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Abstract: This paper presents a new set of reliability sensitivity measures. The purpose with these 

measures is to identify the optimal manner in which to reduce model uncertainty in order to improve risk 

estimates. In particular, two sensitivity measures are presented. One identifies the buildings, or other 

components within a region, that should be subjected to more refined modeling. The other sensitivity 

measure identifies model types that should be subjected to further research to improve the model form. The 

developments in this paper are presented in the context of a region with 622 buildings that are subjected to 

seismic hazard. A comprehensive seismic risk analysis is conducted with approximately 300 random 

variables, more than 30 different model types, and more than 3,000 individual model instances. All models 

are probabilistic and emphasis is placed on explicit characterization of epistemic uncertainty, i.e., reducible 

uncertainty. The models are available in a new computer program called Rt, which is tailored for reliability 

analysis with multiple probabilistic models. The primary result from the analysis is risk estimates, presented 

in the form of loss probability curves. However, focus in this paper is on the development and evaluation of 

sensitivity measures, in order to guide efforts to reduce the model uncertainty and thus improve the risk 

estimates. For the considered region it is found that concrete shear wall buildings, and structural response 

models for such buildings, rank highest according to both sensitivity measures. As described in this paper, 

this means that allocating resources for detailed analysis and improved models for this type of building has 

the greatest impact on the risk estimates.  
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1. Introduction 

 

The primary objective in this paper is to identify the optimal course of action to reduce model uncertainty. 

Context is provided by seismic risk analysis, where multiple probabilistic models are employed for hazard, 

infrastructure, and impacts. In this paper, reliability methods are utilized in conjunction with a library of 

probabilistic models to make predictions about potential future seismic losses. The analysis is carried out 

with a new reliability-based risk analysis program, called Rt, which is specifically developed for multi-

model reliability and optimization analysis. Rt is freely available online at www.inrisk.ubc.ca. The library 

of probabilistic models is implemented in Rt, and certain models are devoted particular attention in this 

paper. However, although the study is focused on seismic risk, the methods and models are generic. In fact, 

the developments in this paper are intended as universal techniques for the recognition and subsequent 

reduction of epistemic uncertainty, i.e., reducible uncertainty. To this end, two questions are asked and 

 

5th International Conference on Reliable Engineering Computing (REC 2012) 
Edited by M. Vořechovský, V. Sadílek, S. Seitl, V. Veselý, R. L. Muhanna and R. L. Mullen 
Copyright © 2012 BUT FCE, Institute of Structural Mechanics 
ISBN 978-80-214-4507-9. Published by Ing. Vladislav Pokorný − LITERA

 
 
 
 
 

 
 
 
299



M. Mahsuli and T. Haukaas 

addressed in this study: 1) Which infrastructure components should be subjected to more detailed modeling 

to reduce the epistemic uncertainty, in order to improve the quality of the present risk analysis? 2) Which 

models in the library of probabilistic models should be prioritized in research efforts to reduce the epistemic 

uncertainty to improve the quality of future risk analyses? The vehicle for the developments is reliability 

analysis with the limit-state function 
 

    vxθvxθ ,,,, 0 llgg   (1) 
 

where lt = loss threshold, l(θ,x,v) = loss due to earthquake damage, θ = vector of epistemic random 

variables, x = vector of aleatory random variables, and v = vector of decision variables that are at the 

discretion of the decision maker. The focus in this paper is on the uncertainty described by θ, while the v is 

omitted in the following. Reliability methods, such as the first-order and second-order reliability methods 

and importance sampling, estimates the probability that g < 0. As a result, reliability analysis with Eq. (1) 

yields the probability that the cost l exceeds lo. In other words, the result is a point on the loss exceedance 

probability curve, hereafter called loss curve. Loss curve results are presented later in this paper and they 

appear prominently in several areas of seismic risk analysis. They are particularly popular in the insurance 

industry and in modern performance-based earthquake engineering.  

 It is emphasized in this paper that many interacting probabilistic models are required to evaluate 

l(θ,x,v) in Eq. (1). In fact, a significant effort is made to develop or improve models for all facets of the 

hazards, infrastructure, and impacts associated with seismic risk. In turn, the models are implemented in Rt 

to facilitate the communication between the models at run-time. The new object-oriented software 

architecture to accomplish this is described by Mahsuli and Haukaas (2012). From a broader perspective, Rt 

is intended as a continuously growing framework of predictive probabilistic models, with explicit 

characterization of epistemic uncertainty. This is intended to promote targeted future efforts to reduce that 

uncertainty. In fact, the framework provides a rational basis for allocating resources to gather data and build 

better models, which ultimately yields improved risk mitigation decisions. This motivates the developments 

in this paper.  

 

 

 

2. Models 

 

The approach adopted in this paper has two components: probabilistic models and reliability methods. In 

contrast with many contemporary seismic risk analysis approaches, the present approach circumvents 

conditional probability models in favour of simulation-type models that produce scalars or vectors of 

physical responses. This is necessary in order to evaluate Eq. (1). In particular, the models that are utilized 

in this study employ random variables to discretize the uncertainty. A simple but instructive model is the 

linear regression model 
 

       xx 33221 hhy  (2) 
 

where y = model response, θi = model parameters, hi(x) = explanatory functions, and ε = zero-mean 

normally distributed model error. In the Bayesian approach to linear regression for this model, the 

parameters θi and the standard deviation of ε are random variables. This approach is adopted here, where 

the model parameters are categorized as epistemic random variables, i.e., θ = {θ1,θ2,σε}. Furthermore, 

their probability distribution is affected by model improvement, typically by data gathering efforts. The 
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statistical inference for the random variables in θ is carried out in accordance with Box and Tiao (1992), 

Gardoni et al. (2002), and others. In fact, the Bayesian modeling philosophy is adopted throughout this 

study, although the model forms may vary. 

 In Rt’s framework of models, each input variable in x to Eq. (2) is either provided as a random variable 

by the analyst or as a response from an “upstream” model. In turn, the response, y, may serve as input to a 

“downstream” model. For example, one variable in x may be an earthquake magnitude predicted by another 

model, while y may be a site-specific ground shaking intensity that serves as input to a building response 

model.  

 The specific set of models considered in this paper simulate the occurrence of hazards, building 

responses, damage, and cost for 622 buildings on the campus of the University of British Columbia (UBC) 

in Vancouver, Canada. Figure 1 displays a map of the region with the UBC campus identified in reference 

to downtown Vancouver. The dots in the zoomed map of the UBC campus identify the 622 building on 

campus. The second author’s research group surveyed each building to gather data about building type, 

building height, footprint area, etc.  

 

 
Figure 1. Map of the UBC campus and the 622 buildings that are modeled in this study. 

 

Table I displays some of the information that was gathered for each of the 622 buildings at the UBC 

campus. For brevity, only some of the buildings are presented. These particular buildings were selected for 

this table because they appear prominently in the rankings that are presented later in this paper.  
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Table I: Information for a few selected buildings among the 622 buildings on the UBC campus. 

Building Name 
Footprint 

Area (m2) 

Number of 

Stories 

Year 

Erected 

Mean Total 

Value ($) 
Code Level Longitude Latitude 

Animal Science Main Sheep Unit 552 1 1976 671,109 Moderate -123.2341 49.2509 

Chan Centre for Performing Arts 3,315 1 1997 7,107,360 Moderate -123.2551 49.2698 

Morris & Helen Belkin Art Gallery 1,105 2 1995 4,738,240 Moderate -123.2562 49.2682 

Power House Meter Station 90 1 1960 206,730 Low -123.2545 49.265 

St. Mark Chapel 524 2 1997 2,406,909 Moderate -123.249 49.2722 

University Centre Addition 230 1 1987 528,310 Moderate -123.2568 49.2691 

Vanier Pump Station 16 1 1986 37,277 Moderate -123.2603 49.2648 

Village Shops 1 922 2 1980 4,234,872 Moderate -123.2428 49.2666 

Village Shops 2 1,171 1 1980 2,689,424 Moderate -123.2434 49.2664 

Wesbrook Animal Care Unit 596 1 1981 1,369,012 Moderate -123.2489 49.2652 

… … … … … … … … 

 

 

The UBC campus is subjected to three sources of seismicity: Shallow crustal earthquakes, deep subcrustal 

earthquakes, and megathrust subduction earthquakes. The first two occur within area sources, while 

subduction earthquakes originate from a faultline that runs under the ocean outside the coastline of the 

Pacific Northwest.  

 

        
Figure 2. Sources of earthquakes affecting the UBC campus. 
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Table II: Overview of models employed in the analysis. 

Model Name Formulation Instances Size(x) K = Size(θ) 

Concrete Frame with Masonry Infill Wall Structural Damage Nonlinear Regression 10 7 9 

Concrete Frame with Masonry Infill Wall Structural Response Linear Regression 10 4 25 

Concrete Moment Frame Structural Damage Nonlinear Regression 22 8 10 

Concrete Moment Frame Structural Response Linear Regression 22 4 25 

Concrete Shear Wall Structural Damage Nonlinear Regression 134 7 9 

Concrete Shear Wall Structural Response Linear Regression 134 4 25 

Crustal Intensity Algorithm 1 4 1 

Non-Structural Acceleration Damage Nonlinear Regression 622 2 3 

Non-Structural Drift Damage Nonlinear Regression 622 2 3 

Precast Concrete Structural Damage Nonlinear Regression 11 8 10 

Precast Concrete Structural Response Linear Regression 11 4 25 

Reinforced Masonry Structural Damage Nonlinear Regression 58 8 10 

Reinforced Masonry Structural Response Linear Regression 58 4 25 

Steel Braced Frame Structural Damage Nonlinear Regression 5 7 9 

Steel Braced Frame Structural Response Linear Regression 5 4 25 

Steel Frame with Concrete Shear Wall Structural Damage Nonlinear Regression 6 6 8 

Steel Frame with Concrete Shear Wall Structural Response Linear Regression 6 4 25 

Steel Frame with Masonry Infill Wall Structural Damage Nonlinear Regression 2 6 8 

Steel Frame with Masonry Infill Wall Structural Response Linear Regression 2 4 25 

Steel Light Frame Structural Damage Nonlinear Regression 22 6 8 

Steel Light Frame Structural Response Linear Regression 22 4 25 

Steel Moment Frame Structural Damage Nonlinear Regression 4 7 9 

Steel Moment Frame Structural Response Linear Regression 4 4 25 

Subcrustal Intensity Algorithm 1 4 1 

Subduction Intensity Algorithm 1 4 1 

Unreinforced Masonry Structural Damage Nonlinear Regression 14 6 8 

Unreinforced Masonry Structural Response Linear Regression 14 4 25 

Wood Large Frame Structural Damage Nonlinear Regression 128 5 7 

Wood Large Frame Structural Response Linear Regression 128 4 25 

Wood Light Frame Structural Damage Nonlinear Regression 206 5 7 

Wood Light Frame Structural Response Linear Regression 206 4 25 

 

 

It is noted that Figure 2 divides the area sources into several sub-areas. Specifically, the crustal earthquake 

source is divided into six area sources, while the subcrustal area source is divided into three area sources. 

This is done for practical reasons that relate to the reliability analysis. In particular, the first-order reliability 
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method (FORM) is employed, and this type of analysis requires a continuously differentiable limit-state 

function that is relatively linear in the space of the random variables. This is achieved by the subdivision of 

the area sources in Figure 2. Furthermore, the subduction source is divided into a point source and a line 

source. This is done for physical reasons. Specifically, a certain range of magnitudes of subduction 

earthquakes is associated with rupture of the entire fault line. The location of such earthquakes is therefore 

known and thus modeled by a point source. In contrast, subduction earthquakes of lower magnitudes are 

associated with partial rupture of the fault. The unknown location of this type of earthquakes is modeled by 

the line source shown in Figure 2. 

In addition to the models required to simulate the earthquake hazard, an array of other models were 

utilized in this analysis. Table II provides an overview of these models. It is important to note that each 

model conforms to the following format: It takes random variables and other parameters as input, and it 

produces a physical measurable scalar or vector as output. For example, each of the earthquake location 

models described above takes the realization of a few random variables as input and produces the 

corresponding hypocenter location as output. Table II shows the number of instances of each model in the 

analysis. It also shows the number of random variables that each model takes. Specifically, the last two 

columns in Table II displays the number of aleatory random variables, size(x), and the number of epistemic 

random variables, size(), respectively, in each model. It is emphasized that the models for building 

response and building damage, i.e., the models in Table II that contain the word “Damage” or “Response” 

are simplified models rather than detailed finite element models. This is discussed later in the context of 

refining the building response and damage models. 

 

 

 

3. Analysis 

 

Given the sub-division of area sources in Figure 2 it is understood that there are 11 sources of earthquakes 

in the reliability analysis (Crustal + Subcrustal + Subduction = 6 + 3 + 2 = 11). As a result, a multi-hazard 

analysis is necessary. Several multi-hazard analysis options are available; one is the load coincidence 

method proposed by Wen (1990). However, matters simplify because the probability of coincidence of two 

earthquakes is negligible in this particular application. To address the presence of multiple hazards, let 

i = {1, 2, …, N}, where N = 11 = number of hazards, and let βi denote the reliability index associated with 

the limit-state function in Eq. (1) for each hazard. It is emphasized that each hazard is analyzed separately. 

From the theory of FORM reliability analysis it is know that the associated probability, i.e., the point on the 

loss curve is 
 

  iip   (3) 
 

where  is the standard normal cumulative distribution function. Provided the Poisson process is valid for 

each hazard, with rates i, the rate of loss exceedance associated with each hazard is ipi. The combined rate 

including all hazards is the sum of the individual rates, and the Poisson distribution provides the probability 

of loss exceedance within a time period, T: 
 

   







 


N

i
ii pTpp

1

exp101   (4) 
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In the context of FORM analysis is common to employ the reliability index instead of the probability. For 

this purpose, the generalized reliability index associated with p is obtained by inversion of the standard 

normal cumulative distribution function: 
 

  1 p    (5) 
 

where β is employed in the following as a surrogate measure for the exceedance probability when all 

hazards are considered.   

 

 

 

4. Loss Curve Results 

 

As mentioned earlier, an important objective in this study is to compute loss curves. To illustrate the 

concept, Figure 3 shows two loss curves obtained by Monte Carlo sampling with 100,000 samples. The 

black solid line displays the loss curve that is obtained when all random variables are included. To highlight 

the significance of epistemic uncertainty, the grey line in Figure 3 shows the loss curve that is obtained if all 

the epistemic random variables, i.e., θ, are set equal to their mean values. Naturally, this results in an 

underestimation of the probability of high losses, i.e., a “slimmer” tail of the loss curve. In fact, particular 

focus in this study is on the tail of the loss curve because of its importance in risk mitigation decisions. 

Unfortunately, although Monte Carlo sampling is a robust analysis approach, it yields less accurate results 

in the tail than around the mean of the loss. In contrast, FORM has two advantages that are explored in this 

study. First, it is tailored to estimate small probabilities, i.e., it addresses the tail of the loss curve. Second, it 

facilitates the computation of sensitivity measures that are employed in the following.  

 The loss curves in Figure 3 are plotted from zero to $100 million, and the figure reveals that there is 

roughly a 5% chance that this loss threshold will be exceeded. A better estimate is obtained by running 

FORM analysis with the following limit-state function: 
 

  100,000,000 – ,g l θ x  (6) 
 

FORM analysis for the individual hazards yield the reliability indices shown in Table III. The table shows 

that subduction earthquakes are associated with the lowest reliability indices. This implies that these 

earthquake sources produce the highest loss exceedance probabilities. However, it is also observed in 

Table III that subduction earthquakes are associated with low occurrence rates. This means that their overall 

influence on the seismic risk must be investigated further, which is done in the following. The results in 

Table III are substituted into Eq. (4) to compute the probability of exceeding a $100 million loss 

considering all earthquake sources. This yields p = 0.076, i.e., a 7.6% chance of exceeding that loss.  
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Figure 3. Loss curve with and without epistemic uncertainty. 

 

 

TableIII: Occurrence rates and reliability indices for individual hazards. 

Source Occurrence Rate Reliability Index 

Crustal Area Source 1 0.062 3.5 

Crustal Area Source 2 0.019 2.6 

Crustal Area Source 3 0.017 2.5 

Crustal Area Source 4 0.010 2.4 

Crustal Area Source 5 0.017 2.6 

Crustal Area Source 6 0.063 3.5 

Subcrustal Area Source 1 0.0029 1.6 

Subcrustal Area Source 2 0.027 2.0 

Subcrustal Area Source 3 0.063 2.7 

Subduction Line Source 0.0010 1.3 

Subduction Point Source 0.0013 1.3 

 

 

 

5. Sensitivity with respect to Model Refinement Decisions 

 

In the context of the regional seismic risk analysis of the UBC campus, suppose it is contemplated to refine 

some of the building models to reduce the epistemic uncertainty. In particular, the analyst may seek to 

replace simple building response models with detailed finite element models. Clearly, only the most 

important buildings can be addressed due to the time it takes to establish a detailed finite element model and 

the added computational cost. This section provides guidance for the analyst to prioritize between buildings.  
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 First, it is recognized that the objective is to reduce epistemic uncertainty. Provided that the epistemic 

uncertainty has been properly included in the models, a more detailed model will produce results with less 

uncertainty. Second, it is understood that it is the effect on the overall loss curve that must guide the 

decision to replace a model. In other words, the model whose θ has the largest influence on p in Eq. (4) 

should be replaced with a better model. In particular, for a model with only one epistemic random variable, 

it is the sensitivity ∂p/∂σ, where σ is the standard deviation of that epistemic random variable that should 

guide the prioritization. In general, each model has several epistemic random variables. To this end, a 

sensitivity measure that represents the derivative of p with respect to the standard deviation of all the 

epistemic random variables in a model is sought.  

 Suppose a model, such as the one in Eq. (2), is generically written as y = y(θ,x), where θ and x remain 

the vectors of epistemic and aleatory random variables, respectively. Furthermore, let K denote the number 

of epistemic random variables in the model. Next, consider the well-known first-order approximation of the 

variance of the response from this model with respect to the epistemic random variables:   
 

 
1 1

2 T

ij

K K

i j

i ij j

y y
y y 


 

 

 
  

          
    (7) 

 

where θy = gradient vector of y with respect to θ, Σθθ = covariance matrix of θ, ρij = correlation coefficient 

between the components of θ, and σi = standard deviation of the components of θ. For models that are linear 

with respect to the epistemic random variables Eq. (7) provides exact results; otherwise, it is an 

approximation. In order to study the influence of epistemic uncertainty on β, the following derivative is 

sought and evaluated by the chain rule of differentiation: 
 

 
1

N
i

i i

i

i

pp

p p

  

  

    
    

     
  (8) 

 

where N = number of hazards. The derivatives in the right hand side of Eq. (8) are addressed separately in 

the following. The first derivative is obtained by differentiating Eq. (5):  
 

 
 
1

p




 




 (9) 

 

The second derivative is obtained by differentiating Eq. (4): 
 

 1

N

i

i i

i

i

T pp
T e

p



 

 
  


 (10) 

 

The third derivative is obtained by differentiating Eq. (3): 
 

  i

i

i

p
 




 


 (11) 

 

The fourth derivative is obtained by adding contributions from all the epistemic random variables in the 

model. The chain rule of differentiation yields: 
 

 
1

ji
K

i

j j

 

  


  

     
  (12) 
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where the first derivative in the right-hand side is a well-known reliability sensitivity measure, see for 

example Der Kiureghian (2005) for details, while the last derivative in the right-hand side of Eq. (12) is 

obtained by differentiating Eq. (7): 
 

 
1

1

j j

ij i

i

K

i

y y

 
 



 
  

 

 
  

 
  (13) 

 

In the following, Eq. (8) is evaluated and compared for the 622 buildings at the UBC campus. Table IV 

displays values for ∂β/∂σ for the 10 highest ranked buildings. In other words, Table IV identifies the models 

for which a reduction in the epistemic uncertainty would have the greatest impact on the reliability index. 

Naturally, an increase in epistemic uncertainty, i.e., an increase in σ, increases the probability of exceeding 

a $100 million loss, which in turn reduces the reliability index; hence the minus sign in Table IV. It is 

observed in Table IV that the highest ranked buildings are mostly concrete shear wall buildings, which may 

indicate that the structural model for this type of building has the greatest potential for improvement. This 

point is brought up later in this paper.  

 Table V shows the ranking of magnitude models. It reveals that the magnitude model for subcrustal 

area source 2 is the model for which a reduction in the epistemic uncertainty would have the greatest impact 

on the loss probability. Similarly, Table VI shows the ranking of ground motion intensity models for an 

arbitrarily selected building. This ranking of the intensity models were observed for 430 of the buildings, 

while the intensity models for subduction and subcrustal earthquakes switch places for the other 192 

buildings. It is reemphasized that these results provide a basis for selecting models to be refined if proper 

resources are available.  

 It is of interest to investigate the value of ∂β/∂σ if the entire collection of models is considered as one 

model. For this case, the evaluation of ∂β/∂σ is disaggregated into two parts: 
 

 
i H i ii B

i i   

     

   
   

    
   (14) 

 

where the first sum is taken over epistemic random variables associated with hazard models, while the 

second sum is taken over epistemic random variables associated with building models. The analysis reveals 

that the first sum equals −8.54∙10
-9

 and the second equals −7.20∙10
-7

. This shows that, in the context of the 

epistemic uncertainty that is modeled in this study, it is far more effective to reduce the epistemic 

uncertainty in the building models rather than the hazard models.  

 

 

 

6. Sensitivity with respect to Model Improvement Decisions 

 

In the long run, researchers seek to improve the library of models that are available. This effort to reduce 

epistemic uncertainty in generic models addresses a different problem than that addressed in the previous 

section. In particular, the objective in the previous section was to identify, e.g., the building that should be 

subjected to more detailed modeling. In contrast, this section identifies which generic models should be 

prioritized for further research and data gathering. To make such decisions, it is necessary to assess the cost 

of long-term model improvement, and how those efforts will improve the assessment of risk. To this end,  

 

 

 
 
 
308

 
 
 
 
 

 
 
 
5th International Conference on Reliable Engineering Computing (REC 2012)



Sensitivity Measures for Minimizing Model Uncertainty in Probabilistic Analysis 

TableIV: Top 10 building models according epistemic uncertainty. 

Building Name Building Type ∂β/∂σ 

University Centre Addition Concrete Shear Wall -0.76 

Village Shops 2 Concrete Shear Wall -0.57 

Power House Meter Station Concrete Shear Wall -0.48 

Vanier Pump Station Steel Light Frame -0.40 

Wesbrook Animal Care Unit Concrete Shear Wall -0.27 

St. Mark Chapel Concrete Shear Wall -0.11 

Chan Centre for Performing Arts Concrete Shear Wall -0.11 

Animal Science Main Sheep Unit Concrete Moment Frame -0.11 

Morris & Helen Belkin Art Gallery Concrete Shear Wall -0.023 

Village Shops 1 Concrete Shear Wall -0.022 

 

 

Table V: Ranking of magnitude models 

according to epistemic uncertainty. 

Model ∂β/∂σ 

Subcrustal Area Source 2 Magnitude -0.097 

Subcrustal Area Source 3 Magnitude -0.062 

Subcrustal Area Source 1 Magnitude -0.023 

Crustal Area Source 2 Magnitude -0.019 

Crustal Area Source 3 Magnitude -0.019 

Crustal Area Source 5 Magnitude -0.018 

Crustal Area Source 4 Magnitude -0.017 

Crustal Area Source 6 Magnitude -0.0039 

Crustal Area Source 1 Magnitude -0.0034 

 

 
Table VI: Ranking of intensity models  

according to epistemic uncertainty. 

Model ∂β/∂σ 

Crustal Intensity -2.81 

Subcrustal Intensity -1.42 

Subduction Intensity -0.80 

 

 

the sensitivity of the reliability index, β, with respect to the cost of modeling, c, i.e., ∂β/∂c, is sought. Chain 

rule of differentiation yields:  
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1

i
N

i ic c

 








 
 

  
  (15) 

 

where the first derivative is expanded and explained earlier, and the second derivative is obtained by the 

chain rule, adding contributions over the K epistemic random variables of the model: 
 

 
1

K
j

j j

i i n

c n c

 




   
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where n is introduced to quantify the number of observations that are used to develop the model. The first 

derivative in the right-hand side of Eq. (16) is addressed in the previous section. The second derivative 

represents the change in the standard deviation of a model parameter due to a change in the number of 

observations that are employed to build the model. In the following, this derivative, ∂σj/∂n, is expressed for 

three types of models: Linear regression models, nonlinear regression models, and generic models. For 

linear regression models, according to Box and Tiao (1992), the variance of the model parameter θj is 
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T
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where k = number of θ-parameters in the model, y = vector of observed results, X = matrix of observations, 

θ̂  = mean vector of model parameters, and ( )jj identifies the j
th
 diagonal component. The variance of the 

model error is 
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The derivative of Eq. (17) with respect to n is  
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and, similarly, the derivative with respect to Eq. (18) is: 
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Similar derivatives are obtained for nonlinear regression models, where the expressions analogous to Eqs. 

(17) and (18) are made available by Seber and Wild (2003). For generic models, such as finite element 

models, it is argued that the epistemic uncertainty is primarily present in the random variables that are input 

to the model. This is assumed here, although some efforts have been made by Haukaas and Gardoni (2011) 

and others to incorporate epistemic uncertainty into finite element models. To this end, it is of interest to 

identify how the epistemic uncertainty in a physical random variable say, concrete strength, is affected by 

inclusion of more information. As a starting point, consider the well-known expression for variance: 
 

  2
2

1

1

1
j i j

n

i

x
n

 


 

  (21) 

 

where xi = i
th
 observation and μj = mean of observations. The derivative is: 
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It is emphasized that the expressions for the derivative ∂σj/∂n are derived under the assumption that the 

mean model is unaffected by added observations. Clearly, this may not be the case in practical 

circumstances, where one added observation may precipitate an increase in the variance of the epistemic 

random variables. However, if the fundamental model form is correct, then over time, new data will serve 

to reduce the epistemic uncertainty. The previously presented formulas are derived on this basis.  

 It is observed that the minus sign in equations above for ∂σj/∂n correctly implies that that the standard 

deviation of the model parameter is reduced when n is increased. Moreover, it is observed that the reduction 

in the standard deviation is smaller when n is large than when n is small. In other words, a model that is 

based on a large number of observations will benefit less from a few more observations. Furthermore, it is 

observed that the reduction in the standard deviation is greater when k is large than when k is small. In other 

words, a model with more parameters, i.e., a more complex model, will benefit more from new 

observations.  

 The last derivative in the right-hand side of Eq. (16) is the inverse of the cost of obtaining one data 

point. Naturally, the quantification of this cost is challenging. In fact, some observations are readily 

obtained, while others come at a significant cost. Examples of typical engineering observations that are 

counted by n include: 1) Testing of building on a shake table, which can be used to calibrate the building 

response, damage, and repair cost models; 2) Analysis of a highly refined numerical building model, which 

can be used to calibrate building response models; 3) Survey of buildings damaged in earthquakes, which 

can be used to calibrate building damage models; and 4) Claims reports from insurance companies, which 

can be used to calibrate building damage models. Although the cost of obtaining such data vary, it is 

assumed in this study that each observation will take two to three days of paid work and cost around $500, 

i.e., ∂c/∂n = 500.  

 The sensitivity measure ∂β/∂c is now evaluated for the models that were employed in the regional risk 

analysis for the 622 buildings at the UBC campus. The model types were presented in Table II. Table VII 

identifies the five models with highest value of ∂β/∂c. This means that allocating resources for improving 

these models has the greatest impact on the reliability index. In particular, gathering data to improve the 

concrete shear wall structural response model has the greatest effect on the reliability index per dollar spent.  

 The positive sign of the ∂β/∂c-values indicates that the reliability index increases when resources are 

allocated to data gathering. This makes sense, because the resulting model improvement reduces the 

uncertainty, which in turn reduces the probability of exceeding a $100 million loss. This decrease in 

probability is reflected by the increase in the reliability index, which is correctly captured by the positive 

sign of the ∂β/∂c-values.  

 Table VIII identifies the five models with lowest value of ∂β/∂c. In other words, these are the models 

for which data gathering and model improvement would not have significant impact on the reliability index. 

While structural response models rank highest according to ∂β/∂c, structural damage models rank lowest. In 

other words, in the context of the models employed in this study, it appears worthwhile to focus attention on 

reducing the epistemic uncertainty in the structural response models, i.e., models for building displacement 

and acceleration, rather than the damage models. However, an important remark is made in regards to these 

results: The ranking according to ∂β/∂c depends on the number of instances of a model type in the analysis. 

For example, in the present analysis, almost 54% of the building value is associated with concrete shear 

wall buildings, i.e., buildings of the type that ranked first in Table VII. On one hand, this skews the results 
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towards higher ∂β/∂c-values for this building type. Although this is not the only reason for the observed 

result, it should be duly noted when applying these results to regions with other compositions of the 

building stock. On the other hand, the ranking in Table VII and Table VIII are still valuable for the 

considered region. For researchers who seek to improve the risk assessment for this particular region, the 

results in Table VII and Table VIII are valid as measures to guide the allocation of resources for model 

improvement.  

 An additional remark about the results in Table VII, particularly the high rank of concrete shear wall 

structural response models, is made in regards to the results in the previous section. There it was noted that 

several of the concrete shear wall buildings are primary candidates for more refined structural analysis to 

reduce epistemic uncertainty. It is interesting to note that this type of building consistently ranks high 

according to both sensitivity measures.  

 

Table VII: Top five model types according to cost of model improvement. 

Model Type ∂β/∂c [∙10-6] 

Concrete Shear Wall Structural Response 46.7 

Wood Large Frame Structural Response 4.4 

Wood Light Frame Structural Response 1.0 

Concrete Frame with Masonry Infill Wall Structural Response 0.52 

Concrete Moment Frame Structural Response 0.50 

 

 

Table VIII: Bottom five model types according to cost of model improvement. 

Model Type ∂β/∂c [∙10-12] 

Wood Light Frame Structural Damage 0.2 

Steel Light Frame Structural Damage 0.09 

Steel Braced Frame Structural Damage 0.06 

Steel Moment Frame Structural Damage 0.03 

Steel Frame with Masonry Infill Wall Structural Damage 0.02 

 

 

 

7. Conclusions 

 

The overarching vision behind this paper is twofold. First, it is sought to identify and characterize epistemic 

uncertainty in a comprehensive manner. This is important because epistemic uncertainty, such as model 

uncertainty, is reducible and has significant influence on risk estimates. Second, it is sought to allocate 

resources in an optimal manner to reduce the epistemic uncertainty. The first goal is achieved by utilizing a 

library of probabilistic models that contain random variables that represent epistemic uncertainty. These 

models are implemented in a computer program, called Rt, dedicated to multi-model reliability analysis. Rt 

is employed in this paper to conduct risk analysis for a region in Vancouver, Canada that comprises 622 

buildings. The second goal is addressed in this paper by the development of two new reliability sensitivity 

measures. These are implemented in Rt and evaluated in the regional risk analysis. The results show that the 
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epistemic uncertainty associated with the models for concrete shear wall buildings is the most cost-effective 

to address for this region.  
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