

Introduction

Dynardo

- Founded: 2001 (Will, Bucher, CADFEM International)
- More than 35 employees, offices at Weimar and Vienna
- Leading technology companies
 Daimler, Bosch, Eon, Nokia,
 Siemens, BMW are supported

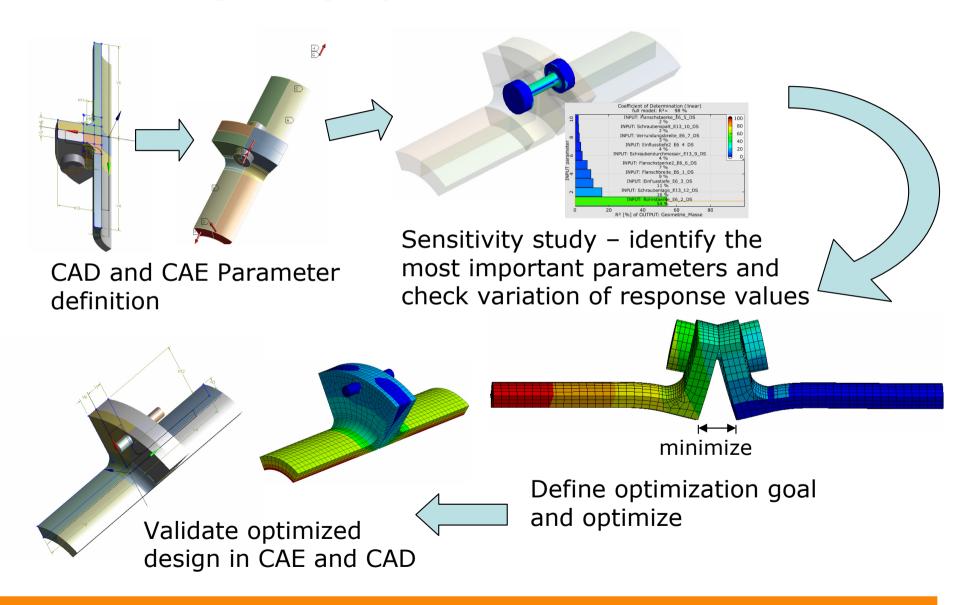
Software Development

Dynardo is engineering specialist for CAE-based sensitivity analysis, optimization, robustness evaluation and robust design optimization

CAE-Consulting

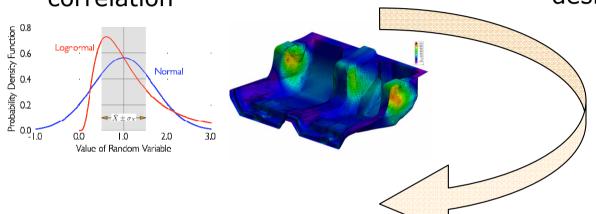
- Mechanical engineering
- Civil engineering & Geomechanics
- Automotive industry
- Consumer goods industry
- Power generation

Multidisciplinary Optimization

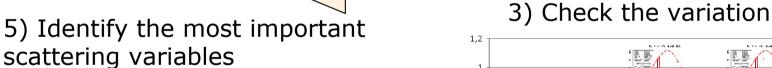


Variance based robustness analysis

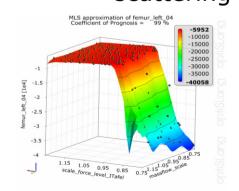
 Define the robustness space using scatter range, distribution and correlation

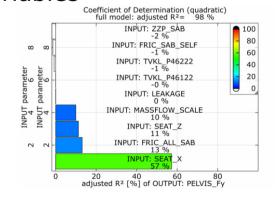


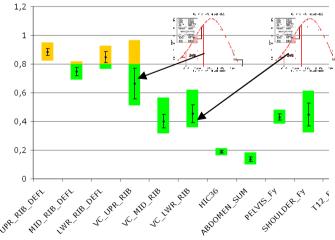
2) Scan the robustness space by producing and evaluating *n* designs



/ariation / Limit







Sensitivity analysis

Sensitivity analysis scans the design/random space and measures the

sensitivity of the inputs with statistical measures

- Application as pre-investigation of an optimization procedure or as part of an uncertainty analysis
- Results of a global sensitivity study are:
 - Sensitivities of inputs with respect to important responses
 - **Estimate** the variation of responses
 - **Estimate** the noise of an underlying numerical model
 - Better understanding and verification of dependences between input and response variation
- Requirements for industrial applications:
 - Treatment of a large number of inputs
 - Consideration of strongly nonlinear dependencies
 - Manageable numerical/experimental effort

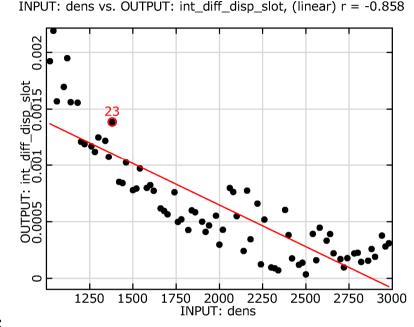
Methods for sensitivity analysis

Local methods

- Local derivatives
- Standardized derivatives

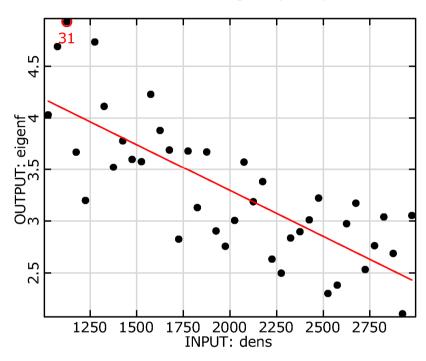
Global methods

- Anthill plots
- Coefficients of correlation
- Rank order correlation
- Standardized regression coefficients
- Stepwise polynomial regression
- Varianced-based analysis: Sobol' indices
- Advanced surrogate models including prediction analysis and optimal subspace detection: Metamodel of Optimal Prognosis



Coefficient of correlation

INPUT: dens vs. OUTPUT: eigenf, (linear) r = -0.780



$$\rho(X,Y) = \frac{COV(X,Y)}{\sigma_X \sigma_Y}$$

$$\approx \frac{1}{N-1} \frac{\sum_{i=1}^{N} (x_i - \hat{\mu}_X)(y_i - \hat{\mu}_Y)}{\hat{\sigma}_X \hat{\sigma}_Y}$$

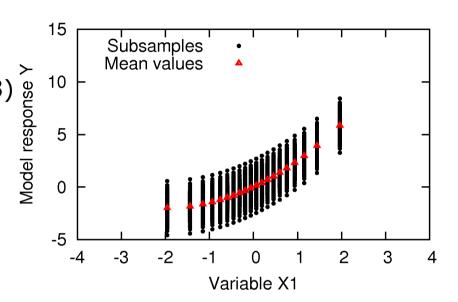
- Defined as standardized covariance of two variables
- Coefficient of correlation is always between -1 and 1
- Defines degree of linear dependence
- Only linear (quadratic, monotonic) dependencies without interactions

Variance-based sensitivity analysis

Variance-based sensitivity analysis

- Apportion of the variation of the model output to the sources of the variation of the model input (Saltelli 2008)
- First order sensitivity index (Sobol' 1993) describing the decoupled influence of a single variable X_i on the model output Y

$$S(X_i) = \frac{V_{X_i}(E_{\mathbf{X}_{\sim i}}(Y|X_i))}{V(Y)}$$



Total sensitivity index describing the decoupled and coupled (total) influence of a single variable (Homma & Saltelli 1996)

$$S_T(X_i) = 1 - \frac{V_{\mathbf{X}_{\sim i}}(E_{X_i}(Y|\mathbf{X}_{\sim i}))}{V(Y)}, \quad \sum S_T(X_i) \ge 1$$

Variance-based sensitivity analysis

- Variance based sensitivity analysis quantifies only the input sensitivities around their mean
- Existing estimators require a large number of model evaluations for complex systems and are often not applicable
- ANOVA (Analysis of Variances) Decomposition is unique only for independent inputs

$$V(Y) = \sum_{i=1}^{k} V(f_i(X_i)) + \sum_{i=1}^{k} \sum_{j>i}^{k} V(f_{ij}(X_i, X_j)) + \dots$$

+ $V(f_{1...k}(X_1, \dots, X_k))$

Sobol and other estimators use a recombination of matrices $\bf A$ and $\bf B$ in $\bf C_i$ and can be applied only for independent inputs

$$\hat{S}_i = \frac{\mathbf{y_A}^T \mathbf{y_{C_i}} - n(\bar{y_A})^2}{\mathbf{y_A}^T \mathbf{y_A} - n(\bar{y_A})^2}, \quad \hat{S}_{T_i} = 1 - \frac{\mathbf{y_B}^T \mathbf{y_{C_i}} - n(\bar{y_B})^2}{\mathbf{y_B}^T \mathbf{y_B} - n(\bar{y_B})^2}$$

Estimator for correlated inputs

Decomposition of each input variable in a correlated and an uncorrelated part

$$X_{i} = f(X_{1}, X_{2}, \dots, X_{i-1}, X_{i+1}, \dots, X_{m}) + X_{i}^{U, \mathbf{X}_{\sim i}}$$
$$= X_{i}^{C, \mathbf{X}_{\sim i}} + X_{i}^{U, \mathbf{X}_{\sim i}}$$

In case of linearly correlated variables (e.g. Nataf model),
 the correlated part can be represented as linear combination

$$X_i^{C,\mathbf{X}_{\sim i}} = \beta_{X_i,0} + \sum \beta_{X_i,j} X_j$$

Matrix assembling by considering the correlated and uncorrelated part

$$oldsymbol{ ilde{C}}_i^C = oldsymbol{B}^{U,X_i} + oldsymbol{A}^{C,X_i}, \quad oldsymbol{ ilde{C}}_i^U = oldsymbol{A}^{U,\mathbf{X}_{\sim i}} + oldsymbol{B}^{C,\mathbf{X}_{\sim i}}$$

First order and total effect indices are obtained for the correlated and the uncorrelated part of each input variable

Example: additive linear model

Three normally distributed inputs with zero mean:

$$Y = X_1 + X_2 + X_3, \quad \mathbf{C_{XX}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2\rho \\ 0 & 2\rho & 4 \end{bmatrix}$$

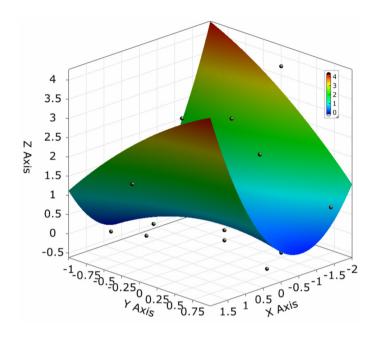
First order and total effect sensitivity indices:

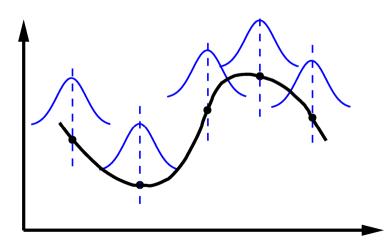
		ρ =0.0	ρ =0.8	ρ =1.0	<i>ρ</i> =-0.5	<i>ρ</i> =-0.8
	X_1	0.167	0.109	0.100	0.250	0.357
Correlated	X_2	0.167	0.735	0.900	0.000	0.129
	<i>X</i> ₃	0.667	0.852	0.900	0.563	0.514
	X_1	0.167	0.109	0.100	0.250	0.357
Uncorrelated	X_2	0.167	0.039	0.000	0.188	0.129
	X_3	0.667	0.157	0.000	0.750	0.514

Response Surface Method

Response Surface Method

- Approximation of response variables as explicit function of input variables
- Approximation function can be used for sensitivity analysis and/or optimization
- Global methods (Polynomial regression, Neural Networks, ...)
- Local methods (Spline interpolation, Moving Least Squares, Radial Basis Functions, Kriging, ...)
- Approximation quality decreases with increasing input dimension
- Successful application requires objective measures of the prognosis quality



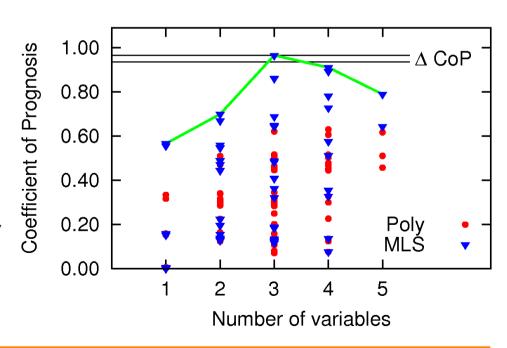


Metamodel of Optimal Prognosis (MOP)

- Approximation of solver output by fast surrogate model
- Reduction of input space to get best compromise between available information (samples) and model representation (number of inputs)
- Advanced filter technology to obtain candidates of optimal subspace
- Determination of optimal approximation model (polynomials, MLS, ...)
- Assessment of approximation quality (CoP)

MOP solves 3 important tasks:

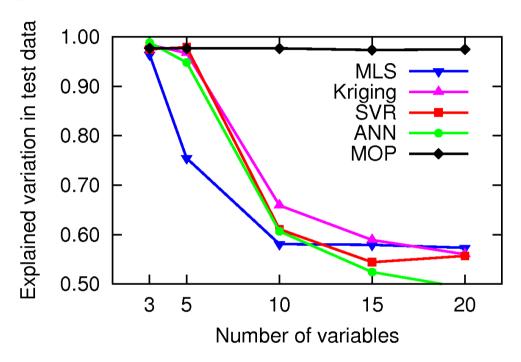
- Best variable subspace
- Best meta-model
- Estimation of prediction quality



Example: Analytical nonlinear functionMOP vs. advanced meta-models

- 100 LHS support points
- Explained variation of independent test data set with 100 samples as error measure

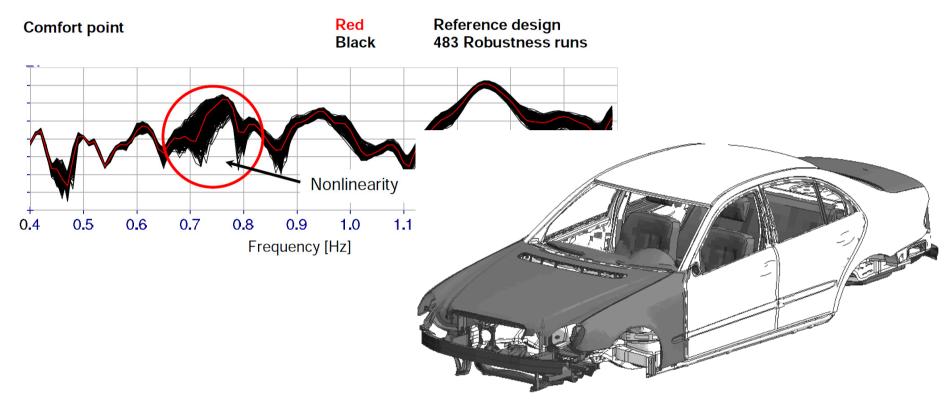
$$\epsilon_{Test} = 1 - \frac{SS_E^{Test}}{SS_T^{Test}}$$



- With increasing number of unimportant variables the approximation error increases for MLS, Kriging, Support Vector Regression (SVR) and artificial neural networks (ANN)
- MOP detects 3 important variables and enables best approximation

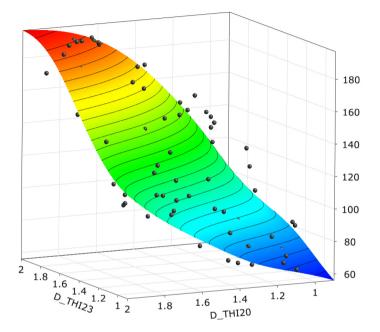
Application

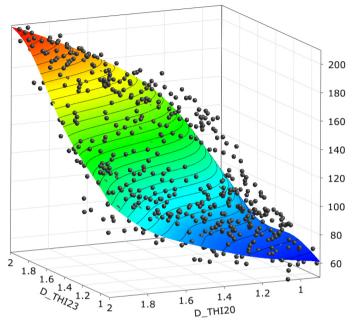
Application: Noise Vibration Harshness



- Input parameters are 46 sheet thicknesses of a car body
- Variation of inputs within a +/- 20% interval
- Output values are sound pressure levels at certain frequencies
- Already single solver run is very time consuming

Application: Noise Vibration Harshness





Samples	100	200	400	600	800
Full model	90.9%	91.7%	95.7%	96.3%	96.9%
D_THI5	-	-	2.4%	2.3%	2.7%
D_THI6	6.0%	5.3%	8.2%	8.3%	8.7%
D_THI20	41.3%	42.7%	42.3%	43.4%	42.2%
D_THI23	49.1%	48.0%	50.7%	51.0%	53.8%

Summary

- Sensitivity analysis gives advanced information about design parameters and helps to simplify the optimization problem
- Variance-based sensitivity indices can quantify nonlinear dependencies and variable interactions
- Presented decomposition of variables in correlated and uncorrelated parts can distinguish between the output variance sources
- Meta-modeling makes Sobol estimators applicable for complex systems
- MOP serves optimal meta-model in best subspace
- Coefficient of Prognosis give reliable estimate of approximation quality
- Small CoP indicates insufficient number of samples or unexplainable solver behavior/problems
- MOP-approach was proven to be successful in many applications in virtual product development