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Abstract. In this paper different strategies to search for a robust design are presented and investigated
with respect to their efficiency and applicability to time consuming numerical models. After starting with
deterministic optimization we introduce different measures to define the robustness of a design. An iter-
ative Robust Design Optimization (RDO) is proposed where deterministic optimization is combined with
variance-based robustness analysis and final reliability proof. The iterative procedure is compared to coupled
RDO approaches, where the robustness or reliability measures are calculated for each optimization design.
For such a procedure often global approximation models are used in order to enable the application for more
complex problems.
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1. Introduction

Due to target-oriented, automatic optimization of virtual products new design possibilities are explored.
However, highly optimized designs lead to high imperfection sensitivities and tend to loose robustness.
Often the deterministic optimum is pushed to the boundaries of the feasible design space. As a result the
optimized design, which was found by assuming deterministic model properties, may not be realizable in
a production process. For this reason it is necessary to investigate, how the optimized design is affected by
scattering model input variables, which could be e.g. geometry and material parameters, boundary conditions
and loads. The scattering inputs are modeled int this paper by means of scalar random variables having a
certain dependence between each other. Random variables have the advantage compared to other uncertainty
models, that efficient methods of the well developed probability theory can be applied.

In this paper different strategies to search for a robust design are presented and investigated with respect
to their efficiency and applicability to time consuming numerical models. After starting with deterministic
optimization we introduce different measures to define the robustness of a design. An iterative Robust
Design Optimization (RDO) is proposed where deterministic optimization is combined with variance-based
robustness analysis and final reliability proof. This procedure is state-of-the-art in Dynardo’s supported
RDO projects (Roos and Hoffmann2008),(Roos et al.2009). The iterative procedure is compared to coupled
RDO approaches, where the robustness or reliability measures are calculated for each optimization design.
For such a procedure often global approximation models are used in order to enable the application for
more complex problems. All presented methods are available in Dynardo’s optiSLang software package
(optiSLang2011), which supports a wide range of CAE solvers in order to perform a reliable optimization,
sensitivity, robustness and reliability analysis as well as Robust Design Optimization.
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2. Deterministic optimization

For deterministic single-objective optimization problems the optimization task can be formulated by a single
scalar-valued objective function

f(.’El,.TQ,...,(I?k) _)mina (1)

which is often an implicit function of the design variables. The design variables can be defined as continuous
variables with a lower and upper bound or as discrete variables which assume several discrete values. In
unconstrained optimization problems only the bounds or values of the design variables limit the optimization
space. The optimizer searches between these limits for the minimum value of the objective function f(x).

In engineering problems often additional restrictions have to be fulfilled by the optimal design. With help
of equality and inequality constraints

gi(z1,22,...,25) =0, i=1...me, hj(z1,22,...,25) >0, j=1...my, 2)

such restrictions can be formulated.

As optimization pre-processing a global sensitivity analysis may help to understand or to formulate
the optimization problem and to possibly reduce the number of optimization variables, which enables the
application of more efficient optimization strategies. In our analysis we perform variance based sensitivity
analysis (Saltelli et al.2008). By representing continuous optimization variables by uniform distributions,
variance based sensitivity analysis quantifies the contribution of each optimization variable to a possible
improvement of the model responses. In contrast to local derivative based sensitivity methods, the variance
based approach quantifies the contribution with respect to the defined variable ranges. Using the results of
the sensitivity analysis the number of optimization variables may be reduced and suitable start points can be
found for a following optimization.

Unfortunately, sufficiently accurate variance based methods require huge numerical effort due to the
large number of simulation runs. Therefore, often meta-models are used to represent the model responses
surrogate functions in terms of the model inputs. However, many meta-model approaches exist and it is
often not clear which one is most suitable for which problem (Roos et al.2007). Another disadvantage of
meta-modeling is its limitation to a small number of input variables. Due to the curse of dimensionality
the approximation quality decreases for all meta-model types dramatically with increasing dimension. As a
result, an enormous number of samples is necessary to represent high-dimensional problems with sufficient
accuracy. In order to overcome these problems, Dynardo developed the Metamodel of Optimal Prognosis
(Most and Will2008),(Most and Will2011). In this approach the optimal input variable subspace together
with the optimal meta-model approach are determined with help of an objective and model independent
quality measure, the Coefficient of Prognosis.

In Figure 1 the recommended flow of single-objective optimization procedure is shown: after the defini-
tion of the design variables and objective and constraint functions the design space is explored by sensitivity
analysis. The obtained variable sensitivities may help to reduce the number of design variables. The best
designs found in the sensitivity analysis could be used as start designs for the following optimization
procedure which finally will determine an optimal design.
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Figure 1. Flowchart of deterministic single-objective optimization

3. Robust Design Optimization

In Robust Design optimization the optimization task is formulated under the consideration of uncertainties.
For this purpose we model the uncertainties with scalar random variables with a given distribution type and
a possible correlations. In the RDO framework the optimization variables itself (e.g. geometry parameters
of a structure) and even additional variables (e.g. material properties) may be assumed as random. This may
result in pure optimization, pure stochastic and mixed optimization-stochastic variables. Additionally to the
deterministic objective and constraint functions the robustness of a design is considered within the RDO
procedure.

A robust design may be characterized intuitively in that way, that its performance is largely unaffected by
random perturbations of the model inputs. A possible measure is the variance indicator, where the relative
variations of the critical model responses are compared to the relative variation of the input variables. If
certain model responses are limited with respect to an undesired performance, the safety margin can be
quantified as the interval between the mean value of the model response and the limit. This is shown in

A

Random response

Figure 2. Random model response with given limit value and corresponding safety margin and failure probability pr

Figure 2. The safety margin can be formulated in terms of the standard deviation of the model response.
In the variance-based robustness analysis a specific safety margin oy, which has to be defined by the
designer, has to be proven for all critical responses

Yrimit — Y| < aoy. 3

Alternatively the probability that a certain limit is exceeded can be quantified and proven to be less than an
acceptable value. This probability indicator can be evaluated by the probability-based robustness analysis,
which is called reliability analysis.
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3.1. VARIANCE-BASED ROBUSTNESS ANALYSIS

In variance-based robustness analysis the variations of the critical model responses are investigated. In our
study random sampling methods are used to generate discrete samples of the joined probability density
function of the given random variables. Based on these samples the statistical properties of the model
responses as mean value, standard deviation, quantiles and higher order stochastic moments are estimated. In
order to obtain a sufficient quality of these estimates, it is required, that the sampling scheme represents the
marginal distributions of the single random variables as well as the defined correlations between each other
with high accuracy. Some very basic stochastic methods to generate sample sets are variants of the Monte-
Carlo method. The simplest version is the so-called plain Monte-Carlo method (PMC). With this methods
the natural scatter can be modeled quite well, but the statistical uncertainty is fairly large if the sample
size is small. Therefore we utilize Latin Hypercube Sampling (LHS) with minimized correlation errors
(Hungtington and Lyrintzis1998), where the marginal distributions and the predefined input correlations are
represented with a small number of samples.

Based on the estimates of the mean value and the standard deviation the safety margin can be estimated
by using Eq. (3) for the responses where a performance limit is given. However, by using variance-based
robustness analysis only safety margins up to two sigma can be proven with a small number of samples.
For larger safety margins (e.g. six sigma) the true failure rate may be heavily vary for different distribution
types of the output. Since the distribution of the output is not exactly known, an estimate of low failure
probabilities by variance-based measures may be very inaccurate. Therefore, we recommend to prove safety
margins larger than three sigma by reliability analysis.

3.2. RELIABILITY ANALYSIS

In reliability analysis the limit state function divides the random variable space into a safe domain S = {x :
g(x) > 0} and a failure domain F' = {x : g(x) < 0}. The vector x denotes a position in the space spanned
by the random variable vector X = [X1, X, ..., X,,]. The failure probability pp is defined as the integral
of the joint probability density function fx (x) of the random variables with respect to the failure domain

pr=P[X:¢g(X)<0] = /g(X)<0 fx(x)dx. 4)

The computational challenge in determining the integral of Eq. (4) lies in the evaluation of the limit state
function g(x) at a specific position x. In CAE-based analyses the limit state function is generally an implicit
function of the input variables.

The most simple and robust method for the evaluation of Eq. (4) is the Monte Carlo Simulation (MCS)
where the estimated failure probability is obtained from a set of n samples x; as

1 n
P = - > I(g(x)), (5)
i=1

where the indicator function I (g(x;)) is one if g(x;) is negative or zero and zero else. MCS can represent
arbitrary types of LSFs including discontinuities and multiple design points. The disadvantage of this method
is the large number of required samples, which increases dramatically with decreasing failure probability.
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Thus for engineering problems, where we deal with small probabilities of failure, this method may be very
inefficient.

Further well-known methods are directional sampling (Bjerager1988), which can be applied for small
failure probabilities but is limited to a small number of random variables, and the First Order Reliability
Method (FORM) (Hasofer and Lind1974), which may be very efficient with respect to the number of solver
evaluations. However, FORM is limited to only one dominant failure region and to a smooth limit state
function, if gradient-based methods are used for the design point search.

In our study we investigate a global approximation technique, the Metamodel of Optimal Prognosis
(Most and Will2008), where a global or local polynomial is constructed on the samples obtained in the
variance-based robustness analysis and an adaptive approximation technique (Roos and Adam2006), (op-
tiSLang2011) where the regions around possible design points are adapted with new support points for
the approximation. The adaptive method has been proven to be very efficient for industrial problems with
nonlinear limit state functions and multiple design points (Roos and Hoffmann2008),(Roos et al.2009).

3.3. ITERATIVE ROBUST DESIGN OPTIMIZATION

Figure 3. Flowchart of the iterative Robust Design Optimization

In iterative RDO procedure deterministic optimization is utilized by considering safety factors within the
constraint conditions. These safety factors should be chosen in that way, that the robustness requirements are
fulfilled. Generally the safety factors are not known a priori. In this case a suitable initial guess is specified
and the initial deterministic optimization is performed. Additionally the robustness criteria are evaluated at
the optimal design found by the optimizers. If the robustness requirements are not fulfilled, the optimization
constraints are adjusted in a next step and the deterministic optimization procedure and the corresponding
robustness analysis are performed again. This procedure is repeated until the robustness requirements are
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fulfilled. In Figure 3 the flowchart of the iterative RDO procedure is shown. If a small probability of failure
is required a final reliability analysis is performed.

In order to fulfill the required failure probability a suitable safety margin has to been chosen. Since the
distribution of the investigated responses is unknown, this choice may be critical for the success of the
iterative RDO procedure. In Table I the safety margin is given for different distribution types at different
failure probabilities. The table indicates for pr = 102 a much smaller deviation between the different
distributions as for pp = 107°. This means that for small failure probabilities the safety margin used
in the iterative RDO procedure should be taken by assuming a non-normal distribution. For example for
pr = 1079 a safety margin of 60 may be a good choice.

Table I. Required safety margins to assure a given failure probability

br
Distribution type Required safety margin
pr=10"2 pr=10"% pr=10"°
Normal 2.32 3.09 4.75
Log-normal 3.37 5.70 14.90
Rayleigh 2.72 3.76 6.11
Weibull 2.67 3.66 5.88

3.4. COUPLED ROBUST DESIGN OPTIMIZATION

In the coupled RDO procedure an optimization is performed by considering robustness and reliability con-
straints directly. This means that the robustness and/or reliability measures have to been evaluated at every
optimization (nominal) design. This leads to a nested double loop with the pure optimization procedure in
the outer loop and the robustness analysis in the inner loop. This procedure may require a very large number
of solver runs, especially if the optimization is coupled with reliability analysis. Such a strategy would limit
the coupled procedure to simple and fast models. For more complex problems an improvement with respect
to the number of solver runs is necessary.

One possibility could be to use a global approximation of the model responses with respect to the op-
timization and stochastic variables. For this purpose support points have to been generated in the mixed
optimization-stochastic space which cover the possible variable values sufficiently. However, since the
approximation is not exact a final robustness or reliability proof of the obtained design should be performed.

Another possibility to reduced the numerical effort of a coupled RDO procedure is to use an estimate of
the safety margin, similar to the iterative approach, but with a reduced number of samples for the calculation
of the mean values and standard deviations. However, in this case statistical errors may be significant and
the corresponding objective and constraint function may contain additional noise. Therefore only optimiza-
tion strategies should be applied which can handle such distortions. Again a more accurate robustness or
reliability proof should by performed for the detected optimal design.
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4. Application example

In the following example the proposed methodology is applied exemplary. For this purpose the ten-bar-
truss structure shown in Figure 4 is investigated. This structure has been investigated e.g. in (Haftka and
Giirdal1992). The optimization task is to minimize the mass of the truss structure. The absolute stresses
of the each of the trusses should not exceed 30000 psi. Under the consideration of scattering cross sections
(normally distributed with coefficient of variation of 5%), scattering material properties (Young’s modulus is
log-normally distributed with 5% variation) and scattering loads (normally distributed with 10% variation)
the total probability of exceeding the stress limit in one of the trusses should be below 10~%. The cross
section areas a; are taken as continuous optimization variables with the bounds given in Figure 4.

Fy = F» =1000001by
E = 107 psi
p = 0.1 1bs/in®
L = 360in

0.1in? < a; < 20 in?

Figure 4. Investigated initial truss structure

4.1. DETERMINISTIC OPTIMIZATION

In a first step a pure deterministic optimization is performed in order to find a suitable truss topology. In
the next section this optimal topology is optimized under the consideration of uncertainties. The limit of the
maximum stress is reduced by a global safety factor of 1.2 to 25000 psi. Before starting the optimization
task a sensitivity analysis is done. For this purpose 100 Latin Hypercube samples are generated uniformly
distributed in the space of the optimization variables. Each design is evaluated by a finite element solver
using geometrically linear truss elements. Using the MOP approach for sensitivity analysis the variable
importance is quantified. The MOP approach indicates highly nonlinear dependencies between the opti-
mization variables and the truss stresses as indicated in Figure 5. The number of optimization variables can
not be reduced in this example since each cross section is the most important variable with respect to the
belonging stress value.

The best design of the sensitivity analysis which fulfills the constraints is taken as start point for a
gradient-based optimization. The mass of this start design is 3369.4 lbs. After 13 iterations with total 143
solver calls the optimizer found the optimal parameter set indicated in Figure 6. The parameter values agree
excellent with the solution given in (Haftka and Giirdal1992). The results indicate, that the trusses 2,5,6 and
10 are set to its minimum value since they are not needed to carry the loads. The total mass of the optimized
structure is 1593.2 Ibs which is less than 50% of the start design.
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Figure 5. Approximation function and variable sensitivities obtained with the MOP approach using 100 Latin Hypercube samples
as design exploration
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Figure 6. Results of deterministic gradient-based optimization of the full truss structure

The ten-bar-truss can be reduced by removing the unimportant trusses 2,5,6 and 10 from the structure.
The stresses of the reduced structure can be simply calculated by using equilibrium equation of the forces
at each of the truss nodes. The resulting stresses are given in Figure 7. Since the structure is statically
determined the stresses in the trusses are independent of the Young’s modulus. Thus it is not necessary to
consider the Young’s modulus in the optimization or robustness analysis anymore. In Figure 8 the results of
a gradient-based optimization of the reduced truss structure are given. The figure indicates a slightly lower
mass of the structure. Furthermore the stress limit is reached in all trusses.
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Figure 7. Reduced truss structure with analytical stress values
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Figure 8. Results of deterministic gradient-based optimization of the reduced truss structure

4.2. ITERATIVE ROBUST DESIGN OPTIMIZATION

The iterative Robust Design Optimization is performed by combining deterministic optimization using
safety factors for the constraint conditions with variance-based robustness analysis. If the robustness analysis
indicates a robust design the required failure probability is proven by reliability analysis. For this purpose the
optimized reduced truss structure shown in Figure 7 is investigated by variance-based robustness analysis.
The assumed statistical properties and distribution types of the scattering variables are used to generate 100
Latin Hypercube samples. Based on the solver evaluations the statistical properties of the truss stresses can
be obtained. In Table II the results are given for the first optimization step including following robustness
analysis. The table indicates for five of the six trusses a safety margin of about 1.75¢. Since we want to
obtain a structure with a failure probability below 10~ a safety margin of 60 seems to be necessary in order
to consider non-normal distributions of the output (see Table I). If we assume that the coefficient of variation
of each stress values is constant, if the mean value is changed, we can estimate the required constraint for
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Table II. Iterative Robust Design Optimization and final reliability proof of the reduced truss structure

Optimization Step 1 68 designs Constraint a1 as a4 ar as ag mass
25000 8.000 8.000 4.000 5.657 5.657 5.657 1584.0

Robustness Step 1 100 samples  max. stress  stressl  stress3  stress4  stress7  stress8  stress9

Mean value 27540 25070  -25060 -25060 25060 -25060 25060

Standard deviation 2425 2853 2105 2825 2765 2788 2827

Cov. of variation 0.088 0.114 0.084 0.113 0.110 0.111 0.113

Safety margin 1.01lo0 1.730 2.350 1.750 1.790 1.770 1.750

Optimization Step 2 35 designs Constraint ai as a4 ar as ao mass
18000 11.111  11.111  5.555 7.857 7.857 7.857  2200.0

Robustness Step 2 100 samples  max. stress  stressl ~ stress3  stress4  stress7  stress8  stress9

Mean value 19810 18050 -18050 -18040 18040 -18050 18040

Standard deviation 1772 2044 1552 2000 1988 2060 1991

Cov. of variation 0.089 0.113 0.086 0.111 0.110 0.114 0.110

Safety margin 5.750 5.850  71.700 5980 6.020 5800 6.0lc

Reliability analysis Number of solver runs Failure probability Reliability index

Directional sampling 3674 3.19-1077 4.98

FORM 225 - 9.70

MOP+DS 100 (from robustness) 5.05-107" 4.89

ARSM+DS 101 5.75-1077 4.86

the second iteration step by an extrapolation of the mean stress value

30000,
30000/(1 + 6 - C'Vitepr),

constraintsieps + 6 - CViiept - constraintspeps <

constraintsgeps =

which leads to a value of about 18000. The deterministic optimization is repeated with the new constraint
value and the robustness of the optimized structure is assessed again by 100 Latin Hypercube samples.
Table II indicates that the optimized structure of step 2 almost fulfills a safety margin of 6o for all truss
stresses.

Finally the failure probability is estimated more accurately by reliability analysis. For this purpose we
investigate different methods with respect to their efficiency and accuracy. As reference solution directional
sampling is used. First the First Order Reliability Method (FORM) is applied which converges to a minor
important design point with a very low failure probability. Due to the individual stress limits in the six trusses
the combined limit state function has several kinks and design points which lead to the wrong convergence
point of FORM.

As second procedure we use a global approximation with the robustness samples as support points.
For this purpose the Metamodel of Optimal Prognosis is built with these samples and an almost linear
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Figure 9. Approximation function and variables sensitivities obtained with the MOP approach using the 100 robustness samples of
step 2 (CoP=100.00%)

dependence is indicated as shown in Figure 9. The individual stress values can be represented with very
excellent approximation quality indicated by a Coefficient of Prognosis of 100.00%. However, since only
100 robustness samples are generated with the original distributions functions, the estimation of a very
small failure probability requires an extrapolation of the approximation model, which may lead to a wrong
estimate of the failure probability. Nevertheless, the calculated failure probability given in Table II shows
good agreement with the reference from direction sampling. Since the robustness samples are available
anyhow, this procedure requires no additional solver runs and should be investigated if the MOP indicates a
good approximation quality.

The third investigated procedure is the Adaptive Response Surface Method according to (Roos and
Adam?2006). This methods uses an initial sampling scheme as support points which is stretched by factor
three in order to cover a larger domain. With two additional adaption steps, where new sampling schemes
are placed around the detected important regions, the method converges to a failure probability close to
the reference solution. Since the number of solver evaluations is very small and since no extrapolation is
used in the approximation, from our viewpoint this ARSM approach is the method of choice for reliability
analysis of complex engineering problems. The proposed iterative Robust Design Optimization procedure
including the ARSM reliability proof has been successfully applied to real industrial problems in (Roos and
Hoffmann2008),(Roos et al.2009).

4.3. COUPLED ROBUST DESIGN OPTIMIZATION

In a further analysis the coupled Robust Design Optimization approach is applied. For this purpose in a
first step a global approximation model is used and in a second step direct solver runs are evaluated. The
global approximation model is built by using a uniform distribution for all optimization and stochastic
variables, where the lower and upper bounds are taken for the cross section areas as 2 in2 < a; < 20 in?
and for the pure stochastic forces the bounds are taken as mean value +/- 5. 500 Latin Hypercube samples
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Figure 10. Approximation function and variables sensitivities obtained with the MOP approach using the 500 samples in the mixed
design-stochastic space (CoP=99.99%)
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are generated within this mixed optimization-stochastic space and the Metamodel of Optimal Prognosis
is built. For all individual stress values and the mass an approximation quality better or equal 99.99%
could be reached by the quadratic Moving Least Squares approximation, which is included in the MOP
approach. In Figure 10 the approximation function and the variable sensitivities are shown exemplary. If we
compare the variable sensitivities of Figure 10 with these of Figure 9, we notice, that the pure stochastic
force variation is dominant in the local robustness problem but minor important in the mixed space. In many
other applications we observed similar results, that the pure stochastic variables are minor dominant with
respect to the optimization variables in the mixed space due to their smaller variation. This fact may lead
to an inaccurate representation of the influence of the stochastic variables in an approximation model. As a
consequence the estimated robustness measures may be inaccurate as well.

For our example we use an Evolutionary Algorithm (EA) running with the approximation model, where
for each optimization design a variance-based robustness analysis is performed by using 100 Latin hyper-
cube samples. The mass is taken as deterministic objective function and the stress constraints are formulated
with respect to the statistical measures of the robustness analysis

mean_stress; + 6 - sigma_stress; < 30000. (6)

The results of this optimization are given in Table III. The obtained mass is almost similar to the mass ob-
tained by the iterative procedure, but some cross section areas are different. The final optimum is investigated
by a robustness analysis with direct solver calls which results in an estimated safety margin slightly larger
as 6o for all stress values. The reliability proof reports an failure probability below the required 107, Again
the ARSM approach is very efficient. In the investigated example the coupled RDO approach using a global
approximation model gives satisfactory results with a relatively small number of solver runs. However, in
cases where the approximation quality is not as excellent as in our example the global approximation may
fail. In such cases the iterative approach should give the most efficient solution.
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Table III. Coupled Robust Design Optimization using a global response surface with final robustness and reliability proof

RDO on global MOP 500 support points ai as a4 ar as ag
EA on MOP 591 nominal designs 11.306 10303  5.640 8.049 8.131 7.980

(100 robustness samples each)

mass
2211.0

Robustness analysis 100 samples stress]  stress3  stress4  stress7  stress8  stress9
Mean value 17730  -19470 -17770 17610 -17470 17790
Standard deviation 1961 1683 1964 1977 1958 1993
Cov. of variation 0.111 0.086 0.111 0.110 0.112 0.112
Safety margin 6.260 6260 6230 6270 6400  6.130
Reliability analysis Number of solver runs Failure probability Reliability index
Directional sampling 3366 2.26-1077 5.05
ARSM+DS 84 1.24-1077 5.16

Table IV. Coupled Robust Design Optimization using the direct solver with rough robustness estimates and final robustness and

reliability proof

RDO 3822 solver calls ay as a4 ar as a9

ARSM (182 nominal designs with ~ 11.035  10.024  5.562 7.697 7.931 7.848

20 robustness samples each)

mass
2153.5

Robustness analysis 100 samples stress]  stress3  stress4  stress7  stress§  stress9
Mean value 18170  -20000 -18030 18420 -17880 18070
Standard deviation 2018 1716 2021 2010 2003 2020
Cov. of variation 0.111 0.086 0.112 0.109 0.112 0.112
Safety margin 5.860  5.83c 5920 5760 6.050 5910
Reliability analysis Number of solver runs Failure probability Reliability index
Directional sampling 4444 1.57-107° 4.66
ARSM+DS 121 1.77-107° 4.64

Finally the coupled RDO procedure is performed by direct solver runs. In order to limit the number of
solver evaluations the robustness analysis inside the RDO is performed using only 20 samples to estimate
the statistical properties. The final results are again verified by a more accurate robustness analysis and a
reliability proof. In Table IV the results of the direct RDO procedure are given. As optimizer an adaptive
polynomial response surface approach is used, which can handle noisy model responses (optiSLang2011).
Due to the small number of robustness samples the estimated mean values and standard deviations contain
statistical errors which may lead to noticeable solver noise. The direct RDO approach leads to a truss struc-
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ture having a smaller mass and safety margins for all stress values close to 60. The results of the reliability
analysis indicate a small violation of the reliability requirement. Additionally, the number of necessary
solver runs is much larger as by using the iterative procedure or the global approximation by MOP. For this
reason an application of the direct RDO approach for industrial problems is not very attractive.

5. Conclusions

In this paper Robust Design Optimization concepts have been proposed, which are applicable for complex
engineering problems, where the underlying structural model is often a very time consuming numerical
simulation model. By means of an investigated truss structure different procedures have been analyzed. First,
an iterative RDO procedure has been proposed. In this approach after each deterministic optimization the
required safety margin is checked by variance-based robustness analysis. If the safety margin is not sufficient
the deterministic optimization constraints are adapted. For a satisfactory safety margin the required failure
probability is proven finally by efficient reliability methods.

The iterative method was compared with a global response surface method built up in the mixed optimization-
stochastic space. If the approximation has very high accuracy, which was checked by the Coefficient of
Prognosis, a coupled RDO procedure applied on the response surface may lead to sufficient results. How-
ever, since the global approximation has often low accuracy and since the numerical effort with respect to
the number of solver runs is similar to the iterative procedure, we recommend the iterative procedure for
practical applications. The iterative procedure has been proven to be very efficient and accurate for real
product development in (Roos and Hoffmann2008),(Roos et al.2009).
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