackenhorst,
2004). Due to the high computational cost of the rolling tire analysis, the FE solution is substituted by
a neural network based response surface approximation. The training of the feedforward neural networks
occurs for the sampling points, evaluated within DOE. The obtained response surface can be applied as the
deterministic solution within the optimization approach, according to the scheme in Fig. 2.

After the execution of the coupled approach of optimization and fuzzy analysis, which uses the aggregate
objective function, one design vector is identified as the optimal solution. For this design, the FE analysis is
performed in the ’post processing’ step in order to validate the neural network outputs. The results, obtained
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for the optimal solution are compared with results gained for reference designs. In Fig. 6, the contact
pressure distributions in the optimal design – Fig. 6a), 6b) – and in the reference design – Fig. 6c), 6d)
– are depicted. For each design, distributions obtained for the most advantageous – Fig. 6a), 6c) – and most
disadvantageous – Fig. 6b), 6d) – combination of a-priori parameters are shown. These most advantageous
and most disadvantageous combinations are derived from the definition of the contact pressure ratio as a
fuzzy quantity, obtained for the regarded design.

Figure 6. Contact pressure distribution for the optimal design: a) best case, b) worst case and reference design: c) best case and d)
worst case.

It can be stated, that for the optimal design a uniform contact pressure distribution is obtained in the best
case as well as in the worst case. This fact is confirmed by the according contact pressure ratios pcoeff = 1.23
and pcoeff = 1.27, see Fig. 7a). Therefore, the occurrence of a regular wear is expected for the optimal design.
Within the reference design, a non-uniform contact pressure distribution occurs, resulting in pcoeff = 1.68
(best case) and pcoeff = 1.97 (worst case). Thus, not only the minimization of the contact pressure ratio but
also the uncertainty reduction (small support) is achieved for the optimal design.

Figure 7. Contact pressure ratio and strain energy density amplitude obtained for the optimal design.

The second design task presumed the minimization of the strain energy density delta, which leads to
the improvement of the tire resistance to fatigue. In Fig. 8, the strain energy density evaluated over the
circumference of a tire is shown. According to the strain energy density as a fuzzy result quantity, four
curves are shown – signifying the worse and best case for the optimal design and for the reference design as
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well. The fuzzy result quantity, obtained for the optimal design is shown in Fig. 7b). From the comparison
of the curves in Fig. 8, it can be stated that, peaks of curves obtained for the optimal design lie below the
peaks of curves obtained for the reference design. The improvement is confirmed also by the strain energy
density amplitudes: for the optimal design ∆W = 0.190N/mm2 (best case) and ∆W = 0.222N/mm2 (worst
case), whereas for the reference design ∆W = 0.309N/mm2 and analogically ∆W = 0.321N/mm2.

Figure 8. Strain energy density versus the circumference of a tire.

In the example, the capability of the approach to optimize the objectives and to reduce the uncertainty of
fuzzy results is shown.

5. Conclusions

In this contribution, concepts for the consideration of fuzzy variables within the multi-objective optimization
approaches are discussed. Fuzziness is chosen as an appropriate model for the description of parame-
ters, which can not be defined as crisp quantities due to limited data and information deficits. Therefore,
procedures are proposed, which enable handling of these uncertain a-priori parameters next to the design
variables within the optimization task. The consideration of fuzzy variables within an aggregate objective
function, formulated by means of the weighted sum method is studied. The application of the approach to
the optimization and robustness improvement of a passenger car tire is shown. Additionally, concepts for the
identification of the set of non-dominated fuzzy quantities are proposed in the context of Pareto-optimality.
The developed approaches can be coupled with a FE simulation or a response surface approximation and
therefore are suitable for the solution of engineering design tasks.

 

 
 
 
494

 
 
 
 
 

 
 
 
5th International Conference on Reliable Engineering Computing (REC 2012)



A Multi-objective Optimization Approach with a View to Robustness Improvement

Acknowledgements

The authors gratefully acknowledge the support of the German Research Foundation (DFG) within the
project KA 1163/13-1 ”Design of durable tires under the consideration of data uncertainty”.

References

Alefeld, G. and J. Herzberger. Introduction to Interval Computations. Academic Press, New York, 1983.
Beer, M. and M. Liebscher. Designing Robust Structures – A Nonlinear Simulation Based Approach. Computers and Structures,

86:1102–1122, 2008.
Benjamin, J. R. and C. A. Cornell. Probability, Statistics and Decision for Civil Engineers. McGraw-Hill, 1970.
Bernardo, J. M. and A. F. M. Smith. Bayesian Theory. Wiley, Chichester, 1994.
Das, S., Chowdhury, S. R., Panigrahi, B. K., Pattnaik, S. and S. Das. Multi-objective Optimization with Uncertainty: Probabilistic

and Fuzzy Approaches. Proceedings of the World Congress on Nature and Biologically Inspired Computing, Coimbatore, 2009.
Deb, K. Multi-objective Optimization using Evolutionary Algorithms. Wiley, Chichester, 2002.
Deb, K. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. Evolutionary computation, 6:182–197, 2002.
Dubois, D. and H. Prade. The Three Semantics of Fuzzy Sets. Fuzzy Sets and Systems, 90:141–150, 1997.
Elishakoff, I. Essay on Uncertainties in Elastic and Viscoelastic Structures: form A. M. Freudenthal’s Criticisms to Modern Convex

Modeling. Computers and Structures, 56:871–895, 1995.
Farina, M. and P. Amato. A Fuzzy Definition of ”Optimality” for Many-criteria Optimization Problems. IEEE Transactions on

Systems, Man. and Cybernetics – Part A: Systems and Humans, 34:315–326, 2004.
Fonseca, C. M. and P. J. Fleming. Genetic Algorithms for Multi-objective Optimization: Formulation, Discussion and General-

ization. In Forrest, S., editor, Proceedings of the Fifth International Conference on Genetic Algorithms, Urbana-Champaign,
1993.

Graf, W., Sickert, J.-U., Pannier, S. and M. Kaliske. In Beer, M., Muhanna, R. L., Muellen, R. L. Robust Design with Uncertain
Data and Response Surface Approximation. Proceedings of the International Workshop on Reliable Engineering Computing,
Singapore, 2010.

Kaliske, M., Zheng, D., Andre, M. and C. Bertram. Efficient Steady-State Simulations up to High Speed with Dissipative Tire
Characteristics. Vehicle Systems Dynamics Journal Supplement, 40:175–194, 2003.

Kapitaniak, T. Chaos for Engineers: Theory, Applications and Control. Springer, Berlin, 2000.
Knowles, J. and D. Corne. The Pareto Archived Evolution Strategy: A New Baseline Algorithm for Multiobjective Optimisation.

Proceedings of the 1999 Congress on Evolutionary Computation, Washington, 1999.
Kwakernaak, H. Fuzzy random variables – I. Definitions and Theorems. Information Sciences, 15:1–29, 1978.
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Abstract. Parameters of mathematical models are most often represented by real numbers, while in practice
it is impossible or at least very difficult to get reliable information about their exact values. Hence, it is
unreasonable to take point data for that may lead to incorrect results, which is not welcome especially
when inaccuracy cannot be neglected. Depending on available information, one can use different ways
of modelling of uncertainty. Interval computing plays an important role in this field, because very often
the only available information are lower and upper bounds on a physical quantity. This paper focuses on
a transient dynamic analysis of a beam with uncertain parameters. Finite difference and finite element
methods are used to solve partial differential equation which represents the model for the motion of a straight
elastic beam. In order to compute the time-history response of the beam under uncertainty, interval dynamic
beam equations are solved using Search method, Gradient method, Taylor method, adaptive Taylor method,
direct optimisation and Direct method for solving parametric interval linear systems. The applicability, i.e.
effectiveness and accuracy, of those methods is illustrated through solution of beams with interval value of
modulus of elasticity and mass density and subjected to interval dynamic loading.

Keywords: Euler-Bernoulli beam, Dynamic response, Interval arithmetic, Search method, Gradient method,
Taylor method, adaptive Taylor method, Direct method, Direct optimisation.

1. Introduction

Airplane wings, high-rise buildings and suspension bridges are just some of the mechanical and structural
examples where vibration analysis of beams is essential for the safe design. Safety issues are the greatest
concern of structural engineering as the design and construction of secure and safe structures can prevent
disasters like the collapse of Tacoma Narrow Bridge November 7, 1940, just few month after it was fin-
ished. This was probably the most dramatic failure in bridge engineering history. Safety studies in structural
engineering are supposed to prevent failure during the lifetime of a structure.

Constantly increasing computational capabilities allow for detailed numerical models of structural sys-
tems. However, those models are built, inter alia, on a number of model parameters subject to uncertainty.
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The use of models that include the uncertainty, which is central to reliability/risk analysis of engineering
systems, is of great importance for a design engineer.

Uncertainty of structural parameters is mainly due to the scarcity or lack of data which may be resulted
from manufacturing/construction tolerances or caused by progressive deterioration of concrete and corro-
sion of steel. In engineering applications, uncertainty also exists in determining external loads. To make
a decision based on an inexact data say some parameter p̃, a measurement error ∆p = |p̃ − p| must known
at least. Very often, the only available information about the error is its upper bound ∆p 6 ∆. In this
case, once the measurement p̃ is obtained, one can conclude that the possible values p̃+∆p form an interval
p = [p̃−∆, p̃+∆] which is guaranteed to contain the exact value p of the parameter. Once interval quantities
are introduced, they must be handled appropriately to obtain the result which is guaranteed to contain the
exact solution.

Though interval arithmetic was introduced by Moore (Moore, 1966) already in 1966, the application of
interval concepts to structural analysis is more recent. Some important advances on reliability-based design
and modelling of uncertainty when data is limited were made during last years. Structural analysis using
interval variables has been used by several researchers to incorporate uncertainty into structural analysis
((Köylüoglu et al., 1995), (Nakagiri and Yoshikawa, 1996), (Rao and Sawyer, 1995), (Rao and Berke, 1997),
(Rao and Chen, 1998), (Mullen and Muhanna, 2001), (Neumaier and Pownuk, 2007), (Skalna, Pownuk and
Rama Rao, 2008)).

In this paper, the problem of vibrations of an Euler-Bernoulli beam with interval material properties
subjected to interval load is considered. Two different approaches are employed to obtain beam deflection in
time. In the first approach, the Euler-Bernoulli equation governing the behaviour of the beam is descretized
in space and time. The beam bending in the respective time step is obtained by solving a system of equations
with coefficient depending on interval parameters. Several methods are used for this purpose. Search method,
Gradient method ((Skalna, Pownuk and Rama Rao, 2008)), Taylor method and adaptive Taylor method
(Pownuk, 2011) utilise the fact that in many structural engineering problems relation between the solution
and uncertain parameters is monotone. In such a case, the extreme values of a solution are attained at
respective endpoints of given intervals. Monotonicity can be verified by using Taylor series or an interval
method (Hansen, 1992). Methods exploiting monotonicity tests are useful for solving large scale problems,
but they may underestimate. When monotonicity is not assumed, the solution can be obtained using methods
for solving parametric interval linear systems (Skalna, 2010)). Those methods give guaranteed enclosures,
but their usage is limited e.g. by the amount of uncertainty. In the second approach, the Finite Element
Method is a starting point for considerations. The Wilson-θ method and optimisation approach are used for
the solution of the problem (Rama Rao, Pownuk and Vandewalle, 2010).

The paper has the following structure. In Sections 3 and 6, the considered problem is described in terms
of the mathematical theory. Section 4 describes the discretization of the problem in time and space. Section
5 and 6.1 are devoted to the methods for solving interval linear systems obtained from the discretization of
the Euler-Bernoulli equation. Numerical examples are given in Section 7. The paper ends with concluding
remarks.
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