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Abstract: In this paper the traditional spectral-representation-method for simulating stochastic processes is 

revisited. A modification aimed to control the variability of the simulated samples of the random process is 

proposed. Specifically, in order to avoid that the simulated samples possess similar Fourier spectrum, it is 

proposed to randomize the power spectral density function through a pass band filter with random 

parameters. The filters is selected in such a way the ensemble averaged power spectral density determined 

by the samples will match the original power spectrum, but each individual sample will possess different 

frequency distributions. Comparison between the traditional simulation technique and the new one 

proposed in this paper will be also discussed. Results show that despite the ensemble averaged power 

spectral density is the same, related quantities, such as the distribution of peaks, will be significantly 

different highlighting the needing to consider the variability of frequency distributions when stochastic 

models are calibrated from experimental data. 
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1. Introduction 

 

Several problems in science and engineering involve uncertain quantities generally modeled as stochastic 

processes or stochastic fields. The evaluation of the response of structures to seismic or wind actions, the 

reliability of composite materials, the action potential generation in neurons, the drifting of particles 

suspended in fluids, the distribution of nanoparticles, the mutation of populations subjected to genetic drift 

are just few examples of the plethora of problems involving stochastic modeling. The solution of the 

stochastic problem is generally pursued through ad hoc strategies including simulation techniques, 

stochastic calculus and perturbation methods. The Monte Carlo simulation seems to be, up to now, the only 

universal method able to cope with different problems using a systematic approach: i) simulation of 

samples of the stochastic process (field), ii) solution of the deterministic problem for each individual 

sample, iii) statistical evaluation of the results. The simulation of the samples represents the first step and 

requires the definition of a proper stochastic model representing reliably the uncertainty embedded in the 

problem. Gaussian models are certainly the most used models used to represent and simulate stochastic 

processes especially for engineering applications. Accordingly, the Gaussian random process is fully 

defined by the mean and by power spectral density function (or alternatively by the mean and the 

autocorrelation function). Therefore, after defining a suitable model of the power spectral density the 

samples can be simulated through various techniques such as the spectral representation method (SRM), 

Karhunen-Loeve (KL) decomposition, ARMA models. In the framework of simulation of Gaussian 

processes (fields), the spectral representation method based on the superposition of harmonics with random 
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phases (see e.g. Shinozuka and Deodatis, 1988) is certainly one of the most diffused approaches. This 

method has been applied in the last three decades to solve efficiently several problems in the fields of civil, 

mechanical and aeronautical engineering. 

The increasing number of data collected from laboratory experiments or recorded through measuring 

stations and the sustained progress in experimental measurement techniques is compelling the research in 

stochastic modeling to validate (and eventually improve) models and the methodologies traditionally 

adopted by the comparison of observed and simulated random data. In the field of earthquake engineering, 

as an example, the increasing number of strong-motion networks installed worldwide revealed that the 

current methodologies for simulating artificial earthquakes possess the drawback that the simulated time-

histories do not manifest large variability of the seismological parameters observed for natural 

accelerograms. As a consequence, the dispersion of the consequent structural response analysis can be 

underestimated. This issue has been recently addressed by calibrating some of parameters embedded in 

traditional stochastic models by using experimental data. Specifically, Pousse et al. (2006) proposed a 

methodology for simulating accelerograms through a stochastic approach by using the K-Net Japanese 

database. The basic idea of this approach is to define an evolutionary power spectral density function 

possessing random variables determined through empirical attenuation equations. Recently, Rezaeian and 

Der Kiureghian (2010) proposed a method for simulating synthetic ground motion time histories through a 

parameterized stochastic model based on a modulated filtered white-noise process. The parameters of the 

model are random variables calibrated on a set of recorded earthquakes. Cacciola and Zentner (2012) 

introduced the natural variability of ground motion accelerograms in the model through a pertinent 

evolutionary power spectrum with random coefficients. The distribution of the random coefficients has 

been determined by the further matching with a given mean ± standard deviation response spectra evaluated 

using an European earthquake database.  

The above recent contributions addressed the issue of the discrepancy between the experimental and 

simulated samples including random parameter in the model. This approach leads to more realistic 

simulation that in general manifest greater dispersion in peak values and in general in the energy 

distribution. In this paper, based on the same motivations, the traditional spectral-representation-method for 

simulating stochastic processes is revisited. A modification aimed to control the variability of the simulated 

samples of the random process is proposed. Specifically, in order to avoid that the simulated samples 

possess the same Fourier spectrum, it is proposed to filter the power spectral density through a pass band 

filter with random parameters. The filters is selected in such a way the ensemble averaged power spectral 

density will match the original power spectrum, but each individual samples will possess different 

frequency distributions. Comparison between the traditional simulation technique and the new one 

proposed in this paper will be also discussed. 

 

 

 

2. Simulation of random processes via the spectral representation method 

 

In this section the spectral-representation-method (see e.g. Shinozuka and Deodatis, 1988, Deodatis 1996) 

is briefly described. The formulation will be based on stationary and non-stationary random process, but 

can be easily extended to homogeneous or non-homogeneous random field. Consider the one-dimensional 

and uni-variate Gaussian non-stationary stochastic process, ( )f t , having zero mean: 
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 ( ) 0,E f t    (1) 

and the correlation function ( , )R t t   given by the following equation 

 ( , ) ( ) ( ) .R t t E f t f t       (2) 

The process ( )f t  can be defined alternatively by evolutionary power spectral density function defined 

(Priestley, 1965): 

2

2 1
( , ) ( , ) ( ) ( ) d

t T

i

t

S t A t S E f e
T

    



 
  
 
 
  

  (3) 

being ( , )t t T  with T t  a small interval; also ( , )A t  and ( )S   are the (non-separable) modulating 

function and the (stationary) power spectral density function of the stochastic process, ( )f t . It is noted that 

the ensemble average in equation (3) is not commonly used to define the evolutionary spectrum due the 

difficulties in its numerical evaluation related to the Uncertainty Principle and alternative representations of 

joint time-frequency representation are also proposed (see e.g. Spanos and Failla, 2004). Therefore, the 

evolutionary power spectral density is usually defined indirectly from the knowledge of the autocorrelation 

function, that is  

1
( , ) ( , ) d .

2

iS t R t t e   








 
    

 (4) 

The correlation function therefore is related to the power spectral density function through the following 

transformation: 

( , ) ( , ) ( , ) ( ) d .iR t t A t A t S e      




      (5) 

Due to the non-stationarity of the vector process, the autocorrelation function is function of both time t  and 

time lag  , while the power spectral density function is a function of both frequency   and time t . It has 

to be emphasized that under the hypothesis of fully non-stationary processes (non-stationary processes with 

amplitude and frequency modulation), the power spectral density function is a non-separable function of 

frequency   and time t . For the special case of uniformly modulated non-stationary stochastic process (or 

generally known also as quasi-stationary process), the modulating function ( , )A t  is independent of the 

frequency  , that is: 

( , ) ( ).A t A t     (6) 

In this special case, equation (5) reduces to 

( , ) ( ) ( ) ( ) d .iR t t A t A t S e    




       (7) 

Finally in the case in which ( ) 1A t  , i.e. stationary case, the following equations hold 
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( ) ( ) d ;iR S e   




     (8) 

1
( ) ( ) d .

2

iS R e   








     (9) 

Equations (8) and (9) are generally known as the Wiener-Khintchin relationships. For the stationary case 

the power spectral density function can be also determined directly from experimental data 

2
/2

/2

1
( ) lim ( ) d

2
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T
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S E f e
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






 
 
 
 
 . 

  (10) 

Once defined the power spectral density function either through experimental or physical/theoretical 

approaches the simulation of the sample of the non-stationary random process through the spectral 

representation method is performed using the following equation  

 
1

( ) 2 2 ( , ) cos
N

j j j

j

f t S t t   


   , 
  (11) 

where  

1,2,...,j j j N   
 

  (12) 

with upper bound (circular) frequency N N    generally known also as the cut-off frequency beyond 

which the power spectral density function ( , )S t  is considered negligible. Also j ( 1,2,..., )j N  are 

independent random variable distributed over the range  0,2 . The simulated process is asymptotically 

Gaussian as N  tend to infinity due to the Central Limit Theorem. Also it can be shown (Shinozuka and 

Deodatis 1988, Deodatis 1996) that the ensemble averaged  ( )E f t  and  ( ) ( )E f t f t   tend to the 

corresponding target. Finally, samples of stationary processes can be simulated through equation (11) by 

substituting ( , )S t  with ( )S  . 
 

 

 

3. Enhancing the variability of the spectral representation method  

 

It has emphasized that the simulation of random samples through the spectral representation method defined 

in equation (11) is based on the definition of the power spectral density function ( , )S t . Consider the 

power spectrum determined through the ensemble averages of experimental data (see e.g. Shillinger and 

Papadopoulos, 2011). Depending from the degree of randomness, the experimental data might exhibit 

strongly different distributions of the Fourier spectrum. In such a case, to better represent the underlying 

uncertainty , the simulated samples are expected not only converge to the target mean value and correlation 

function as equation (11) guarantees, but also it is expected that they manifest the variability of the 

spectrum around is expected value. In other words it is expected that the simulated data also capture the 

variability of the Fourier distribution of the experimental data. To enhance the variability of the simulated 
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random samples in this paper it is proposed to introduce a random filter acting in series with the expected 

value of the power spectrum, that is  

( , , ) ( , ) ( , )S t H S t    , 
 (13) 

where   is the vector collecting the random parameter of the filter. ( , )H   is real positive function that 

satisfies the following equation 

( , , ) ( )d ( , ) ( , ) ( )d ( , )A A

A A

S t p H S t p S t          
.  

 (14) 

Or alternatively 

( , ) ( )d 1A

A

H p      
   

 (15) 

In equations (14) and (15) ( )Ap  is the joint probability density function of random parameter of the filter. 

It is noted the proposed definition of the resultant random power spectrum is similar to the physical 

stochastic model recently defined by Li et al. (2012), but with different meaning. Embedding the proposed 

random spectrum in the traditional spectral representation method (SRM) the following simulation formula 

is herein derived 

 
1

( ) 2 2 ( , ) ( , ) cos
N

H j j j j

j

f t H S t t    


   
  

  (16) 

The samples generated by equation (16) are Gaussian as N tends to infinity due to the Central Limit 

Theorem and converge to the target mean  ( ) 0,HE f t   and correlation function 

 ( , ) ( ) ( )H HR t t E f t f t     as the traditional SRM.  

 

Proof : the proof of convergence is based on the corresponding one proposed by Shinozuka and Deodatis 

(1988) and Deodatis (1996) to prove the convergence of equation (11). Due to the statistical independence 

of the random phase j ( 1,2,...,j N ) and assuming   independent from j  , the expected value 

 ( )HE f t  using equation (16) becomes 

   
2 2fold

1 10 0

( ) ... 2 2 ( , ) ( , ) cos ( ) ( )d d ,
i

NNN

H j j j j A i i

j iA

E f t H S t t p p

 

      




 

 
    

 
        (17) 

Where ( ) ( 1/ 2 , 0 2 ; 0, )
i i ip otherwise         is the probability density function of i . 

Rearranging terms in equation (17) 

 

 

 
 
 
5th International Conference on Reliable Engineering Computing (REC 2012)

 
 
 
 
 

 
 
 
83



 Pierfrancesco Cacciola 

 

   

 
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   (18) 

The autocorrelation function of the simulated process 

 
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2 2fold
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After simple algebra  
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   (20) 

Taking into account equation (3), the condition (15) , the limit of equation (20) as 0   and N  will 

lead to equation (5).  

Interestingly, in principle any real positive function satisfying equation (15) can be used for controlling 

the variability of the simulated process.  

 

 

 

4. Butterworth filter  

 

Experimental data of random processes (e.g. earthquake, wind or ocean waves) manifest quite different 

(joint) frequency distributions, therefore ( , )H    can be determined considering the distribution of the 

energy around the expected vale for each frequency. To follow this approach is necessary a large number of 

data that make this approach practically unfeasible. An alternative strategy is to consider synthetic 

parameters defining the variability of the energy distribution such as the bandwidths and central frequency. 

To this aim the following pass-band Butterworth filter will be adopted: 
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1 2 2

2
1

1

1
( , , )

2 1

B j
H   

 





  
   
   

   
 (21) 

Where 1,2,...,j n  is a positive integer number defining the order of the filter, 1  and 2  are the random 

filter parameters defining respectively the bandwidth and the central frequency. Figure 1a shows for 

selected 1 20rad / s   and 2 40rad / s   the influence of the order of the filter j  while Figure 1b shows 

the influence of the bandwidth parameter on the shape of the filter. 

 

 

 

 

 

 

 

 

 
Figure 1. Butterworth filter for (a) different orders and (b) bandwidth ( 2 40rad / s; 2j   ) 

 

The distribution of the filter parameters 1  and 2  can be defined through experimental data measuring the 

central frequency and bandwidth of the squared Fourier spectrum of the recorded samples. In the case in 

which the experimental data are not enough to define a proper distribution of the data 1  and 2  will be 

assumed as statistical independent and uniformly distributed. Therefore, 

1 21 2

1 1 2 2

1 1
( ) ( ) ( )A A A

u l u l

p p p 
   

 
 


,  

 (22) 

where ui and li  (i = 1,2) represents the upper and lower bounds of the random variables 1  and 2 . The 

simulation formula will be then modified as follows 

 1 2

1

( ) 2 2 ( ) ( , , ) ( , ) cos
N

H B j j j j

j

f t C H S t t       


  
, 

  (23) 

where the function ( )C  is introduced to satisfy equation (15) , i.e. 

1 2

1 2

1

1 2 1 2

1 1 2 2

1 1
( ) ( , , )d d

u u

l l

B

u l u l

C H

 

 

     
   



 
  
   

     
 (24) 

It is noted that being ( )C  function of the circular frequency   the pass-band filter will be distorted, 

however being ( )C  a smooth function the main features of the filters will be preserved.  
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5. Numerical results 

 

In this section stationary and non-stationary samples are generated following the traditional spectral 

representation method and the proposed one enhancing the variability. Consider the stationary case first. It 

is assumed that the process is zero-mean, Gaussian with power spectral density function defined by the 

Clough-Penzien model, that is 

2
4

2

0 2 2
2 2 2 2

2 2

1 4
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1 4 1 4

g

g
f

g f

g g f f

S S

 
 


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 

   

                 


          
                                   

 (25)  

with parameters  

20 rad / s; 0.6; 0.1 ;g g f g f g            (26) 

and 

2

0

1
2 2

2
g g

g

S


 



 

  
 

;            2100 cm / s .     (27) 

Samples of the stationary processes have been simulated using equation (11) by substituting ( , )S t  with 

( )S   and depicted in Figure 2a. The power spectral density are then randomized using the Butterworth 

pass-band filter defined in equation (21), in which the random variables 1  and 2  are assumed statistical 

independent and uniformly distributed. Pertinent selected parameters of the distributions are  

1 1 2 110 rad / s; 80 rad / s; 18 rad / s; 40 rad / s.l u l u          (28) 

Samples of the random processes with enhanced variability are then simulated using equation (23). It is 

noted that each individual sample requires N+2 realizations of independent uniformly distributed random 

variables (N phase angles j and 2 filter parameter 1  and 2 ). Figure 2b shows three simulated 

trajectories. The effect of the Butterworth filter in the simulation of the process is more appreciated in 

Figures 3 where the squared modulus of the Fourier transform of the simulated samples is depicted. It is 

noted that the samples simulated from the traditional spectral-representation method exhibit Fourier spectra 

very similar to each other, while the proposed modification lead to spectra possessing clearly visible 

different distributions.  

Comparison with the target power spectral density is shown in Figure 4. It is noted that the ensemble 

average power spectra determined using 500 samples oscillates around the target spectrum.  
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Figure 2. Simulated trajectories of the zero-mean Gaussian, stationary process through a) spectral representation method b) 

proposed with enhanced variability. 

 

 

 

 
 
 

Figure 3. Squared Fourier transform of the simulated samples a) spectral representation method b) proposed with enhanced 

variability. 
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Figure 4. Comparison between the target power spectral density function (solid line), the ensemble averaged determined by using 

the spectral representation method (dotted line) and the SRM with enhanced variability (dash-dotted line). 

 

 

The non stationary case is then investigated. The evolutionary power spectral density defined in equation 

(29) is selected for this purpose 
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 (29) 

pertinent parameters used in this numerical example include: 

 ( ) 20 7 ; ( ) 0.6 0.2 ; ( ) 0.1 ( ); ( ) ( );
30 30

g g f g f g

t t
t t t t t t             (30) 

and 

 1 2( ) expA t a t a t  ;    1 1

1 20.68s ; 1/ 4sa a   .    (31) 

Furthermore 

2

0 ( )
1

2 ( ) 2 ( )
2 ( )

g g

g

S t

t t
t



 



 

  
 

;    2100cm / s .     (32) 

Samples of the non-stationary processes simulated using equations (11) and (23) are depicted in Figures 5 

and their related squared Fourier transform in Figure 6. Also in this case it can be appreciated as the random 

filter modifies the distribution of each sample. 
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Figure 5. Simulated trajectories of the zero-mean Gaussian, non-stationary process through a) spectral representation method 

b) proposed with enhanced variability. 

 

 

 
 
Figure 6. Squared Fourier transform of the simulated samples a) spectral representation method b) proposed with enhanced 

variability. 

 

 

Comparisons with the target spectrum is shown in Figures 7 where the marginal distributions (Cohen, 1989)  
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are compared respectively with the ensemble average of the squared samples 2 2[ ( ) ], [ ( ) ]HE f t E f t  and with 

ensemble average of the squared Fourier transform 
22

[ ( ) ], [ ( ) ]HE F E F  . The comparison shows the 

excellent agreement between the simulated and the target ones 

 

 

 

 

 
 
Figure 7. Comparison between the marginal distribution of the evolutionary power spectral density function a) mean instantaneous 

energy  and b) energy density spectrum;  target (solid line), the ensemble averaged determined by using the spectral representation 

method (dotted line) and SRM with enhanced variability (dash-dotted line). 

 

 

The influence of the enhanced spectrum variability is then investigated through the Monte Carlo study of 

the distribution of peaks value. Figure 8 shows the comparison between the mean value of the peak of the 

stationary (Figure 8a) and non-stationary process (Figure 8b). Interestingly both the simulation tends to 

very similar value and the rate of convergence is comparable. Figures 9 shows the variance of the 

distribution of maxima. It is noted that the SRM with enhanced variability leads to larger values of the 

variance. Finally the distributions of maxima along its cumulative distribution are depicted in Figures 10 

and 11. It is noted that in both stationary and non stationary case the SRM with enhanced variability leads 

to wider distribution and as a consequence sensitive different values of the tails of the distribution.  
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Figure 8. Convergence of the mean value of the peak versus the number of samples n for the a) stationary and  b) non-stationary 

process: traditional SRM (solid line), SRM with enhanced variability (dash-dotted line). 

 

 

 

 

 

 

 
 

Figure 9. Convergence of the variance of the peak value versus the number of samples n for the a) stationary and  b) non-stationary 

process: traditional SRM (solid line), SRM with enhanced variability (dash-dotted line). 
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Figure 10. Comparison between the distribution of peaks for the a) stationary and  b) non-stationary process: traditional SRM (solid 

line), SRM with enhanced variability (dash-dotted line). 

 

 

 

 

 

 
 

 

 

Figure 11. Comparison between the cumulative distribution of peaks for the a) stationary and  b) non-stationary process: traditional 

SRM (solid line), SRM with enhanced variability (dash-dotted line). 
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6. Concluding remarks  

 

In this paper the traditional spectral-representation-method for simulating stochastic processes is revisited. 

A modification aimed to control the variability of the simulated samples of the random process is proposed. 

Specifically a Butterworth pass-band filter with random parameters has been included in the simulation 

formula to generate samples with different Fourier spectra. It has been shown that the use of this filter do 

not alter the convergence of the traditional spectral representation method, offering a possible simulation 

strategy whereas it is required a variability larger than those currently offered by the traditional simulation 

technique. Comparison between the traditional spectral representation method and the enhanced variability 

introduced in this paper showed how the randomized power spectral density influence the ensemble 

simulated samples. Remarkably the peak distribution is significantly sensible to the spectrum variability and 

should be carefully considered when reliability analyses are performed. It is also expected in general that 

the spectrum variability influence the features of the process non-linearly related to the power spectrum. 
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