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Abstract. The paper presents stochastic discrete simulations of concrete fracturing. The spatial material
randomness of local material properties is introduced into a discrete lattice-particle model via an autocor-
related random field generated by the Karhunen–Loève expansion method. The stochastic discrete model is
employed to simulate failure of three-point-bent beams with and without a central notch notch. The effect
of spatial randomness on the peak load and energy dissipation is studied.
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1. Introduction

It has been widely recognized that mechanical properties of materials exhibit a spatial variability. The sem-
inal theory of (Weibull, 1939) offered simple and powerful tool to determine the probabilistic distribution
of structural strength. However, applicability of the Weibull theory is limited to brittle structures with no
redistribution prior to the peak load. The Weibull theory lacks any length scale and rupture of infinitely
small volume directly causes failure of the whole structure. The absence of any characteristic length scale
also results in spurious infinite strength of infinitely small structures (Vořechovský, 2010). Moreover, the
Weibull theory assumes that strength of every material point is independent of its surroundings. However,
many structures are made of quasibrittle materials like concrete, ceramics, rocks or ice. These structures
have the ability to partially redistribute released stresses and thus their failure is triggered by rupture of
some representative volume of finite size. Also the Weibull assumption of independence stands out against
the natural expectation that the local strength fluctuate rather continuously inside a structure.

The advantage of Weibull theory comes from the fact that the mechanics of failure does not interact with
the stochastic model – only elastic stress field is needed. Extension of the Weibull theory for finite internal
material length scale requires knowledge of changes in the stress field during the redistribution prior to the
peak load. The redistribution can be mimicked by the nonlocal Weibull theory of (Bažant and Xi, 1991)
and (Bažant and Novák, 2000), where probability of failure of material point depends not only on its local
stress but also on stress in its surroundings. Therefore, local stress is replaced by nonlocal stress obtained by
nonlocal averaging of the (local) elastic stress field (Bažant and Jirásek, 2002). The nonlocal Weibull theory
agrees for the large sizes with the local one. For intermediate structural sizes, it predicts higher strengths
than the local Weibull theory thanks to possible stress redistribution. Unfortunately, in the in the case of very
small structures, the theory is not applicable because the approximation or stress redistribution by nonlocal
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averaging is too simplistic. Though the nonlocal averaging helps to introduce the material internal length, it
is not able to correctly reflect possible spatial correlations of local material properties.

A laborious option of structural strength estimation is represented by stochastic failure simulations that
include proper mechanics of stress redistribution. Such a stochastic analysis can be performed using the
finite element method with a sophisticated material constitutive law (Vořechovský, 2007; Vořechovský and
Sadı́lek, 2008). Failure of highly heterogeneous materials can also be advantageously modeled via discrete
models. These models can be deterministic: (Grassl and Rempling, 2008; Van Mier and Van Vliet, 2003;
Bolander and Saito, 1998) or stochastic: (Grassl and Bažant, 2009; Alava et al., 2006). In this study, we adopt
the lattice particle-model developed by G. Cusatis (Cusatis and Cedolin, 2007) for modeling of concrete
fracturing. Spatial material fluctuations are introduced by modeling the material properties as realizations of
a random field.

The following Section 2 briefly describes the deterministic mechanical (lattice) model and Section 3
elucidates how the spatial randomness is incorporated into the model. The model is then used for numer-
ical simulations of failure of notched and unnotched three-point bent beams. The results are presented in
Sections 4 (notched beams) and 5 (unnotched beams).

2. Deterministic model

Modeling of the initiation and propagation of cracks in quasibrittle materials exhibiting strain softening has
been studied for several decades. Although this is a difficult task complicated by the distributed damage
dissipating energy within a fracture process zone (FPZ) of non-negligible size, realistic results have been
achieved by several different approaches; see e.g. (Bažant and Planas, 1998). The present study is based
on the cohesive crack model (Barenblatt, 1962; Hillerborg et al., 1976; Bažant and Planas, 1998) called
sometimes the fictitious crack model. It relies on an assumption that the cohesive stress transmitted across
the crack is released gradually as a decreasing function of the crack opening, called the cohesive softening
curve. Its main characteristic is the total fracture energy, GF – a material constant representing the area
under the softening curve.

In heterogeneous materials, the dissipation of energy takes place within numerous meso-level cracks
inside the FPZ. Direct modeling of such distributed cracking calls for representation of the material meso-
level structure. Models capable to efficiently incorporate the concrete meso-structure should be used. For
this purpose, the present analysis will be based on the discrete lattice-particle developed by (Cusatis and
Cedolin, 2007), which is an extension of (Cusatis et al., 2003; Cusatis et al., 2006).

The material is represented by a discrete three-dimensional assembly of rigid cells. The cells are created
by tessellation according to pseudo-random locations and radii of computer generated aggregates/particles.
Every cell contains one aggregate (Fig. 1a,b). The cells are interconnected by set of three nonlinear springs
(normal - n and two tangential - t1, t2) placed at the interfaces between the cells, representing the mineral
aggregates in concrete and its surroundings. On the level of rigid cell connection, the cohesive crack model is
used to represent cracking in the matrix between the adjacent grains. The inter-particle fracturing is assumed
to be of damage-mechanics type and is modeled using a single damage variable ω applied to all three
directions i = n, t1 and t2. Forces Fi in the springs can thus be evaluated from their extensions ∆ui by

Fi = (1− ω)ki∆ui (1)
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Figure 1. a) One cell of the lattice-particle model and b) its section revealing the aggregate. c) Geometry of the beams simulated in
three-point-bending.

where ki is elastic spring stiffness. The damage parameter ω depends on ∆ui and on the previous loading
history of each connection. For a detailed description of the connection constitutive law or other model
features, see (Cusatis and Cedolin, 2007). The confinement effect (present in the full version of the model)
is neglected here as it was estimated that confinement does not play any important role in the studied type
of experiment.

Beams of depths D = 300 mm, span-depth ratio S/D = 2.4 and thickness t = 0.04 m, were mod-
eled. The maximal aggregate diameter was 9.5 mm. The minimal grain diameter was selected as 3 mm.
Aggregates’ diameters within the chosen range were generated using the Fuller curve. The parameters of
the connection constitutive law, which were mostly taken similar to those in (Cusatis and Cedolin, 2007),
were: matrix elastic modulus Ec = 30 GPa; aggregate elastic modulus Ea = 90 GPa; meso-level ten-
sile strength σt = 2.7 MPa; meso-level tensile fracture energy Gt = 30 N/m; meso-level shear strength
σs = 3σt = 8.1 MPa; meso-level shear fracture energy Gs = 480 N/m; meso-level compressive strength
σc = 42.3 MPa; Kc = 7.8 GPa; α = 0.25; β = 1; µ = 0.2; nc = 2.

To save computer time, the lattice-particle model covers only the region in which cracking was expected.
Surrounding regions of the beams were assumed to remain linear elastic and were therefore modeled by
standard 8-node isoparametric finite elements. The elastic constants for these elements were identified
by fitting a displacement field with homogeneous strain to displacements of particle system subjected to
low-level uniaxial compression. The macroscopic Young’s modulus and Poisson ratio were found to equal
Ē = 34.7 GPa and ν̄ = 0.19. The finite element mesh was connected to the system of particles by intro-
ducing interface nodes treated as auxiliary zero-diameter particles (Eliáš and Bažant, 2011). These auxiliary
particles have their translational degrees of freedom prescribed by shape (or interpolation) functions of the
nearest finite element. The rotations of the auxiliary particles were unconstrained.

3. Stochastic model

In the described discrete model, we assign material properties of each inter-particle connection according
to a stationary autocorrelated random field. The value of the c-th realization of the discretized field at
spatial coordinate x will be denoted Hc(x). For a given coordinate x0, H(x0) is a random variable H of
cumulative distribution function (cdf) FH(h). Since we work with stationary random fields, the cdf FH(h) is
identical for any positionx0. Recent studies by Bažant and co-workers (Bažant and Pang, 2007; Bažant et al.,
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2009) showed that, when H represents strength of a quassibrittle material, FH(h) can be approximated by
a Gaussian distribution onto which a power-law tail is grafted from the left at a probability about 10−4–10−3.

FH(h) =


rf

(
1− e−〈h/s1〉

m
)

0 ≤ h ≤ hgr (2a)

FH(hgr) +
rf

δG
√

2π

∫ h

hgr

e−(h−µG)2/2δ2Gdh h > hgr (2b)

where 〈x〉 = max(x, 0), s1 = s0r
1/m
f ,m is the Weibull modulus (shape parameter) and s0 is scale parameter

of the Weibull tail, µG and δG are the mean value and the standard deviation of the Gaussian distribution that
provides the Gaussian core. The Weibull-Gauss juncture at point at hgr requires that that (dFH/dh)|h+gr =

(dFH/dh)|h−gr . rf is a scaling parameter normalizing the distribution to satisfy FH(∞) = 1. The distribution
has in total 4 independent parameters.

The spatial fluctuation of the field is characterized through an autocorrelation function. It determines the
spatial dependence pattern between the random variables at any pair of nodes. The correlation coefficient
ρij between two field variables at coordinates xi and xj can be assumed to obey the squared exponential
function:

ρij = exp

[
−
(
‖xi − xj‖

d

)2
]

(3)

It brings a new parameter d called the autocorrelation length.
To digitally simulate the stationary random field described by the random variable cdf FH and corre-

lation length d in the discrete model, we need to generate N realizations of the discretized random field
H0(x), H1(x), . . . , HN−1(x) at the facet centers of the model. This is achieved using the the Karhunen–
Loève expansion based on the spectral decomposition of covariance matrix C, where Cij = ρij . This
procedure decompose the correlated Gaussian variables Ĥ(xi) into independent standard Gaussian vari-
ables ξk that are easy to generate. c−th realization of the Gaussian random field Ĥ

c
(x) is then obtained

using K standard Gaussian random variables by the following expression

Ĥ
c
(x) =

K∑
k=1

√
λkξ

c
kψk(x) (4)

where λ and ψ are the eigenvalues and eigenvectors of the covariance matrixC. The value K is the number
of eigenmodes/variables considered. In practice, it suffices to employ only a reduced number of eigenmodes
K � order ofC. In particular, K can be selected such that

∑K
k=1 λk corresponds to about 99% of the trace

of the covariance matrix C (Vořechovský, 2008). The vectors of independent standard Gaussian variables
ξ are generated by Latin Hypercube Sampling using the mean value of each subinterval. The spurious
correlation of the variables is then minimized by reordering their K realizations (Vořechovský and Novák,
2009).

A non-Gaussian random field can be generated by isoprobabilistic transformation of the underlying
Gaussian field as

Hc(x) = F−1H (Φ(Ĥ
c
(x))) (5)
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Figure 2. Left: one realization of the autocorrelated random field H on a grid of spacing d/3 for d = 80 mm (top) and d = 40 mm
(bottom). Right: realization of the field H at the element centers of the lattice-particle model.

Such a transformation, however, distorts the correlation structure of the field. Thus, when generating Gaus-
sian field Ĥ , the correlation coefficients must be modified (Vořechovský, 2008). This is here performed
using the approximate method of (HongShuang et al., 2008).

The realizations of the random field need to be evaluated for every shared facet (inter-particle bond)
of the discrete mechanical model (at its center). This can be computationally extremely demanding for a
large number of facets (large covariance matrix) and a short correlation length d (many eigenvalues needed,
largeK). We therefore adopted the expansion optimal linear estimation method - EOLE (Li and Kiureghian,
1993), which can significantly reduce the time of random field generation. Instead of the facet centers, the
random field is initially generated on a regular grid of nodes with spacing d/3 (see Fig. 2). The values of the
random field at the facets are then obtain from expression

Ĥ
c
(x) =

K∑
k=1

ξck√
λk
ψTkCxg (6)

where λ and ψ are now eigenvalues and eigenvectors of the covariance matrix of the grid nodes, and Cxg

is a covariance matrix between facet center at coordinates x and the grid nodes. After the Gaussian random
field values at facet centers are obtained by EOLE (Eq. 6), they need to be transformed to the non-Gaussian
space by Eq. 5.
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Figure 3. Load-deflection curves for simulations of TPB beams with notch.

Besides the significant time savings, another advantage of using EOLE is that one can simply use the
same field realization for several different granular positions. By keeping the c-th realization of decomposed
variables ξc unchanged, the field realization can be adapted for any configuration of the facets in the discrete
model.

Structural strength of a quasibrittle material is typically governed by two important material properties,
namely the material strength and fracture energy. Realistic fracture models should therefore incorporate
random spatial variability of at least these two variables. It is reasonable to consider the material strength
fully correlated with the fracture energy (Grassl and Bažant, 2009). Furthermore, in the proposed lattice
model, we also include the shear strength fs and mode-II fracture energy Gs, which are again assumed to
fully be correlated to the tensile strength ft and mode-I fracture energy Gt, respectively. Assuming identical
coefficient of variation (cov), we can use the same realizations of the random field to generate values
of material strengths and fracture energies. For X substituted by any of the four mentioned mechanical
properties, we can write

X(x) = X̄H(x) (7)

where X̄ stands for mean value of the particular property. The mean value of the (field) random variable H
has to equal 1.

In this study, the following parameters of the Weibull-Gauss grafted distribution (Eq. 2a) were used:
m = 24; s1 = 0.486 MPa; hgr = 0.364 MPa; δG = 0.25. These values provide overall mean value µH=1;
standard deviation δH ≈0.25 and grafting probability FH(hgr) ≈ 10−4. Two correlation lengths d were
considered: a shorter length d4 = 40 mm (according to (Grassl and Bažant, 2009)) and a longer length
d8 = 80 mm (according to (Vořechovský, 2007)). The computation is performed with N = 24 realizations
of the random field for each correlation length.
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4. Simulations of bending of notched beams

The first set of beams (depth D = 300 mm, span S = 2.4D, thickness t = 40 mm) loaded in three-
point-bending were modeled with a central notch up to 1/6 of its depth. Ten deterministic simulations were
computed. These simulations exhibit a certain scatter because of the pseudo-random granular positions
differing for each realization. For both correlation lengths 40 and 80 mm, 24 simulations with spatial material
randomness were performed. All the simulations were terminated when the magnitude of the loading force
dropped to 1/3 of the maximal reached load Fmax. To ensure numerical stability in the presence of soften-
ing, the simulations were controlled by prescribing an increase of the crack mouth opening displacement
(CMOD) in every step.

The notch present in the model induces a stress concentration at the notch tip. Therefore, high stresses
occur only in a small area above the notch tip. Therefore, a crack initiates and propagates always from the
notch tip. In stochastic calculations with rather large correlation length, local strength fluctuations within
the region of high-stresses diminishes because of the imposed spatial correlation. Thus, the peak load Fmax

depends mostly on a single value of the random field realization at the notch tip location. In other words, a
random field with correlation length greater than the length/width of FPZ can be, in the vicinity of the crack
tip, viewed as a random constant – random field becomes a random variable at that region.

The obtained load-deflection curves are shown in Fig. 3. The figure also shows the maximal loads Fmax

in its upper left corner. The effect of the spatial strength fluctuations on the mean value of maximum load is
negligible. The mean value of Fmax is, for the deterministic calculation, µd = 11.3 kN and, for stochastic
simulations with d = 40 and 80 mm µ4 = µ8 = 11.0 kN. However, the standard deviations of the peak load
are significantly influenced by the material randomness. The standard deviation of deterministic calculations
(given solely by random aggregate position) is δd = 0.4 kN. Significant increase in the standard deviation
is observed for both correlation lengths: δ4 = 1.5 kN (d = 40 mm) and δ8 = 1.8 kN (d = 80 mm). Since
the maximal load of the beam is given by local meso-level strength of a small area above the notch tip, we
believe that the fluctuation rate does not influence the standard deviation (unless it is so small that material
parameters vary significantly inside the FPZ).

For several selected realizations, the computed damage patterns (damage parameter ω from Eq. 1) at the
peak load and at the termination of the simulations are showed in Fig. 4 together with the corresponding
random field realization. Even though one can notice that the crack is slightly attracted (repelled) by areas
of low (high) strength, the macrocrack trajectory is similar to the deterministic case (dictated by the singular
stress field).

In order to compare energy dissipation in the beams, we need to determine simulation stages where the
same portion of the ligament has already been damaged. Therefore, we select a stage when equivalent crack
lengths (according to LEFM) are equal. Thus, all the models should have at that (reference) stage the same
(reference) compliance, chosen as 1/45 mm/kN (Fig. 3). The depth of specimen was divided into horizontal
stripes of depth s (Fig. 1c). All the energy dissipated at inter-particle contacts within a specific stripe was
summed into variable Gd. One can normalize that energy by ligament area as gd = Gd/st. The mean values
and standard deviations of gd are plotted in Fig. 5 for every stripe at the peak load and at the reference
compliance stages. The figure confirms that the mean energy dissipation in notched tests does not change
when the spatial material randomness is applied. Similarly to the peak force behavior, standard deviations
of dissipated energy increase when randomness is present.
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Figure 4. Realizations of random field H (left) and corresponding damage patterns developed in bent notched beams at the peak
force (middle) and after the load dropped to 1/3 of its maximum (right).

5. Simulations of bending of unnotched beams

The second simulation set focused on bending of unnotched beams where cracks initiate from a smooth bot-
tom surface. Ten deterministic simulations and N = 24 simulations with random field for each correlation
length were performed. To control the simulation, one needs to find some monotonically increasing variable,
here again the CMOD was used. For unnotched beams with spatially fluctuating meso-level strength, the
location of the macrocrack and thus the position of the crack mouth is not known in advance. Therefore,
several short overlapping intervals were monitored simultaneously and the controlling CMOD was chosen
to be the maximum one over them. Note, that other possibility of controlling variable might be the total
energy dissipation in the specimen (Gutiérrez, 2004).
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Figure 5. Energy per unit ligament area gd dissipated in notched beams up to a) maximal load and b) reference beam compliance
1/45 mm/kN in dependence on the vertical position in the beam.
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Figure 6. Points of crack initiation of unnotched beams for various degrees of randomness.

The variations in position of the crack mouth of the macrocrack are documented in Fig. 6. The Figure
demonstrates the fundamental difference between notched and unnotched simulations. When no notch is
present, the high-level stress region is much larger, located along the bottom central part of the specimen.
Material strength and fracture energy fluctuate within the region and allow the macrocrack to “choose a weak
spot” to initiate from. The higher is the distance form the midspan, the lower tensile stress appears. In the
process of crack(s) formation, the stress field with a certain ability of redistribution increases towards the
barrier (randomly varying strength and energy). The crack would start far from the midspan only when the
material strength (and energy) of all points closer to the midspan is higher than in the surrounding. It is thus
expectable (and confirmed by Fig. 6) that short correlation length, resulting in fluctuations that generate the
weak spots more frequently, shrinks the zone where the macrocrack initiates. Indeed, the initiation zone for
correlation length d = 80 mm is wider than for d = 40 mm.

Load deflection curves obtained from all the performed simulations are plotted in Fig. 7. The upper left
corner shows the mean values and standard deviations of the peak load Fmax. The more fluctuating is the
local strength, the weaker spot is statistically present and thus the lower is the mean value: µd = 22.4 kN
(deterministic), µ8 = 17.0 kN (d = 80 mm), µ4 = 16.2 kN (d = 40 mm). The standard deviation of
the maximal force is low for the deterministic set, where δd = 0.6 kN (covd=2.7%). For the correlation
length 80 mm, it increases rapidly to δ8 = 3.5 kN (cov8=21%). When the fluctuation rate increases more
(d = 40 mm), the standard deviation of Fmax decreases back to δ4 = 2.1 kN (cov4=13%). This trend simply
comes from the fact that the standard deviation of the local strength in the weakest spot inside some fixed
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Figure 7. Load-deflection curves for simulations of TPB beams without notch.

region decreases with decreasing correlation length. Theoretically, the maximal standard deviation of Fmax

should be obtained for d ≈ ∞ (a situation when the random field can be represented by a random variable
– a random constant over the specimen volume).

Fig. 8 presents several selected realizations of the random field H and the computed damage patterns.
One can see that the damage patterns differ for different levels of randomness. In the deterministic case, the
damaged region at the peak load stage spans continuously the whole bottom area and the damage intensity
directly depends on the distance from the midspan. For a random local strength and local fracture energy,
the damage regions are more localized around low random field values. There is usually one such region for
correlation length d = 40 mm and several low strength regions for d = 80 mm.

To compare the energy dissipation, we again choose some reference compliance that marks stages with
the same LEFM crack length. The reference compliance now equals to 1/100 mm/kN (Fig. 7). Contrary to
results from notched simulations, summation of total energy dissipated in stripes (per unit ligament area)
is dependent on material randomness. In Fig. 9, deterministic calculations show higher values of dissipated
energy gd both for the peak force stage and for the stage at the reference compliance. This is caused by
two factors: i) the localized macrocrack propagates in stochastic simulations through areas of lower meso-
level strength and meso-level fracture energy, thus less energy is dissipated in total; ii) Distributed pre-peak
cracking outside the macrocrack occurs mostly for deterministic simulation and thus it increases its total
energy dissipation. Note that from about the middle of the specimens depth upwards, the energy dissipation
of deterministic and stochastic simulations again match each other. This is because the crack at that depth
cannot choose the weak region as it has already localized and the stress field forces the crack to grow from
the current crack tip; and no pre-peak distributed cracking takes place there.

Finally, we focus on a deeper analysis of the energy dissipation along the bottom surface. In the bottom
boundary stripe of width 2dmax = 19 mm, the dissipated energies (per unit ligament area) inside and
outside the macrocrack were evaluated for stages at the peak load and at the reference compliance. These
values are plotted in Fig. 10 separately for each simulation. The results document that distributed cracking
outside macrocrack in the most bottom layer after the peak is reached is close to zero. The amount of energy
dissipated outside a macrocrack is much higher for the deterministic simulations than for those with random
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Figure 8. Realizations of random field H (left) and corresponding damage patterns developed in bent beams without notch at the
peak force (middle) and after the load dropped to 1/3 of its maximum (right).

fields. Some of the simulations for d = 80 mm reached the value of the deterministic model, which can be
explained by an absence of a locally weak spot and subsequent extensive pre-peak distributed cracking (see
Fig. 8, third row). The energy dissipated inside the macrocrack at the reference compliance is clearly higher
in the deterministic case than in the stochastic one. This is due to the positive correlation of local meso-level
energy and meso-level strength at the inter-particle bonds. Since the macrocrack propagates through locally
weaker areas, it also dissipates less energy there. Aspects related to correlation between the local tensile
strength and fracture energy have been discussed by (Vořechovský and Novák, 2004).
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Figure 9. Energy per unit ligament area dissipated in unnotched beams up to a) maximal load and b) reference beam compliance
1/100 mm/kN in dependence on vertical position in the beam.
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simulation.

6. Conclusions

We analyzed the influence of material spatial randomness on the peak load and the energy dissipation
using a discrete lattice-particle model that reflects the concrete meso-scopic structure, i.e. the aggregate
composition. The spatial material randomness was introduced by simultaneous scaling of the local meso-
level strength and fracture energy of inter-particle bonds by realizations of autocorrelated random field. Two
basic cases of three-point-bent beams were investigated: i) beams with a notch and ii) beams without a notch
(the modulus of rupture test). Numerical results generally confirm theoretical expectations.

It has been found that:
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− for the simulation with a sufficiently deep notch, the crack is forced to start at the notch tip. Therefore,
the mean value of the maximal load for notched beam simulations does not change when material spa-
tial randomness applies. However, the standard deviation of the maximal load increases when strength
randomness is introduced. Also, the energy dissipation in deterministic and random media exhibit the
same mean but an increasing standard deviation for the random cases.

− In the case of unnotched beams, the macrocrack initiates in a locally weaker spot.When a shorter
correlation length of material properties is applied, the weaker is statistically the initiation spot and
therefore the mean of the maximal load is lower. Standard deviations of the maximal load increase
when randomness applied, however the shorter correlation lengths lead to a decrease of the standard
deviation.

− Energy dissipated in unnotched beams is dependent on the randomness of the material. Two effects
responsible for the dependency were identified. i) Change of the dissipated energy due to correlation
of the local meso-level fracture energy and low meso-level strength of inter-particle bonds through
which the macrocrack propagates. Depending on the sign of the energy-strength cross-correlation, this
effect may increase or decrease the dissipated energy. For the current settings of the model, the lower
is the local meso-level strength, the lower is also the local fracture energy and the lower is the energy
dissipated inside the macrocrack. ii) The pre-peak distributed cracking has a tendency to localize only
in weaker areas and thus the material dissipated less energy outside the macrocrack when random field
is applied.
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Vořechovský, M., and Sadı́lek, V. Computational modeling of size effects in concrete specimens under uniaxial tension.
International Journal of Fracture, 154:27–49, 2008.

Weibull, W. The phenomenon of rupture in solids. In Royal Swedish Institute of Engineering Research, Vol. 153, pages 1–55,
Stockholm, 1939.

 

 
 
 
138

 
 
 
 
 

 
 
 
5th International Conference on Reliable Engineering Computing (REC 2012)


