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Motivation
Continuous physical systems more and more

intertwined with digital systems/software
(keyword: cyber-physical systems).

Question: Do such systems behave correctly?

Relevant fields:

I Modeling and simulation of (uncertain) physical systems

I Software verification:
Software with all its complexities, for example,

data structures such as integers, lists, arrays,

Combination?

Existing combination: Hybrid systems:
Ordinary differention equations + a finite set of modes.

Finite set often not enough for modeling software.
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Plan for Talk

I Modeling formalism for physical/software systems encompassing
ODEs and data structures

I Safety verification algorithm
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Illustrating Example

4 tanks T1,T2,T3,T4 with chemical reactions:

Tanks send cooling requests to central control unit

Only one cooling line available

Central control unit keeps queue of cooling requests,
e.g. < T3,T1 >
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Formalism

I k variables ranging over data types D1, . . . ,Dk

(e.g., queue of cooling requests)

I n variables ranging over the reals
(e.g., tank temperatures)

Resulting state space: Φ
.

= D1 × · · · × Dk × Rn

Specification of system behavior:
I Continuous: Extended vector field Flow ⊆ Φ× Rn

I Continuous time change of Rn according to derivative,
I D1 × · · · × Dk stay constant,

I Discrete: Jump ⊆ Φ× Φ

Non-determinism: Relations instead of functions
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Formalism: Modeling Language

Many possibilities for denoting sets Flow, Jump

For example:

I Flow ⊆ Φ× Rn:
ODE, differential inequalities, ODEs with interval uncertainties

I Jump ⊆ Φ× Φ: computer program

Specific examples:

[empty(Q)⇒ ẋ = f (x)] ∧ [¬empty(Q)⇒ ẋ = g(x)]

t1 ≥ 100⇒ Q ′ = Q + T1
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System Evolution
I Continuous: Relation Flow ⊆ Φ× Rn

I Results in flows: functions from time to Φ
(∼ classical trajectories).

I D1 × · · · × Dk stay constant,

Example: Chemical reaction

I Discrete: Relation Jump ⊆ Φ× Φ
Example: Cooling request, switching of cooling system

Evolution: Sequence of flows connected by jumps:
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Problem: Safety Verification
Given: System +

I set of states Init ⊆ Φ that we consider initial
I set of states Unsafe ⊆ Φ that we consider unsafe

Error: System evolves from a state in Init to a state in Unsafe

Goal: Algorithm that automatically either
I finds an error, or
I proves that none exists.

Rest of talk: Prove non-existence of error

8 / 14



Problem: Safety Verification
Given: System +

I set of states Init ⊆ Φ that we consider initial
I set of states Unsafe ⊆ Φ that we consider unsafe

Error: System evolves from a state in Init to a state in Unsafe

Goal: Algorithm that automatically either
I finds an error, or
I proves that none exists.

Rest of talk: Prove non-existence of error

8 / 14



Problem: Safety Verification

Error: System evolves from a state in Init to a state in Unsafe

Goal: Algorithm that automatically either

I finds an error, or

I proves that none exists.

Rest of talk: Prove non-existence of error

8 / 14



Problem: Safety Verification

Error: System evolves from a state in Init to a state in Unsafe

Goal: Algorithm that automatically either

I finds an error, or

I proves that none exists.

Rest of talk: Prove non-existence of error

8 / 14



Related Area: Software Model Checking

No continuous (Flow), only discrete dynamics (Jump)

Approaches to automatically prove non-existence of errors:
I Bounded Model Checking:

1. Fix upper bound n on time,
2. prove that Unsafe not reachable in 1, 2, . . . , n steps.

I Unbounded Model Checking:
Prove non-existence of errors over unbounded time

I Approach 1: Induction
I Approach 2: Abstraction refinement
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Overall Algorithm

Divide state space Φ into finitely many (non-overlapping) regions

while over-approximation based on region not safe
Refine division by further dividing regions

Abstraction:
Set of finitely many regions

together with (conservative) transitions

10 / 14



Overall Algorithm

Divide state space Φ into finitely many (non-overlapping) regions
while over-approximation based on region not safe

Refine division by further dividing regions

Abstraction:
Set of finitely many regions

together with (conservative) transitions

10 / 14



Overall Algorithm

Divide state space Φ into finitely many (non-overlapping) regions
while over-approximation based on region not safe

Refine division by further dividing regions

Abstraction:
Set of finitely many regions

together with (conservative) transitions

10 / 14



Overall Algorithm

Divide state space Φ into finitely many (non-overlapping) regions
while over-approximation based on region not safe

Refine division by further dividing regions

Abstraction:
Set of finitely many regions

together with (conservative) transitions

10 / 14



Analysis of Abstraction

Replace regions by new ones
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Analysis of Abstraction

remove unconfirmed transitions (initial/unsafe markings)

Replace regions
by new ones
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Algorithm Instantiation and Implementation

http://hsolver.sourceforge.net

State space:

I Bounded

I Finitely many discrete states (e.g .on, off)

Continuous dynamics: Non-linear ODEs

That is: Hybrid (dynamical) systems.

Algorithm: Regions: Boxes (i.e., Cartesian product of intervals)

Reachability between regions: interval methods

Competitive in hybrid systems area
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Conclusion

Modeling formalism and safety verification algorithm
for physical/software systems

Next steps:

I Parametric implementation:
user-provided solvers for data types.

I More efficient handling of continuous evolution
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