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Abstract: Inverse problems in science and engineering aim at estimating model parameters of a physical system 

using observations of the model’s response. Variational least square type approaches are typically adopted, solving the 

forward model, and then comparing the resulting modeled data with the actual measured data. The data 

mismatch is minimized and the process is iterated until the best match is achieved. However, data 

measurements are associated with uncertainties, and deterministic inverse algorithms hardly provide the 

associated error estimates for the model parameters. In this work, an interval-based iterative solution is 

presented to predict bounds on such errors, using optimization and the containment-stopping criterion. 
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1. Introduction 

 

Inverse problems in science and engineering aim at estimating model parameters of a physical system from 

available observations (data) of his response or output (see Tarantola 1987). A classical example is that of 

wave tomography in geophysics for a full seismic waveform inversion (see, for example, Fichtner 2010), or 

the optical tomography for the recognition of cancer in breast tissue via fluorescence (see, for example, 

Eppstein et al. 2003). In both cases, a forward model is given to predict the (seismic or light) wave 

propagation through a heterogeneous medium (soil subsurface or human tissue). The forward model is 

solved only if the (elastic or optical) properties of the medium are known in advance. These, however, are 

exactly what are not known and what one wants to predict. This leads to a formulation of an inverse 

problem if measurements of wave amplitudes and phases at given points on the accessible boundaries of 

medium are available. Using these data, an appropriate ‘inverse’ algorithm can be formulated to estimate 

maps of the properties of the medium, from which regions of high/low stiffness can be localized, or malign 

tissue detected. Variational least square type approaches are typically adopted by making an initial guess 

(either random or educated) for the unknown variables, solving the forward model, and then comparing the 

resulting modeled data with the actual measured data. The initial guess is then corrected by minimizing the 

data mismatch to yield a better match. The process is iterated until the best match is achieved. 

A deep look into the mathematics used to model the wave propagation through a medium and the 

associated physical phenomena, such as scattering and absorption, will reveal an underlying mathematical 

structure, characterized by Helmholtz wave equations. These, as other partial differential equations 

encountered in engineering and sciences are typically solved by finite-element methods (FEM) on an 

unstructured mesh to adequately model the geometry of the medium, and to increase discretization density 

where appropriate. The inverse algorithm highly depends upon the forward model. If FEM is used the 

domain is discretized into elements and the number of unknowns depends on the mesh size and on the 

element type. Typically, the number of unknowns to be estimated exceeds the number of boundary 
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measurements available and that will result in an ill-posed problem. Ill-posedness is treated by 

regularization procedures (Tikhonov & Arsenin 1977), by adding appropriate additional constraints that 

yield well-posed inverse algorithms. Robustness is typically achieved by a course-to-fine regularization that 

exploits arc-length or surface-area minimizers.  

Clearly, data measurements are affected by errors, whose nature depends upon both controllable and 

uncontrollable factors, such as, for example, the precision of the adopted instrumentation or the 

environmental conditions during the measurement campaign, respectively. Deterministic inverse algorithms 

hardly provide error bounds on the parameter estimates given uncertainties in the data. Indeed, this would 

require a combinatory approach that explores all the possible combinations of data within the given bounds, 

and this is computationally unfeasible even for small-to-medium scale problems. On the other hand, a 

probabilistic approach to solve the inverse problem, as in Kalman Filter estimation (Kalman 1960, see also 

Brown and Hwang 1992), allows identifying the propagation of uncertainties and it also provides errors on 

the parameter estimates. However, such approaches have their own limitations since they require a prior 

assumption on the nature of uncertainties, i.e. data errors are usually assumed as Gaussian. It is desirable to 

have inverse algorithms that do not rely on the type of uncertainties. 

This work addresses this issue, by proposing an interval-based iterative solution for inverse problems 

that not only minimize the overestimation in the target quantities, but also exploits the same overestimation 

to track propagation of uncertainties of the target estimates. The paper is structured as follows. First, to 

illustrate the proposed theoretical approach, we present a one-dimensional (1-D) inverse problem that is 

estimating the Young’s modulus of an elastic bar from known measurements of displacements due to 

traction/compression. The inverse algorithm is then introduced by combining an ‘optimize-then-discretize’ 

strategy with interval FEM in order to minimize the mismatch functional between modeled and actual data. 

Examples are finally presented and discussed. 

 

 

 

2. Formulation of inverse problem in elastostatics 

 

2.1.  DETERMINISTIC FORMULATION 

 

Consider an elastic bar of length L subject to distributed tensional forces f(x). The differential equation 

 
d d

0, 0 ,
d d

u
f x L

x x

 

    
 

 (1a) 
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define the ‘continuous’ forward model that allows to predict the displacements u(x) given the parameter 

)()()( xAxEx  , where E(x) is the Young’s Modulus and A(x) is the cross-sectional area, both assumed as 

spatially varying. When   is unknown, it can be estimated if measurements j
u~ of u are available at N 

points jxx  , j = 1, ...N on the bar surface. To solve for   we consider the following functional 
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here, the first term in the right-hand side is the square of the mismatch between data and the unknown 

theoretical displacements u (modelled data) at the locations xj in accord to the forward model (1). The 

second term introduces the Lagrange multiplier )(xw  to enforce the ‘strong’ constraint (1), and the third 

integral is a standard course-to-fine regularization term to control the smoothness/roughness of  , and to 

guarantee the well-posedness of the inverse problem (   is the regularization parameter). 

 To find the optimal   that minimizes (2), we introduce an imaginary time that rules the 

evolution/convergence of an initial guess for   toward the minimal solution of (2). Thus, u, w  and   also 

depend upon the fictitious t, and we wish to find the rate dtd /   at which   should change in time so 

that F always decreases, i.e. 0F . The time derivative of F follows after several integrations by parts and 

some algebra as (see appendix A)  
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where we have set )(
jj

xuu  . Since the multiplier w is arbitrary, it can be properly chosen to further 

simplify (3). Indeed, if we impose the following boundary value problem 
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with boundary conditions as  
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then (3) reduces to the minimal form 
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We are still free to choose the time rate of   so that F is always decreasing. To do so, 0F is always 

satisfied at any t if we choose 
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 This yields the evolution equation of the unknown parameter  so that at steady state, i.e. 



t, F is 

minimized. Observe that (6) depends upon the field u, which satisfies (1), and the associated adjoint or 

multiplier w , given by the boundary value problem (4). If we approximate the time derivative of  as  
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and follow the FEM-based ‘discrete’ version of the ‘continuous’ equations (1-4-6), a deterministic inverse 

algorithm can be formulated as 
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here, i
α  is the (m × 1) vector at iteration i that lists the individual values of   parameters within each of the 

m elements, i
u  is a (n × 1) vector of the nodal displacements, and )K(α

i  is the assembled FEM stiffness 

matrix, which depends upon i
α . Further, P (n × 1) is the vector of nodal forces, u~ (n × 1) is the data vector 

of measured displacements interpolated at the nodes, i
Du (m × 1) and i

Dw (m × 1) are the vector of element 

strains, and the vector of first derivative of wi, respectively. i
αD

2 (m × 1) is an approximation of the second 

space derivative of )(x . The Hadamard product )(
jj

baba   is the element-by-element product. We point 

out that (7) can also be obtained via a ‘discretize-then-optimize’ strategy. To do so, one first discretizes the 

forward model (1) and then optimizes the ‘discrete’ version of the functional (2) with respect to the vector 

α . 

The free parameter t can be chosen to control the smallness of the correction iii
αααΔα 

1  

during the iterations, where b  is the norm of a vector b. Typically, one starts with an initial guess for  , 

say 0
 , and iterates Eq. (7) until convergence is achieved, viz. when the relative error i

α/Δα is smaller 

than a prescribed threshold  .  

In the following, we present an interval formulation of Eq. (7) that will provide bounds on the 

uncertainties of the estimates for α . 
 

 

 

3. Interval FEM Formulation 
 

One of the main features of interval arithmetic is its capability of providing guaranteed results. However, it 

has the disadvantage of overestimation if variables have multiple occurrences in the same expression. For 

example, if x is an interval, the function f(x) = x – x is not equal to zero but to an interval that contains zero. 

Such dependencies lead to meaningless results, and have discouraged some researchers of pursuing further 

developments of FEM techniques using interval representations. 

Only recently, Interval Finite Element Methods (IFEM) have been developed to handle the analysis of 

systems for uncertain parameters described as intervals. Since the early development of IFEM during the 

mid-1990s of the last century (Koyluoglu et al., 1995; Muhanna and Mullen, 1995; Nakagiri and 

Yoshikawa, 1996; Rao and Sawyer, 1995; Rao and Berke, 1997; Rao and Chen 1998) researchers have 

focused, among other issues, on two major problems: the first is how to obtain solutions with reasonable 

bounds on the system response that make sense from a practical point of view, or in other words, with the 

least possible overestimation of their bounding intervals; the second is how to obtain reasonable bounds on 

the derived quantities that are functions of the system response. 

The most successful approaches for overestimation reduction are those that relate the dependency of 

interval quantities to the physics of the problem being considered (for details see Muhanna and Mullen, 

1995; Muhanna and Mullen, 2001; Zhang, 2005). A brief description of IFEM formulation is presented 

below, but a detailed explanation of the method can be found in Rama Rao et al., 2011. The two major 

issues resolved by this formulation are: 
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1. Reducing of overestimation in the bounds on the system response due to the coupling and 

transformation in the conventional FEM formulation as well as due to the nature of used interval linear 

solvers (Muhanna and Mullen, 2001). 

2. Obtaining the secondary variables (derived) such as forces, stresses, and strains of the conventional 

displacement FEM along with the primary variables (displacements) and with the same accuracy of the 

primary ones. 
 

3.1.  DISCRETE STRUCTURAL MODELS 
 

The FEM variational formulation for a static discrete structural model is given by minimizing the total 

potential energy functional 
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where , Kc, U, and P are total potential energy, stiffness matrix, displacement vector, and load vector 

respectively. For structural problems this formulation includes both direct and indirect approaches. For the 

direct approach, the strain ε is selected as a secondary variable of interest, where a constraint can be 

introduced as C2 U = ε. For the indirect approach, constraints are introduced on displacements of the form 

C1U = V in such a way that Lagrange multipliers will be equal to the internal forces. C1 and C2 are matrices 

of orders m  n and k  n, respectively, and m is the number of displacements’ constraints, k is the number 

of strains, and n is the number of displacements’ degrees of freedom. We note that V is a constant and ε is a 

function of U. We amend the right-hand side of Eq. (8) to obtain 
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where 1 and 2 are vectors of Lagrange multipliers with the dimensions m and k, respectively. Invoking the 

stationarity of 
*
, that is 

*
 = 0, we obtain 
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The solution of Eq. (10) will provide the values of dependent variable U and the derived ones 1, 2, 

and ε at the same time and with the same accuracy. The present interval formulation is an extension of the 

Element-By-Element (EBE) finite element technique developed by Muhanna and Mullen (2001). 

The main sources of overestimation in IFEM are the multiple occurrences of the same interval variable 

(dependency problem), the width of interval quantities, the problem size, and the problem complexity, in 

addition to the nature of the used interval solver of the interval linear system of equations.  

The current formulation is modifying the displacements’ constraints used in the previous EBE 

formulation to yield the element forces as Lagrange Multipliers directly and the system strains. All interval 
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quantities will be introduced in non-italic boldface font. Following the procedures given in Rama Rao et al. 

(2011) we obtain the interval linear system PKU  , or explicitly,  
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here, Kc is a (k  k) interval matrix, which contains the individual elements’ local stiffness and zeros 

corresponding to the free nodes’ degrees of freedom, where k is the sum of number of elements and free 

nodes. 

The accuracy of the system solution depends mainly on the structure of Eq. (11) and on the nature of 

the used solver. The associated solution provides the enclosures of the values of dependent variables which 

are the interval displacements U, interval element forces 1, the multiplier 2, and the elements’ interval 

strains. An iterative solver is discussed in the next section. 

 

3.2.  INTERVAL SOLVERS AND ITERATIVE ENCLOSURE 

 

Any solver for interval linear system of equations can be used to solve for ui and wi in Eq. (7), however, 

the best known method for obtaining very sharp enclosures of interval linear system of equations that have 

the structure introduced in Eq. (11) and with large uncertainty is the iterative method developed in the work 

of Neumaier and Pownuk (2007). The current formulation results in the interval linear system of equations 

given in (11) which can be transformed to have the general form: 

 buD F a AB K  )(  (12) 

where D is diagonal. Furthermore, defining 
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where D0 is chosen to ensure invertability (often D0 is selected as the midpoint of D), the solution u can be 

written as: 
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To obtain a solution with tight interval enclosure we define two auxiliary interval quantities, 
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which, given an initial estimate for u, we iterate as follows: 
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until the enclosures converge, from which the desired solution u can be straightforwardly obtained. 

Observe that not only are the interval displacements U obtained but also the derived quantities 1, 2, 

and ε with the same accuracy. The next section will discuss the use of this formulation in the solution of the 

inverse problem Eq. (2) under interval uncertainties. 
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4. Interval Inverse Problem 
 

The interval solution of the inverse problem of Eq. (2) is based on the notion that the measurements (data) 

are given as intervals. In this work we are introducing an initial attempt to provide such a solution using 

interval finite element. From a closer look at the deterministic solution presented in Eq. (7), it can be seen 

that the iterative update of the sought parameters is given by: iiiii
tDtDwDu 

21
2


 , where the 

terms Dui and Dwi are the first derivative of ui and wi respectively. A naive interval FEM formulation will 

result in an enormous overestimation of the solution enclosure and with additional excessive 

overestimations in derived quantities such as stresses and strains. In our case, the solution is the 

displacement and the derived quantity is the strain. The IFEM formulation described in the previous section 

provides an exact solution for the interval loads and the tightest possible enclosure when both load and 

stiffness being intervals. Moreover, the formulation provides the stresses (λ1) and strains (ε) as part of Eq. 

(11) solution and of course with the same accuracy as that of the displacements. Furthermore, we speculate 

that the course-to-fine regularizer can be neglected, viz. set 0
1
 , because one can exploit the natural 

relaxation induced by intervals, which allows to seek for a ‘thick vector’ AEα  , a vector with thickened 

(relaxed) values that can span the range naturally imposed by the uncertainty of the data. This is similar to 

the Tikhonov regularization that imposes vector solutions with small norm. 

 In summary, the solution of the inverse problem of Eq. (2) as interval is accomplished by implementing 

the following steps: 

1. Solve for ui and Dui using Eq. (11) as Ui = K
-1

Pi, where the interval vector Ui contains ui and Dui. 

2. Solve for Dwi using Eq. (11) in the form )~(
1

uuKW 


iii
, where the interval vector Wi contains wi and 

Dwi. Instead of computing )~( uu 
i as a conventional interval operation, the subtraction is done on 

bounds due to inherited dependency of i
u  upon u~ , since uu ~

i  when convergence is attained (see 

Eq. 7). In particular, ],~,~[~ uuuuuu 
iii

where u  and u are the lower and upper bounds of u, 

respectively. 

3. Compute the updated interval value of αi+1 as  
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with )/min(
iii

DDct wuα  , and 0 . The optimal choice of the constant c is problem dependent, 

and in our case we set c = 0.005.  

4. The iterations are stopped when the estimated displacements ui contain the data u~  (containment-

stopping criterion), or in other words when uu ~
i .  

 

4.1.  EXAMPLE 

 

For an illustrative example, we are using a 5 m long bar, pinned at one end and simply supported at the 

other as shown in Fig. (1). The bar has a constant cross sectional area A = 0.005 m
2
 and is subjected to an 

axial force of 1000 kN applied at C. The bar is modelled using 25 finite elements each has a different 

modulus of elasticity. The values: 100, 105,110,115,120, 120, 115, 110, 105, 100, 105,110, 115, 120, 130, 

140, 150, 140, 130, 125, 120, 115, 105, 100, and 90 GPa are the assumed moduli of elasticity of elements 1 

through 25, respectively. 
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Figure 1. Truss bar. 

 

 The problem to be solved is that to predict the values of elasticity moduli for each element given that 

the displacements at the 26 nodes are known intervals (measurements with interval uncertainty). As an 

initial guess for the Young’s modulus we set E(x) = 60 GPa. 

 

4.2.  DETERMINISTIC SOLUTION 

 

First, the algorithm in Eq. (7) has been tested for the case where the measured data are assumed to be 

deterministic. The solution converged to the measured data and the moduli were predicted correctly (results 

are not reported). Hereafter, we will apply the interval-based formulation of the algorithm.  

 

 
 

Figure 2. Premature solution of the Interval Inverse Problem. (top) Exact Young’s modulus E (dash) and upper and lower bounds 

(solid) of the interval estimate E = α/A, where A is the cross-sectional area; (bottom) Given interval data u~  (dash) and associated u 

displacements. Note that estimates contain data.  

 

4.3.  SOLUTION FOR UNCERTAIN MEASUREMENTS 

 

For the uncertain case, a 5% interval uncertainty is considered in the measurements. Fig. 2 shows the 

obtained interval solution and the associated containment of the measurements, i.e. the estimated u 
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displacements contain the measured u~ data. However, a pre-mature prediction of the elasticity moduli 

occurred. This phenomenon is due to the overestimation in the solution (the measurements are contained 

before the final solution is attained). Work is in progress to improve overestimation reduction of Eq. (17) by 

simultaneously solving for u and w (see Eq. 7) in an interval block-matrix form similar to that of Eq. (11). 

 A simpler alternative strategy has been adopted to avoid a significant overestimation and to obtain the 

correct solution. We first proceed with the solution in a deterministic form until the ii
ααα 

1
  update 

becomes insignificant after several iterations (usually of the order of hundreds). At this stage the update for 

α is switched to a full interval form using the interval algorithm based on Eq. (17). Fig. 3 shows the 

resulting mature solution, where both the measurements and the estimated unknown Young’s moduli are 

contained. 

 

 
 

Figure. 3. Mature solution of the Interval Inverse Problem. (top) Exact Young’s modulus E (dash) and upper and lower bounds 

(solid) of the interval estimate E = α/A, where A is the cross-sectional area; (bottom) Given interval data u~  (dash) and associated u 

displacements. Note that estimates contain data.  
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5. Conclusion 

 
An initial formulation for interval inverse problems is introduced. Uncertainty in the measurements is considered in an 

interval form. The containment stopping criterion is used which is intrinsic for interval arithmetic. Overestimation 

control and reduction play crucial role in achieving correct solutions. Results show a great potential for further 

developments. 
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 Interval Solution for Inverse Problems under uncertainty 

 

Appendix A 

 

In Eq. (2), we set )(
jj

xuu  and integrate by parts once to obtain  
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Since u, w  and   are assumed time dependent, the time derivative of F follows from (A1) as 
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 (A2) 

Here, applying integration by parts once to terms A, B and C yield (for simplicity, we set 0 at the boundaries) 
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 (A3) 

Note that the underlined term vanishes because of (1a). Further, taking the time derivative of the boundary conditions 

(1b) for u yields  
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and (A3) simplifies to 
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Eq. (3) follows from (A5) after re-writing the mismatch term as 
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where )(
j

xx  is the Dirac function centered at .
j

x  
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