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Abstract. A model capable of capturing the effect of irregularly structured reinforcement in a brittle matrix
is presented. It introduces a homogenization procedure for the state fields at the microscale in the vicinity
of a crack bridge. In combination with a mesoscale model for matrix cracking the homogenized state fields
are used for explicit calculation of the strain hardening-response of the composite. The model has been
formulated for brittle matrix composites with reinforcement that exhibits random properties, e.g. due to
random fiber orientation or because of an irregular penetration profile of the matrix into multifilament
yarns. In the present paper we use multifilament yarns applied in textile reinforced concrete (TRC) to
demonstrate the capabilities of the model. It is used for parametric studies to detect some qualitative and
quantitative dependencies between the micromechanical material parameters and strain-hardening response
of the composite.
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1. Introduction

Combining brittle matrix with fibrous reinforcement leads to quasi-ductile composite behavior with a high
bearing capacity. When loaded in tension brittle matrix composites exhibit multiple cracks developing in
the matrix perpendicularly to the loading direction (Li and Wu, 1992; Fantilli et al., 2009). This process is
accompanied with significant stress redistributions both between and within the constituents of the compos-
ite. The qualitative and quantitative characteristics of composites depend on the mechanical and geometrical
properties of the components and their interface.

In order to study the response of the material structure subject to general loading conditions in 3D several
models explicitly representing the geometrical distribution of fibers have been introduced using the finite
element method (Radtke et al., 2010) or lattice models (Bolander and Saito, 1997; Leite et al., 2004).
For purely tensile loading, models applying simplifying assumptions about the geometrical layout of the
composite with respect to the tensile loding direction have been formulated with the goal to describe the
tensile strain-hardening behavior. These models reflect the fragmentation process of composites starting
from an elastic range, over a gradual evolution of matrix cracks with reinforcement strain localization up to
a saturated crack density and/or ultimate failure of the weakest crack bridge.

The strain-hardening response of composites with elastic-brittle matrix and elastic reinforcement or sim-
ilarly elastic-brittle reinforcement and elastic matrix can be described in closed form. In their classical work
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Table I. State of the art overview

scheme transverse longitudinal bond law math ref.

assumed
homogeneous

periodic CS,
const. length

constant
1D,
analytical

(Aveston et al., 1971; Aveston
and Kelly, 1973)

assumed
homogeneous

exact CS length
distribution

constant
1D,
analytical

(Curtin, 1992; Ahn and
Curtin, 1996)

averaged
micromechanical

simplified
arbitrary
analytical

1D,
analytical

(Li et al., 1991; Chudoba et
al., 2006a)

partly
homogeneous

explicit cracks arbitrary
1D (2D),
numerical

(Konrad and Chudoba, 2009;
Azzam and Richter, 2011)

explicit
micromechanical

explicit cracks arbitrary
2D, 3D,
numerical

(Bolander and Saito, 1997;
Radtke et al., 2010)

Aveston, Cooper and Kelly (Aveston et al., 1971) formulated the explicit relation between stress and strain of
the composites with constant matrix strength under the assumption of aligned continuous reinforcement with
an ideally plastic bond to the matrix. Later, they extended the model for elastic-plastic bond and included
the effect of random fiber orientation by correspondingly reducing the number of bridging fibers compared
to the aligned mode (Aveston and Kelly, 1973). An energy release rate approach taking into account the
elastic stretching of matrix and fibers, matrix cracks propagation and fiber debonding has been presented by
(Budiansky et al., 1986).

(Cho et al., 1992) studied ceramic composites with aligned fibers and provided analytical formulas for
the composite stress-strain diagram assuming elastic material properties and a more sophisticated bond law.
Using the stress criterion for debonding, the formulation of Cho et al. delivers a set of closed form solutions
describing the composite behavior and crack spacing distributions for three different ratios of matrix and
debonding strength. Moreover, a numerical study was performed for random matrix strength following
the two parameter Weibull distribution furnishing stress-strain diagrams and crack spacing distribution. A
remarkable method for arriving at the exact crack spacing distribution was developed by (Curtin, 1991) for
a single filament embedded in a large failure strain matrix with randomized filament strength and constant
frictional bond. The results show good agreement with an extensive Monte Carlo simulation performed
earlier by (Netravali et al., 1989; Henstenburg and Phoenix, 1989).

Curtin later applied his theory to composites with multiple matrix cracks (Curtin, 1992) and found a
connection between the matrix flaw distribution and the crack spacing of a composite loaded in tension.
Since the initial matrix flaws have to propagate through the cross-section while consuming energy a lower
threshold is introduced for the stress-at-first-crack distribution. Having fitted two independent parameters
from a composite tensile test, this model is able to predict the composite behavior and estimate the frictional
bond. Another estimation of the bond stress based on experiments was performed earlier by (Marshall and
Evans, 1985) offering three different methods for this purpose. An inherently statistical evaluation of the
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Stochastic cracking of brittle matrix composites with heterogeneous reinforcement

Figure 1. Scheme of the proposed model

stress-strain relationship and hysteretic behavior was performed by (Ahn and Curtin, 1996) and further
simplified to closed forms by (Curtin et al., 1998).

For composites with interface that can be described by one or a few bond parameters, e.g. for concrete
reinforced with steel rebars, the aforementioned models can provide a realistic prediction. However, compos-
ites consisting of a large number of short or continuous fibers exhibit irregularities of the material structure
(e.g. due random orientation of the fibers or due to an incomplete penetration of yarns by the matrix). The
resulting variations in the stiffness and bond properties lead to a highly inhomogeneous microscopic bond
stress fields. Such a field cannot be uniquely captured by a constant shear stress within the frictional bond
model. This fact makes a more detailed resolution of the local stress and strain fields in the debonding
zones inevitable. Models resolving the local fields in the vicinity in the crack bridge have been constructed
using statistical averaging techniques (Li et al., 1991; Chudoba et al., 2006a; Kabele, 2003). With a higher
computational effort, also finite element method has been used for local representation of the heterogeneous
matrix-reinforcement bond structure (Konrad and Chudoba, 2009; Azzam and Richter, 2011; Nour et al.,
2011).

Table I summarizes the mentioned modeling approaches with a schematic picture of the assumed material
representation. The models are classified according to the level of material resolution distinguished in trans-
verse and longitudinal directions, kind of crack representation, applied bond law and dimensionality of the
underlying mathematical formulation. In this paper a refined model for the simulation of strain-hardening
response of a composite with heterogeneous structure of reinforcement is formulated. The effective stress –

Figure 2. TRC specimen reinforced with carbon fabrics after tensile test: localized failure crack (left), crack pattern (right)
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Figure 3. Application of the proposed model to textile reinforced concrete (from the top): homogenized composite model; statistical
crack bridge model, microfilament double sided pullout model

strain relation is obtained using a multiscale homogenization procedure with separate integration loops at the
micro- and mesoscale. At the microscale, the random structure of the reinforcement is reflected in the model
of a representative crack bridge. At the mescoscale, the homogenization is performed over a representative
series of emerging cracks sequentially introduced at positions where the matrix tensile stress reaches the
level of the matrix strength.

The model components realizing the described homogenization procedure at the micro and mesoscales
are depicted in Fig. 1. The hierarchical structure of the model opens up the possibility to include formulations
of the crack bridge behavior for various types of reinforcement structure (e.g. short fibers, multifilament
yarns or steel rebars) and their combinations. Let us also note, that the present modeling framework does
not impose any limitations on the type of the bond law governing the interaction between fibers and matrix.

In order to make the explanation of the implementation of the model illustrative the formulation is
provided for textile reinforced concrete consisting of a fine grained, brittle cementitious matrix reinforced
by continuous multifilament yarns, such as AR-glass, carbon or aramid rovings (Fig. 2). The smallest scale
considered deals with a single filament that bridges a matrix crack. The formulation of a single filament
bridging a crack is provided in Sec. 2. A large number of such filaments form the reinforcing yarn which
is assumed to be a multiple of the average filament response (Sec. 3). The evaluation of the homogenized
strain field within a specimen with multiple cracks at a given level of stress is provided in Sec. 4. Results
of computational examples showing some micromechanical dependencies on the global composite response
are presented in Sec. 5 and concluding remarks summarize the capabilities and limitations of the model in
Sec. 6.

2. Filament crack bridge model

At this level a single filament from a multifilament yarn embedded in matrix is observed and shall be
represented by a parametric micromechanical model. For efficiency reasons, we assume symmetry at the
half distance between adjacent cracks so that the filament is modeled only between two such symmetry
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Stochastic cracking of brittle matrix composites with heterogeneous reinforcement

points crossing a single crack and its boundary conditions are fixed (Fig. 3). As the loading is increased,
the crack width grows, both matrix and filament are stretched and debonding takes place at the filament-
matrix interface. Filaments are assumed to have constant geometrical and physical properties over the length.
However, the properties vary for individual filaments because they can, in general, have different physical,
geometrical and bond properties. These assumptions together with linear elastic behavior of the matrix result
in the following formulation for the filament response in terms of bridging force vs. crack width relationship:

Ff0 = Ff0(w,Am, Em, Ll, Lr,θf), θf = {Af , Ef , τ, `, θ, ξ, p} (1)

where the control variable w is the crack width, Am/f and Em/f the matrix/filament cross-sectional area
and modulus of elasticity, respectively, Ll/r are distances from the crack to the boundaries at the left/right
hand side, τ stands for the friction acting at the matrix-filament interface, ` denotes the bond free length of
the filament, θ is the filament waviness in terms of additional strain (delayed activation), ξ is the filament
breaking strain and p is the filament perimeter. Variables summarized in θf are the filament properties which
are later in Sec. 3 eventually considered as random. For simplicity only the control variables w, x will be
explicitly indicated further in the text.

Three stages (Fig. 4) of the filament crack bridge response have to be distinguished in the explicit
notation:

(A) First, debonding (the bond law assumed here is a frictional resistance with constant magnitude τ ) takes
place at both sides of the crack and propagates towards the (fixed) boundaries

Ff0(A)(w) =

{
1
2η2

(√
c2

A + 4wθKfη2T − cA

)
, wθ ≥ 0

0, wθ < 0
(2)

cA = LT − η(Lmin + Lmax)T, (3)

`θ and wθ include the effect of the filament waviness in the following way: `θ = `(1 + θ);wθ =
w − θ`. T = τp denotes the shear flow per unit length of a filament with the perimeter p, Kf/m is the
filament/matrix tensile stiffness defined as Af/mEf/m and η stands for the matrix/composite stiffness
ratio Km/(Kf +Km). Lmin/max is the shorter/longer bonded length at the left or right hand side from
the crack and is defined as min/max{Ll−`/2, Lr−`/2} and L is the total filament length in the crack
bridge (see Fig. 3).

(B) As soon as the debonding reaches the closer boundary, i.e. the bond is activated along the whole
primarily bonded length Lmin (Fig. 3) the model formally changes from a crack bridge to a pullout
with free fiber length `e equal to 2Lmin + `, bonded length Lb defined as Lmax − Lmin and a force
offset PA accumulated in stage A due to the frictional bond along the debonded interface:

Ff0(B)(w) =
1

η2

(√
c2

B + 2(wθ − wθ,A)Kfη2T − cB

)
+ PA (4)

cB = LT − η(Lmax − Lmin)T (5)

with wθ,A/PA the crack width/force at the transition between stage A and B.
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(C) After the filament has been fully debonded along the whole length L, the model responses linearly-
elastic to further loading with tensile stiffness Kf :

Ff0(C)(w) =
Kf(wθ − wθ,B)

L
+ PB. (6)

where wθ,B/PB in analogy to Eq. (4) stand for the crack width/force at the transition between stage B
and C.

Putting Eqns. (2, 4, 6) together yields the formula for the bridging force Ff0:

Ff0(w) =


Pf0(A) : 0 ≤ Ff0 < PA

Pf0(B) : PA ≤ Ff0 < PB

Pf0(C) : PB ≤ Ff0

(7)

Filament can break anytime during the loading which causes an immediate drop of the bridging force to
zero. The remaining force carried by a broken filament being pulled out of the matrix is assumed to have
minor contribution compared to intact filaments and is therefore neglected. This can be written using the
Heaviside step function H(x) defined as:

H(x) =

{
0 : x < 0
1 : x > 0

(8)

resulting in:
Ff0(w) = Ff0 ·H(Ff0 −AfEfξ) (9)

Eqn. (7) delivers a base for the evaluation of strains in the filament εf(x) and matrix along the longitudinal
axis x (Fig. 4). Highest values of filament strain occur at the crack position and with growing distance from
the crack linearly descend with slope equal to the shear flow per length value T provided that the filament
has a bond to the matrix. If there is a part of the filament with no contact to the matrix, the strain is constant
along the region (see lower diagrams in Fig. 4). However, there is a lower bound εff for the filament strain
which equals the far field strain of the compact composite where no debonding takes place:

εff(w) =
Ff0

Km +Kf
. (10)

The strain along a filament can be expressed as:

εf(w, x) =

 Ff0/Kf : free length `e
[Ff0 − T (|x| − `θ/2)] /Kf : debonded part a
εff : bonded part LPO − a

(11)

where the variable x is the position at the longitudinal axis with origin at the crack.
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Stochastic cracking of brittle matrix composites with heterogeneous reinforcement

Figure 4. Filament crack bridge - force vs crack width with 3 distinguished phases (upper diagram); force in filament along the
longitudinal axis for debonding stages A, B and C (lower diagrams). Parameters:Am = 29.4 ·10−3 [mm2], Em = 30 ·103 [MPa],
Ll = 50 [mm], Lr = 20 [mm], Af = 5.31 · 10−4 [mm2], Ef = 72 · 103 [MPa], τ = 0.1 [N/mm2], ` = 10 [mm], θ = 0.01 [-],
ξ = 0.0179 [-], p = 85.0 · 10−3 [mm]. The three profiles are depicted for crack widths w = 0.15, 0.4 and 0.7 mm (from left to
right).

3. Statistical crack bridge model

Sec. 2 creates a basis for the yarn crack bridge model. Since yarns consist of several hundreds or thousands
of filaments, it would be very inefficient to simulate every single filament and sum their contributions.
Therefore, the yarn is assumed to be represented by the average filament multiplied by the total number of
filaments:

Fy0(w) = Nf · µf0 = Nf · E [Ff0] (12)
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Figure 5. Yarn crack bridge - normalized yarn force Fy0/Nf vs crack opening and 5 random filament realizations (a); normalized
yarn force Fy/Nf along longitudinal axis and 5 random filament realizations (b); 3D plot of the diagrams (c). Parameters for the
yarn response:Am = 50.0 [mm2],Em = 30 ·103 [MPa], Ll = 50 [mm], Lr = 20 [mm],Af = 5.31 ·10−4 [mm2],Ef = 72 ·103
[MPa], τ = uniformdistribution (min = 0.05, max = 0.20) [N/mm2], ` = uniformdistribution (min = 2.0, max = 17.0)
[mm], θ = 0.01 [-], ξ = Weibull distribution (shape = 5.0, scale = 0.0179 [-], p = 85.0 · 10−3 [mm], Nf = 1700 [-]. The
profiles in (b) are depicted for the crack width w = 0.5 mm.

for the force vs crack width and

Fy(w, x) = Nf · µf = Nf · E [Ff ] (13)

for the force along the yarn. The average or expected value of the filament crack bridge response µf0 and µf

multiplied by the total number of filaments Nf can be alternatively written as follows:

Fy0(w) = E [Ff0(Af = Ay, p = Nf · p)] (14)

and
Fy(w, x) = E [Ff(Af = Ay, p = Nf · p)] (15)

respectively. This approach was used earlier e.g. for modeling fiber bundles with random fiber properties
in (Phoenix, 1979; Phoenix and Taylor, 1973; Chudoba et al., 2006b) and in the early works (Daniels,
1945; Coleman, 1958). Assumed that the filaments are statistically and mechanically independent it delivers
an asymptotic result (for an infinite number of filaments) which is in this case justified by the large number of
filaments forming a yarn. The average filament response (Fig. 5) is evaluated as stated in the cited literature
in the following way:

µf0(w) =

∫
θf

Ff0 · f(θf) dθf (16)

for the force resisting the crack opening and

µf(w, x) =

∫
θf

Ff · f(θf) dθf (17)

for the force along the composite longitudinal axis, with f(θf) denoting the joint probability density function
(PDF) of the random variables from the vector θf . The average filament responses µf0 and µf are depicted
in Fig. 5.
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4. Composite model with stochastic cracking

With equations defined in Sec. 3 all tools needed for describing the stress state in the composite around a
crack are provided. However, composite materials are designed to fail only after multiple transverse cracks
have formed. To model this behavior, two additional variables have to be introduced: the load level F for new
cracks to form and positions xc of the cracks. F and xc are revealed by satisfying the following condition:

σm(F, x) ≥ σmu(x) (18)

where σmu is a static autocorrelated random field (Vorechovsky, 2008). We define the local matrix strength
as having the distribution of minimum extremes according to Weibull

W (σmu) = 1− exp

(
−
〈
σmu

σ0

〉m)
(19)

with m and σ0 standing for the shape and scale parameter, respectively, and being cross correlated by the
following definition

R(dx, lρ) = exp

(
−dx

lρ

)2

(20)

where lρ is the autocorrelation length and dx the distance between two points in the random field. The
random field mimics the natural fluctuations of the local strength of reinforced matrix and automatically
ensures the random distribution of the first cracks along the specimen (Fig. 6). A realization of this random
field σmu is at a given load compared with the stress state in matrix σm and cracks are formed at the load
level F and position xc where the two functions first overlap if F is monotonically increased (Fig. 7).

4.1. COMPUTATION OF σm

At small tensile loads at the beginning of the loading process, the strains in both matrix and reinforcement
are assumed to be constant along the longitudinal axis x and described by:

εff(F ) =
F

Kf +Km
(21)

Figure 6. Autocorrelation function for lρ = 3.0 and 10.0 mm (left); corresponding realizations of a Weibull (shape = 10.0, scale =
5.0, location = 0.0) random field (right)
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Figure 7. Matrix stress profiles at various loading stages

As soon as the tensile strength of the matrix is reached at some place, a matrix crack forms, the forces are
redistributed and the reinforcement strain localizes at the position of the matrix crack (Fig. 7). Analogically,
strain in the matrix drops to zero and is built up with growing distance from the crack. Cohesive forces
between the newly created matrix surfaces are ignored here. The current matrix stress, given the yarn force
by Eq. (15), is evaluated as:

σm(F, x) =
F − Fy

Am
(22)

where the half distances to the neighboring cracks Ll and Lr, respectively, have to be taken into account
and substituted into Fy in Eq. (15). Since Fy is controlled by crack opening, the value of crack opening
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corresponding to the applied load F has to be evaluated first. This can be done by inverting Eq. (16) so
that µf0(w) becomes w(µf0) where µf0 is substituted by the applied load F . In this way, Fy in Eq. (15) is
redefined as a function of F .

4.2. AVERAGE COMPOSITE STRAIN

The strain profile along the yarn has to be evaluated at every load step as it is qualitatively and quantitatively
affected by both the load level and the crack positions. The overall (average) strain of the composite loaded in
tension is evaluated by integrating the yarn strain, which is the parallel coupling of yarn strain profiles within
the individual crack bridges εy = Fy/(EfAy), along the whole specimen - delivering the total displacement
- and dividing it by the composite specimen length Lc:

εc(F ) =
1

Lc

∫ Lc

0
εy(F, x)dx (23)

5. Computational examples

To demonstrate the influence of randomized parameters we observe the composite stress – strain diagram
Eq. (23) and the crack width distribution. Parameters shall be varied ’one at the time’ to point out their
particular contribution to the global response.

5.1. RANDOM MATRIX STRENGTH

Defining the matrix strength by a constant value results in a horizontal line in the stress – strain diagram
(ACK (Aveston et al., 1971)) at the composite stress level, which corresponds to the ultimate matrix stress. If
the local matrix strength fluctuates around this value, cracks develop at earlier load stages (Fig. 8). In fact, the
load at first crack is distributed as the minimum extreme value of the random matrix strength. Furthermore,
the composite response is also affected by the predominant correlation of the matrix strength. If the fine
grains are the main source of strength correlation, the autocorrelation length lρ is rather small. In contrary, a
nearly homogeneous matrix with strength fluctuations caused predominantly by outer sources (e.g. casting
process, geometrical inaccuracies) can be expected to have a large lρ. A case in between these extremes is
e.g. the cross-section strength reduction caused by fine shrinkage cracks. Here, the lρ of the matrix strength
is in the order of a few millimeters. In Fig. 9, the filament and bond parameters are fixed and lρ of the matrix
strength is varied to represent the three cases mentioned. In the range of approx. 1.0 < δ0/lρ < 10.0, where

δ0 =
(Km +Kf)σ0

EmT
(24)

is the shielded length and σ0 is the scale parameter of the matrix strength distribution, the autocorrelation
length lρ has a significant influence on the degree of tension stiffening - the difference in strains of a
composite saturated with crack and of the reinforcement only. It is proportional to the stress remaining
in the matrix in the saturated state (gray shaded area in Fig. 9) which on the other hand is proportional to the
distance of minimums of the matrix strength For high δ0/lρ ratios, the minimums of matrix strength along
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Figure 8. Variable shape parameter m of the matrix strength distribution. Stress – strain diagrams (left), matrix strength along x
for variable m (right). Parameters: Am = 50.0 [mm2], Em = 30 · 103 [MPa], Lc = 3000 [mm], Af = 5.31 · 10−4 [mm2],
Ef = 72 · 103 [MPa], τ = 0.1 [N/mm2], ` = 0.0 [mm], θ = 0.0 [-], ξ = ∞ [-], p = 85.0 · 10−3 [mm], Nf = 1700 [-], σmu =
autocorrelated field with Weibull distribution (shape = 3.0, 10.0, 1000.0, scale = 5.0, lρ = 30.0 [mm])

Figure 9. Variable autocorrelation length lρ of the matrix strength distribution. Stress – strain diagrams (left), matrix strength σmu

along x for variable lρ and matrix stress σm(x) in saturated state (right). Parameters: Am = 50.0 [mm2], Em = 30 · 103 [MPa],
Lc = 3000 [mm], Af = 5.31 · 10−4 [mm2], Ef = 72 · 103 [MPa], τ = 0.1 [N/mm2], ` = 0.0 [mm], θ = 0.0 [-], ξ = ∞ [-],
p = 85.0 · 10−3 [mm], Nf = 1700 [-], σmu = autocorrelated field with Weibull distribution (shape = 7.0, scale = 5.0, δ0/lρ =
200.0, 4.0, 1.0)

x are close, so that the matrix cracking takes place mainly at lower stresses and the composite achieves the
saturated state at relatively low loading stages. The crack spacing is dense and consequently there is not
much stress remaining in the matrix in the saturated state. Low δ0/lρ ratios result in a wider load range
of matrix cracking, the saturated state is reached at higher load stages, the crack spacing is larger and the
amount of stress stored in the matrix is higher.

The two examples demonstrate the feasibility of the implementation and its capability to reflect the
effect of microstructural parameters on the strain-hardening response of the composite. Systematic para-
metric studies are currently being elaborated and will be presented in the following papers and during the
conference presentation.
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6. Concluding remarks

The paper describes a multiscale approach for modeling of the fragmentation process of composites with
heterogeneous reinforcement. Components of the model were presented separately according to their respec-
tive scales. We have presented some results in Sec. 5, which reflect the sensitivity of the global composite
behavior on the matrix strength distribution.

We remark that the matrix strength is represented by a single realization of a random field. Consequently,
the results are single realizations of a function of random variables. However, the single realizations can
be considered as fairly close to the expected values as the length of the modeled specimen Lc gets large
compared to the autocorrelation length and therefore the variability, according to the central limit theorem,
diminishes with the rate ≈ lρ/Lc . We kept this principle in mind when evaluating the presented results.

Summary of assumptions imposed in the model:

− loading results in uniaxial stress in the composite

− cracks are planar and perpendicular to the loading direction

− crack opening is uniform across the composite cross section
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