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Abstract: A procedure for deriving in explicit approximate form the frequency response function (FRF) of 

linear discretized structures with uncertain stiffness properties is presented. The proposed procedure is 

based on the following main steps: i) to perform the spectral decomposition of the deviation of the stiffness 

matrix (with respect to its nominal value) so as to obtain a sum of rank-one matrices, each one associated to 

a single uncertain parameter; ii) to project the equations of motion in the modal subspace; iii) to introduce a 

novel series expansion of the FRF in the modal subspace which provides an approximate, but explicit, 

expression of the FRF of structural systems with uncertain parameters. The potential of the proposed series 

expansion are demonstrated in the context of the so-called improved interval analysis by determining the 

range of the modulus of the FRF of structures with uncertain-but-bounded parameters.  
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1. Introduction 

 

In Structural Dynamics, the frequency response function (FRF), also called transfer function, is a complex 

function able to provide information about the behavior of a structure over a range of frequencies. For 

instance, the frequency domain response of a single-degree-of-freedom system (SDOF), i.e. an oscillator, is 

evaluated simply multiplying the FRF by the Fourier transform of the forcing function. For multi-DOF 

structural systems the FRF describes the relationship between a local excitation applied at one location on 

the structure and the resulting response at another and/or the same location. The frequency domain 

approach often gives information useful for structural design purposes that cannot be alternatively caught 

by the time domain approach. Moreover, it is sometimes more convenient to perform the analysis in the 

frequency domain; as an example, for structures with frequency dependent parameters or subjected to 

stationary random processes and so on. Indeed, in all these cases the evaluation of the FRF is required. 

In practical engineering problems, material properties, geometry and boundary conditions of a structure 

may experience fluctuations, due to measurement and manufacturing errors or other factors, which may 

significantly affect the response. The uncertainties are usually described following two contrasting points of 

view, known as probabilistic and non-probabilistic approaches. The probabilistic approach requires a 

wealth of data, often unavailable, to define the probability distribution density of the uncertain structural 
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parameters. If available information is fragmentary or incomplete, non-probabilistic approaches, such as 

convex models, fuzzy set theory or interval models (Elishakoff and Ohsaki, 2010), can be alternatively 

applied. 

Among non-probabilistic approaches, the interval model turns out to be the most suitable approach 

when only the upper and lower bounds of a non-deterministic property are well defined. Indeed, this model 

is derived from the interval analysis (Moore, 1966; Alefeld and Herzberger, 1983; Moore et al., 2009) in 

which the number is treated as an interval variable ranging between its lower and upper bounds. 

Unfortunately, the “ordinary” interval analysis (Moore, 1966) suffers from the so-called dependency 

phenomenon (Muhanna and Mullen, 2001; Moens and Vandepitte, 2005; Moore et al., 2009) which often 

leads to an overestimation of the interval width that could be catastrophic from an engineering point of 

view. This occurs when an expression contains multiple instances of one or more interval variables. Indeed, 

the ordinary interval arithmetic operations erroneously assume that the operand interval numbers are 

independent. To limit the catastrophic effects of the dependency phenomenon, the so-called generalized 

interval analysis (Hansen, 1975) and the affine arithmetic (Comba and Stolfi, 1993; Stolfi and De 

Figueiredo, 2003) have been introduced in the literature. In these formulations, each intermediate result is 

represented by a linear function with a small remainder interval (Nedialkov et al., 2004). 

In the framework of probabilistic approaches, the FRF has been evaluated by Falsone and Ferro (2005, 

2007) in explicit form by taking into account the properties of the natural deformation modes of the finite 

element discretized structure. In a non-probabilistic context, Moens and Vandepitte (2004) proposed a 

numerical procedure to efficiently calculate close outer approximations on the envelope FRF of structures 

with interval uncertainties. The FRF of systems with uncertain-but-bounded parameters was also evaluated 

by Manson (2005) employing both the complex interval analysis and the complex affine arithmetic. 

In this paper, an alternative approach for the evaluation of the FRF of discretized structures with 

uncertain stiffness properties is presented. The proposed procedure requires the following preliminary steps: 

i) the spectral decomposition of the deviation of the stiffness matrix (with respect to its nominal value) to 

obtain a sum of rank-one matrices, each one associated to a single uncertain parameter; ii) the modal 

analysis to project the equations of motion in the modal subspace. In a second stage, a novel series 

expansion of the modal FRF, named Rational Series Expansion (RSE), which provides an approximate, but 

explicit, expression of the FRF of structural systems with uncertain parameters, is derived. Finally, the 

proposed series expansion together with the so-called improved interval analysis presented by Muscolino 

and Sofi (2011) is used to obtain the range of the modulus of the FRFs of structures with uncertain-but-

bounded parameters.  

Numerical applications performed on a truss structure and a portal frame with uncertain Young’s 

moduli of the material have demonstrated the accuracy of the proposed explicit approximation of the FRF.  

 

 

 

2. Preliminary concepts 

 

2.1.  EQUATIONS OF MOTION 

 

Let us consider a quiescent n-DOF linear structural system with uncertain stiffness properties subjected to 

the forcing vector f(t). The equations of motion can be cast in the form: 
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where M and C are the nn mass and damping matrices of the structure;  = [1, 2,..., r]
T
 is the vector 

collecting the r dimensionless uncertain parameters i; u(,t) is the vector of nodal displacements and a dot 

over a variable denotes differentiation with respect to time t.  

It is worth noting that the relationship between the stiffness matrix, K(), and the vector  is often 

linear or, by applying a suitable variable transformation, it is always possible to make the stiffness matrix 

depend linearly on the new variables. Based on this concept, the stiffness matrix K() is herein expressed 

as a linear function of the uncertain properties, i.e.: 
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where K0 is the nominal value of the stiffness matrix, which is a positive definite symmetric matrix of order 

nn, Ki is a semi-positive definite symmetric matrix of order nn and rank pi and i is the i-th 

dimensionless uncertain parameter. In structural engineering problems, the fluctuating properties can be 

reasonably assumed to satisfy the condition i < 1, with the symbol  denoting absolute value. 

In the framework of the traditional modal analysis, the solution of the equations of motion (1) may be 

pursued by introducing the following coordinate transformation: 
 

0( , ) ( , )  u qt t  (4) 

 

where q(,t) is the vector gathering the first m modal coordinates qj(,t) (j = 1,2,..., m ≤ n); 0 is the modal 

matrix, of order nm, pertaining to the nominal configuration in which K0 = K(0). Specifically, the modal 

matrix 0, collecting the first m eigenvectors normalized with respect to the mass matrix M, is evaluated as 

solution of the following eigenproblem: 
 

2 Τ

0 0 0 0 0 0;     K M M Im  (5) 

 

where Im denotes the identity matrix of order m; 0
2
 = 0

T
K00 is the spectral matrix of the nominal 

structural system, say a diagonal matrix listing the squares of the natural circular frequencies of the 

structure, ω0,i, for the nominal values of the uncertain parameters; the apex T means transpose matrix. By 

applying the coordinate transformation (4), the equations of motion (1) can be projected in the modal space: 
 

2( , ) ( , ) ( ) ( , ) ( )t t t t  q q q p     
 

(6) 

 

where 2
() = 0

T
K()0;  = 0

T
C0 is the generalised damping matrix, which for classically damped 

systems is a diagonal one; p(t) = 0
Tf(t) is the modal forcing vector. Notice that by virtue of the 

decomposition (2) of the stiffness matrix, the following relationship holds: 
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2 T T T 2 2
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where 
 

2 T

0 0   Ki i  
(8) 

 

is not a diagonal matrix. 

 

2.2.  FREQUENCY DOMAIN RESPONSE 

 

In some cases, such as for structures with frequency dependent parameters or in presence of stochastic 

stationary excitations, it is more convenient to perform the analysis in the so-called frequency domain.  

In the context of the frequency domain analysis, it is assumed that the loading is periodic and has been 

resolved into its discrete harmonic components by Fourier transformation. The corresponding harmonic 

components of the structural response can be derived by performing the Fourier transform of both sides of 

Eq. (6) (or Eq.(1)) obtaining the following set of algebraic frequency dependent equations: 
 

2 2i ( ) ( , ) ( )           I Q Pm  
(9) 

 

where Q(,ω) and P(ω) are the vectors collecting the Fourier transforms of q(,t) and p(t), respectively. The 

modal frequency response vector Q(,ω), solution of Eq.(9), can be expressed as follows: 
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(10) 
 

where 
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(11) 

 

is the modal frequency response function (FRF) matrix (referred to also as transfer function matrix) whose 

expression has been derived taking into account Eq. (7) and introducing the FRF matrix of the nominal 

structural system, given by: 
 

1
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It is worth noting that the FRF matrix H(,ω) is not diagonal, while for classically damped systems the 

matrix H0(ω) is a diagonal one.  

Once the modal frequency response Q(,ω) is evaluated, the frequency response U(,ω) in the nodal 

space can be obtained by performing the Fourier Transform of Eq.(4), i.e.: 
 

0( , ) ( , ).   U Q  (13) 
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To avoid the inversion of the parametric frequency dependent matrix in Eq.(11), the Neumann series 

expansion can be adopted which leads to the following expression: 
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The convergence of this series expansion is guaranteed if and only if the least square norm of the matrix in 

square brackets is less than one. In the next section, an alternative series expansion of the modal FRF 

matrix for structural systems with uncertain parameters is proposed. 

 

 

 

3. Proposed explicit form of the FRF matrix 

 

3.1.  SPECTRAL DECOMPOSITION OF THE STIFFNESS MATRIX 

 

As well known, in structural engineering the stiffness matrix is always a positive definite matrix. In the 

previous section, the stiffness matrix has been assumed to depend on r dimensionless uncertain parameters 

satisfying the conditions i < 1, i.e. K = K(). Furthermore, the stiffness matrix has been decomposed 

according to Eq.(2), where K0 is a positive definite symmetric matrix of order nn, while Ki is a semi-

positive symmetric matrix of order nn and rank pi. As an example, in the case of truss structures and 

shear-type frames, the matrices Ki have rank pi = 1. Instead, for flexible frames the matrix Ki has rank pi = 3 

and so on. The foregoing property can be exploited to perform the spectral decomposition (referred to also 

as eigendecomposition) of the matrices Ki. To this aim, the following eigenproblems have to be solved: 
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where i
() denote the eigenvalues which are real positive numbers, while i

() are the associated 

eigenvectors. Due to the semi-positivity of the matrix Ki, among the n eigenvalues of the i-th eigenproblem 

in Eq. (15) only ip  < n eigenvalues are different from zero. As an example, in the case of truss structures 

and shear-type frames only one eigenvalue different from zero is found for each uncertain parameter; for 

flexible frames, each eigenproblem (15) yields three eigenvalues different from zero and so on.  

By imposing that the eigenvectors i
() satisfy the orthonormalization condition: 
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the following relationship holds:  
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Then, after very simple algebra, by applying the previously described spectral decomposition, the 

matrix Ki can be written as: 
 

                 T TT

0 0 0 0

1 1

     
 

   K K K K K v  v
i ip p

i i i i i i i i i i

 

(18) 

 

where 
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Substituting Eq.(18) into Eq. (2), the stiffness matrix K() can be expressed as the superposition of 
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Finally, upon introducing the spectral decomposition of the stiffness matrix given by Eq.(20) into Eq. 

(7), the matrix 
2
(), appearing in the FRF matrix (11), takes the following form: 
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with 
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3.2.  APPROXIMATE MODAL FRF MATRIX FOR TRUSS STRUCTURES WITH UNCERTAIN PARAMETERS 

 

In order to illustrate the proposed procedure for the derivation of an explicit approximate form of the FRF 

matrix, the simplest case of truss structures is first examined. In particular, recalling that for truss structures 

the i-th eigenproblem in Eq. (15) gives only one eigenvalue different from zero, i.e. pi = 1, I = i
(1)

 and 

i = i
(1)

, the spectral decomposition of the matrix Ki outlined in the previous section reduces to: 
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where vi = vi
(1)

. Accordingly, the matrix i
2
() in Eq. (22) takes the following form: 
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where wi = wi
(1)

. By substituting Eq. (25) into Eq. (14), the Neumann series expansion of the modal FRF 

matrix can be rewritten as: 
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In order to improve the convergence, the terms into square brackets in Eq.(26) are herein rewritten in 

explicit form obtaining the following expression of the FRF matrix, named Rational Series Expansion 

(RSE): 
 

1

1 T

0 0

1 1

T

1 1

( , ) ( ) ( ) ( ) 
1+ ( )

                                                     ( ) ( ) ( )
1+ ( )

                  

 
     

  

   
  

  







 

  

 
    
 

    

 



H H w  w H D

D D

r r
i i

i i i i i

i i i i i

r r
i j j i

ij ij ij

i j i j j ij

d

d
d

1 1 1

                                   ( ) ( ) ( )
1+ ( )

                                                     ( ) ( ) ( )
1+ ( )

     
  

  

       
  

  

  
 

 



 D
r r r

i j k i j k

ij jk ik

i j k k k jk
j i k j

i j k i j k

ij jk k

k

d d
d

d d d
d1 1 1 1

( )
   

  

 D
r r r r

i

i j k
j i k j k

 

(27) 
 

where only the first four terms have been retained and the following complex quantities have been 

introduced: 
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Equation (27) holds if and only if the following conditions are satisfied: 
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where the symbol  denotes the modulus of .  

Moreover, if s << 1, the approximate modal FRF matrix can be accurately evaluated by retaining 

only first-order terms of the RSE in Eq.(27), i.e.: 
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It has to be emphasized that Eqs. (27) and (31) provide with different levels of accuracy closed form 

expressions of the modal FRF matrix of truss structures with uncertain parameters. This remarkable result 

can be exploited to derive explicit solutions for the frequency domain response of truss structures with 

fluctuating parameters. 

 
3.3.  APPROXIMATE MODAL FRF MATRIX FOR THE MOST GENERAL CASE OF DISCRETIZED STRUCTURES 

 

In this section, an approximate closed form expression of the FRF matrix for the most general case of 

discretized structural systems is derived by applying the procedure described above for truss structures. 

Specifically, taking into account that in this case the i-th eigenproblem in Eq. (15) gives pi eigenvalues 

different from zero, the spectral decomposition of the stiffness matrix leads to Eq. (22) for the matrix i
2
. 

Substituting this expression into Eq.(14) and rewriting the terms of the Neumann series expansion 

according to Eq.(27), the modal FRF matrix can be approximated in explicit form by the following RSE: 
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(35) 

 

are complex quantities. Obviously, Eq.(32) holds if and only if the following conditions are satisfied: 
 

     
( ) 1;   ( ) <1; ( ) <1;        

m n

i i i j j ij m k k jkmnb b b
 

(36) 

 

If the uncertain parameters satisfy the condition s << 1, an accurate approximation of the modal FRF 

matrix can be obtained by retaining only first-order terms of the RSE in Eq.(32), i.e.: 
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     
 

 

1

T1

0 0

1 1 1 1

( , ) ( ) ( ) ( ).
1 ( )

 
     

  






   

  
     

  
  H H w  w H B

ji
ppr r

i i
i i i i i

i i i i ib
 (37) 

Equations (32) and (37) represent closed form expressions which approximate with different accuracy 

the modal FRF matrix of discretized structures with uncertain parameters. Such expressions are very useful 

to investigate the effects of the fluctuating properties on the frequency domain response of discretized 

structures, since the response can be derived in explicit form as well.  

 

 

 

4. Uncertain-but-bounded parameters 

 

4.1.  PRELIMINARY DEFINITIONS: REAL AND COMPLEX INTERVAL VARIABLES 

 

In this section, the r uncertain structural parameters i (i = 1,2,…,r) introduced in the above formulation are 

assumed independent and are modeled as interval variables. Then, according to the “ordinary” interval 

analysis (Moore, 1966; Alefeld and Herzberger, 1983; Neumaier, 1990; Moore et al., 2009), denoting by  

the set of all closed real interval numbers, the bounded set-interval vector of real numbers 

[ , ]   I r , such that     , can be introduced. The apex I characterizes the interval variables, 

while   and   denote the vectors collecting the lower and upper bounds of the i-th uncertain parameter 

  I

i
, say  i

 and  i
.  

Unfortunately, the “ordinary” interval analysis suffers from the so-called dependency phenomenon 

(Muhanna and Mullen, 2001; Moens and Vandepitte, 2005; Moore et al., 2009) which often leads to an 

overestimation of the interval width that could be catastrophic from an engineering point of view. This 

occurs when an expression contains multiple instances of one or more interval variables. To limit the 

catastrophic effects of the dependency phenomenon, the so-called generalized interval analysis (Hansen, 

1975) and affine arithmetic (Comba and Stolfi, 1993; Stolfi and De Figueiredo, 2003) have been introduced 

in the literature. In these formulations, each intermediate result is represented by a linear function with a 

small remainder interval (Nedialkov et al., 2004). According to the philosophy of the affine arithmetic, 

Muscolino and Sofi (2011) proposed the so-called improved interval analysis based on the definition of the 

extra symmetric unitary interval (EUI) variable ˆ [ 1, 1] Ie , ( 1,2, , )i r . The EUI is defined in such a 

way that the following properties hold: 

   
2

ˆ ˆ ˆ ˆ ˆ0;      1,1 ;    I I I I I

i i i i ie e e e e

 

 (38) 

   ˆ ˆ ˆ ˆ1, 1 ,   ;      / 1,1 .     I I I I

i j i ie e i j e e  (39) 

where the subscript i means that the EUI variable is associated to the i-th uncertain-but-bounded parameter. 

In the previous equations, [1,1] = 1 is the so-called unitary thin interval. It is useful to remember that a thin 

interval occurs when    and it is defined as  ,  I
, so that  . Then, introducing the midpoint 

value (or mean), 
0, i

, and the deviation amplitude (or radius),  i
, of the i-th real interval variable  I

i
: 
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   0,

1 1
;     ,

2 2
        i i i i i i

 (40) 

 

the following affine form definition can be adopted: 
 

 0,
ˆ ,    1,2,..., .    I I

i i i ie i r
 

(41) 

 

In the case of complex interval variables, within the framework of the affine arithmetic, Manson (2005) 

proposed an approach which allows to take into account the dependency between the real and imaginary 

components of the complex variables. Conversely, the “ordinary” complex interval analysis assumes that 

the real and imaginary components are independent. According to the philosophy of the affine arithmetic, a 

complex interval variable i I I I

i i iz x y  is herein defined as: 
 

   0, 0, 0,
ˆ ˆi i       I I I

i i i i i i i i iz z z e x y x y e
 

(42) 

 

where i 1   denotes the imaginary unit; 
0,ix  and 

0,iy  are the midpoint values (or means) and  ix  and 

 iy  are the deviation amplitude (or radius) of the real and imaginary part of the complex interval variable, 

respectively, given by: 
 

       0, 0,

1 1 1 1
; ; ; .

2 2 2 2
i i i i i i i i i i i ix x x y y y x x x y y y        

 
(43) 

 

4.2.  INTERVAL STIFFNESS MATRIX 

 

In structural engineering, the uncertain-but-bounded parameters can be reasonably assumed to posses 

symmetric deviation amplitude     i i i
, so that the generic interval variable, according to the 

improved interval analysis, can be written in affine form as: 
 

ˆ    I

i i ie  (44) 

 

being 0,i = 0 and i > 0. 

Then, following the interval formalism above introduced, the stiffness matrix K() can be expressed as 

a linear function of the interval variables, i.e.: 
 

 0 0

1

ˆ( ) ( ) ,     ,     


      K K K K K
r

I I

i i i

i

e

 

(45) 

 

where the matrices K0 and Ki, of order nn, have been defined in Eq. (3) and i is the dimensionless 

fluctuation of the i-th uncertain parameter. Furthermore, by virtue of the decomposition (45) of the stiffness 

matrix, the following relationship holds: 
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 2 T T 2 2

0 0 0 0 0 0

1 1

ˆ ˆ( ) ,     ,            
 

        K K
r r

I I I

i i i i i i

i i

e e  (46) 

 

where i
2
 is the matrix defined in Eq.(8).  

 

4.3.  APPROXIMATE INTERVAL MODAL FRF MATRIX 

 

In order to simplify interval computations, the attention is herein focused on small deviation amplitudes of 

the uncertain-but-bounded parameters, i.e. i  1. Under this assumption, based on the RSE in Eq.(37) the 

interval modal FRF matrix, in the most general case of discretized structural systems with uncertain-but-

bounded stiffness properties, can be expressed in the following approximate explicit form: 
 

 

   0

1 1

ˆ
( , ) ( ) ( ),     ,

ˆ1 ( )

 
  

  
    

 


   


H H B

ip Ir
Ii i i

iI
i i i i i

e

e b
 

(47) 

 

where bi() and Bi() are the complex functions defined in Eq.(33). Alternatively, the matrix H(,) can 

be rewritten in a more suitable affine form, as follows: 
 

   0 0,

1 1

ˆ( , ) ( ) ( ) ( ) ( ),    ,        
 

    H H B
ipr

I I

i i i i

i

a a e  (48) 

 

where a0,i() and ai() are complex functions describing the midpoint and the deviation amplitude of the 

i-th term in Eq.(47), given, respectively, by: 

 

  
  

 

  

2

0, 2 2

( )
( ) ; ( ) .

1 ( ) 1 ( )

    
 

     

 
  

   

i i i
i i

i i

i i i i i i

b
a a

b b
 

(49) 

 

Equation (48) can be recast in the following form: 
 

 0( , ) ( ) ( , ),     ,          H N N
I

 (50) 

 

where N0() and ( , )N  are the midpoint and the deviation matrices of the modal FRF defined in the 

context of the proposed RSE, respectively, as: 
 

0 0 0,

1 1

( ) ( ) ( ) ( );   
 

 N H B
ipr

i i

i

a  (51) 
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 
1 1

ˆ( , ) ( ) ( ),     , .      
 

    N B
ipr

I I

i i i

i

a e  (52) 

 

4.4.  BOUNDS OF THE MODULUS OF THE NODAL INTERVAL FRF 

 

The aim of this section is to determine the range of the modulus of the nodal interval FRFs of linear 

discretized structures with uncertain-but-bounded parameters. Once the modal FRF matrix is known, the 

square modulus of the FRF of the p-th DOF of the structural system can be defined as: 
 

 
2

Τ Τ

0, 0, 0, 0,( , ) ( , ) ( , ) ,     ,              *
H H

I

N,pp p p p pH
 

(53) 

 

where 
Τ

0, p  is the p-th row of the modal matrix 0 solution of the eigenproblem (5). Substituting Eq. (50) 

into Eq. (53), the following relationship is obtained: 
 

 
2

Τ * Τ

0, 0 0, 0, 0 0,( , ) ( ) ( , ) ( ) ( , ) ,     , .                        
*

N N N N
I

N,pp p p p pH
 
(54) 

 

Aiming to evaluate the upper bound and the lower bound of the modulus of HN,pp(,), Eq. (54) is 

rewritten as: 
 

 
2 2 2

( , ) mid ( ) dev ( , ) ,     ,          I

N,pp N,pp N,ppH H H
 

(55) 

 

where the symbols mid
2
 and dev

2
 denote the midpoint and the deviation of the square modulus of the 

interval nodal FRF defined in Eq.(54). 

In order to simplify interval computations, higher-order terms are neglected, namely the term 
Τ Τ

0, 0, 0, 0,( , ) ( , )       *
N Np p p p  in Eq. (54) is disregarded. According to this approximation, the 

midpoint and the deviation functions introduced in Eq.(55) can be written as: 
 

2
Τ * Τ

0, 0 0, 0, 0 0,mid ( ) ( ) ( ) ;      N NN,pp p p p pH

 

(56) 

 

2
Τ * Τ Τ Τ

0, 0 0, 0, 0, 0, 0, 0, 0 0,dev ( , ) ( ) ( , ) ( , ) ( ) ,   

                                                                                                                 

              

  

   

 

*
N N N NN,pp p p p p p p p p

I

H

 ,
 (57) 

 

where N0() and N(,) are the midpoint and the deviation matrices introduced in Eqs.(51) and (52). 

The lower bound, 
2

( )N,ppH , and the upper bound, 
2

( )N,ppH , of the square modulus of the nodal 

FRF of the p-th DOF can be evaluated, according to the philosophy of the affine arithmetic, as the 

minimum and maximum of the various combinations, i.e.: 
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22 2

( ) mid ( ) ( ) ;   N,pp N,pp N,ppH H H

 

(58) 

 
22 2

( ) mid ( ) ( ) .   N,pp N,pp N,ppH H H  (59) 

 

In the previous equations the function 
2

( ) N,ppH  is obtained upon substituting the matrix ( , )N , 

defined in Eq.(52), into Eq.(57) and then deriving the maximum of the deviation 
2

dev ( , )N,ppH  

according to the main properties of the interval analysis, i.e.:  
 

2
Τ * Τ * * Τ

0, 0 0, 0, 0, 0, 0 0,

1 1

( ) ( ) ( ) ( ) ( ) ( ) ( ) .           
 

      N B B N
ipr

N,pp p p p i i i i p p p

i

H a a  (60) 

 

Notice that the function in square brackets is a real function and that the symbol  means absolute value. 

Obviously, the lower bound and the upper bound, ( )N,ppH  and ( )N,ppH , of the modulus of the nodal 

FRF of the p-th DOF can be obtained straightforwardly by taking the square root of Eqs. (58) and (59). 

 

 

 

5. Numerical applications 

 

5.1. TRUSS STRUCTURE WITH UNCERTAIN YOUNG’S MODULI 

 

The first numerical application concerns the 24-bar truss structure depicted in Fig. 1. The Young’s moduli 

of r = 7 bars are taken as uncertain parameters with fluctuations i < 1 around the nominal value 

E0 = 2.110
8
 kN/m

2
, i.e. Ei = E0 (1+i), (i = 18, 19,..., 24). The cross-sectional areas of the bars are set 

equal to Ai = 5  10
-4

 m
2
 while the lengths Li (i = 1, 2,..., 24) can be deduced from Fig.1 where L = 3 m. 

Furthermore, each node possesses a lumped mass M = 500 Kg. Only the first m = 8 vibrations modes are 

retained in the modal analysis and the modal damping ratio has been assumed equal to  = 0.05 for all the 

modes. 

In Fig. 2, the exact FRF of the first modal coordinate, H11(,), evaluated performing the inversion of 

the matrix into square brackets in Eq.(11) for i =  = 0.05, (i = 18, 19,..., 24) is compared with the 

corresponding approximate FRF obtained by applying the proposed RSE (Eq.(27)). Notice that a good 

matching of the exact FRF is achieved by retaining only the first-order terms in the RSE.  

Figure 3 displays an analogous comparison for larger parameter fluctuations, say i =  = 0.1. As 

expected, in this case the proposed RSE truncated to first-order terms is less accurate, especially in the 

frequency range around the fundamental frequency of the system. Including second-order terms allows to 

improve the accuracy, as shown in the enlargement in Fig 3b.  
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Figure 1. Truss structure with uncertain Young’s moduli.  

 

 
Figure 2. FRF of the first modal coordinate H11(,): a) comparison between the exact FRF and the proposed RSE truncated to 

first-order terms; b) enlargement showing the convergence of the RSE close to the fundamental frequency of the structure 

( = 0.05).  

 

In order to demonstrate the capability of the proposed explicit approximation of the FRF matrix to handle 

different uncertainty models, the fluctuating Young’s moduli of the bars are now treated as interval 

variables i.e. 
0

ˆ(1 )   I

i i iE E e , (i = 18, 19,..., 24), with symmetric deviations i =  = 0.05.  
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Figure 3. FRF of the first modal coordinate H11(,): a) comparison between the exact FRF and the proposed RSE truncated to 

second-order terms; b) enlargement showing the convergence of the RSE close to the fundamental frequency of the structure 

( = 0.1).  

 

 

In Figs.4 and 5, the upper bound and the lower bound of the modulus of the FRF of the nodal displacements 

u1 and u13 of the truss (see Fig. 1), obtained by applying the proposed RSE truncated to first-order terms (see 

Eqs. (58) and (59)), are contrasted with the exact bounds. The latter are obtained following the philosophy 

of the vertex method (Muhanna and Mullen, 2001; Moens and Vandepitte, 2005), namely evaluating the 

modulus of the FRF for all the combinations of the bounds of the uncertain parameters and then taking at 

each frequency  the maximum and minimum value among all the moduli of the FRF so obtained. Notice 

that the proposed estimates of the upper bound and lower bound of both HN,11(,) and HN,1313(,) are 

very close to the exact ones. 

 

 ,11NH 

a

Exact

Proposed

0.05 

 ,11NH 

a

Exact

Proposed

Exact

Proposed

0.05 

Exact

Proposed

0.05 

 ,11NH 

b

Exact

Proposed

0.05 

 ,11NH 

b
 

Figure 4. Comparison between the exact and proposed a) upper bound and b) lower bound of the modulus of the FRF of the nodal 

displacement u1 ( = 0.05). 
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 ,1313NH 

Exact

Proposed

0.05 

a

 ,1313NH 

Exact

Proposed

Exact

Proposed

0.05 

a

 ,1313NH 

Exact

Proposed

0.05 

b

 ,1313NH 

Exact

Proposed

0.05 

b  
Figure 5. Comparison between the exact and proposed a) upper bound and b) lower bound of the modulus of the FRF of the nodal 

displacement u13 ( = 0.05). 

 

 

5.2. FLEXIBLE FRAME WITH UNCERTAIN YOUNG’S MODULI 

 

As second application, a portal frame with uncertain Young’s moduli is considered (see Fig. 6). It is 

assumed that the elastic moduli of the beam and columns exhibit fluctuations i < 1 around the nominal 

value E0 = 2.8510
7
 kN/m

2
, i.e. Ei = E0 (1+i), (i = 1, 2, 3). The geometrical properties of the portal frame 

are indicated in Fig.6, where b = 0.30 m, h = 0.60 m, L = 3 m and H = 2 m. Furthermore, each node 

possesses a lumped mass M=500 Kg. The modal damping ratio is set equal to  = 0.05. 

 

 
Figure 6. Portal frame with uncertain Young’s moduli. 

 

Figure 7 displays the comparison between the exact and approximate FRFs of the first modal coordinate, 

H11(,), for i = = 0.05, (i = 1, 2, 3). The convergence of the RSE can be detected by inspection of the 

enlargement in Fig. 6b, where different approximations obtained retaining terms up to the third-order are 

reported. It can be seen that the proposed RSE truncated to the third-order provides an accurate 

approximation of the FRF close to the fundamental frequency of the structure. The results pertaining to 
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larger parameter fluctuations, i = = 0.10, shown in Figure 8, demonstrate the accuracy of the proposed 

RSE even for high uncertainty levels. Obviously, in this case higher-order terms of the RSE play an 

increasing important role.  

 

 
Figure 7. FRF of the first modal coordinate H11(,): a) comparison between the exact FRF and the proposed RSE truncated to 

third-order terms; b) enlargement showing the convergence of the RSE close to the fundamental frequency of the structure 

 ( = 0.05).  

 

 
Figure 8. FRF of the first modal coordinate H11(,): a) comparison between the exact FRF and the proposed RSE truncated to 

fourth-order terms; b) enlargement showing the convergence of the RSE close to the fundamental frequency of the structure 

( = 0.10).  

 

Finally, the fluctuating Young’s moduli of the beam and columns are modelled as uncertain-but-bounded 

parameters i.e. 
0

ˆ(1 )   I

i i iE E e , (i = 1, 2, 3), with symmetric deviations i =  = 0.05. Figure 9 

displays the comparison between the upper bound and the lower bound of the modulus of the FRF of the 

nodal displacement u1, HN,11(,), obtained by applying the proposed RSE truncated to first-order terms 

(see Eqs. (58) and (59)), and the exact bounds evaluated following the philosophy of the vertex method. It 
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can be observed that also in the case of flexible frames the RSE provides accurate estimates of the upper 

bound and the lower bound of the modulus of the FRF. 

 

 
Figure 9. Comparison between the exact and proposed (a) upper bound and (b) lower bound of the modulus of the FRF of the nodal 

displacement u1 ( = 0.05). 

 

 

 

6. Concluding remarks 

 

The evaluation of the frequency response function (FRF) matrix of linear structures with uncertain stiffness 

properties has been addressed. Specifically, a procedure for deriving the FRF matrix in explicit approximate 

form has been presented. The proposed method relies on the spectral decomposition of the deviation of the 

stiffness matrix (with respect to its nominal value) which allows to obtain a sum of rank-one matrices, each 

one associated to a single uncertain parameter. Then, the equations of motion are projected in the modal 

subspace and, after some algebra, the Neumann series expansion of the FRF matrix is rewritten in an 

alternative explicit form, herein called Rational Series Expansion (RSE). The proposed RSE represents a 

useful tool for performing the frequency domain analysis of linear structures with uncertain parameters 

since it enables one to derive closed form expressions of the response and then investigate the effects of the 

fluctuating parameters. The latter can be modeled resorting either to probabilistic or non-probabilistic 

approaches depending on the available information on their variability. 

The accuracy of the proposed RSE has been assessed by analyzing a truss structure and a portal frame 

with uncertain Young’s moduli. Numerical results have shown that the estimates of the FRF provided by 

the RSE are very close to the exact ones even for large fluctuations of the uncertain parameters. The 

versatility of the proposed RSE has been demonstrated by modeling the fluctuating Young’s moduli as 

uncertain-but-bounded parameters. The estimates of the upper bound and lower bound of the modulus of 

the FRF derived by applying the RSE in conjunction with the so-called improved interval analysis have 

been shown to be in good agreement with the exact bounds evaluated following the philosophy of the vertex 

method. 
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