
An Algorithm for Formal Safety Verification of
Complex Heterogeneous Systems

Stefan Ratschan
Institute of Computer Science, Czech Academy of Science, stefan.ratschan@cs.cas.cz

Abstract. Modern technical systems are heterogeneous in the sense that they tightly integrate computational
elements into physical surroundings. Computational elements usually require discrete, and physical systems
continuous modeling. In this paper, we present an modeling formalism and safety verification algorithm for
such heterogeneous systems.

1. Introduction

Modern technical systems more and more consist of a tight integration of computational devices into phys-
ical surroundings. For example, in modern cars, a large part of the development cost goes into software
and digital electronics. Moreover, the complexity of such systems is growing rapidly. Hence it is of utmost
importance to come up with formalisms for modeling, and algorithms for analyzing such systems.

The notion of a hybrid dynamical system is a current approach for modeling computation in physical
surroundings (Lunze and Lamnabhi-Lagarrigue, 2009). Such systems integrate ordinary differential equa-
tions with finite state machines, based on a state space that is the Cartesian product of a subset of Rn and
a set of finitely many states. Uncertainty is usually included by also allowing differential inequalities, or by
allowing uncertain parameters in the differential equations. However, finite state machines do not suffice for
modeling software of the complexity occurring in modern technical systems.

In our work, we will present an extension of the hybrid system model to systems that are parametric in k
data types, with k an arbitrary, but fixed, positive integer. Those data types are generic in the sense that they
can be chosen arbitrarily as long as they fulfill certain conditions that are met by the most widely-used data
types such as integers, arrays, and lists. The state space of the new model is formed by the Cartesian product
of a subset of Rn and the used data types. Again, the dynamics of the continuous part of the states space is
given by ordinary differential equations (or inequalities).

Moreover, we provide an algorithm for the formal safety verification of such systems (i.e., the automatic
verification that the system state always stays in a certain set of states considered to be safe) based on
certain operations that the basic data types are required to provide. The algorithm is an extension of our
earlier algorithm for hybrid systems verification (Dzetkulič and Ratschan, 2011).

This work was supported by MŠMT project number OC10048 and long-term financing of the Institute
of Computer Science (RVO 67985807).

 

5th International Conference on Reliable Engineering Computing (REC 2012) 
Edited by M. Vořechovský, V. Sadílek, S. Seitl, V. Veselý, R. L. Muhanna and R. L. Mullen 
Copyright © 2012 BUT FCE, Institute of Structural Mechanics 
ISBN 978-80-214-4507-9. Published by Ing. Vladislav Pokorný − LITERA

 
 
 
 
 

 
 
 
457



Stefan Ratschan

2. Problem Definition

Let us assume k (not necessarily distinct) data types D1, . . . , Dk. For each of those data types we assume
certain functions and relations. For example for a certain i ∈ {1, . . . , k}, Di might be the set of integers
with the functions addition and multiplication, and relations = and ≤. Another examples is the set of lists
of integers with the operations nil (for describing the empty list), first (for taking the first element of
a list), rest (for taking the result of removing the first element of the list), and cons (for constructing a
new list from an integer, and an old list). In the case of classical hybrid systems, there is just one data type,
consisting of finitely many (but a potentially huge number) of so-called modes.

For modeling the physical surroundings we use the n-dimensional real space Rn, with functions such as
addition and multiplication, and relations such as equality = and inequality ≤.

Now we assume a language L of constraints whose semantics is built on top of the semantics of the
functions and relations of the data types D1, . . . , Dk, and of the real numbers. For example, having just one
data type, the integers, L might consist of conjunctions of linear equalities and inequalities. Having both
integers and lists over integers, we might allow expressions such as

x′ = x + 1 ∧ l′ = cons(x′, l).

For us, the specific form of the language will not be important, but it will be essential to have certain
constraint solving algorithms on them. We will introduce the specification of those algorithms in Section 3
and describe concrete possibilities for implementing them in Section 4.

Now, in order to describe the behavior of software within physical systems, we will introduce dynamical
systems over those data types. The state space Φ will be given by D1 × . . .×Dk × C, where C ⊆ Rn.

DEFINITION 1. A system H is a tuple (Flow, Jump, Init, Unsafe), where Flow ⊆ Φ × Rn, Jump ⊆
Φ× Φ, Init ⊆ Φ, and Unsafe ⊆ Φ.

Informally speaking, the set Init specifies the initial states of a system and Unsafe the set of unsafe
states that should not be reachable from an initial state. The relation Flow specifies the possible continuous
behavior of the system by relating states with corresponding derivatives, and Jump specifies the possible
discontinuous behavior by relating each state to a successor state.

We can describe those sets using the language L. For example, using the constraint above to describe
the set Jump—assuming that unprimed variables denote the current state and primed variables the successor
state—will result in a system that creates a list of successive integers.

Another example, is a system with state space {on,off} × R2, where the set Flow could be described
by a constraint of the form

[mode = on ∧ ẋ = x + y ∧ ẏ = x− y] ∨ [mode = off ∧ ẋ = x + y ∧ ẏ = x− 2y].

Here we view mode as a variable ranging over {on,off}, and x, ẋ, y, ẏ as variables ranging over R. Note
that the dot in ẋ is just used as a way of defining a new variable distinct from x—it is not yet connected
to any form of derivation. It will be connected to derivation only now, in the following definition of system
behavior:

 

 
 
 
458

 
 
 
 
 

 
 
 
5th International Conference on Reliable Engineering Computing (REC 2012)



Formal Safety Verification of Complex Heterogeneous Systems

DEFINITION 2. For a certain discrete state s ∈ D1 × . . . ×Dk, a flow of length l ≥ 0 in s is a function
r : [0, l] → Φ such that the projection of r to its continuous part C ⊆ Rn is differentiable and for all
t ∈ [0, l], the projection of r to its discrete part D1× . . .×Dk is s. A trajectory of a system H is a sequence
of flows r0, . . . , rp of lengths l0, . . . , lp such that for all i ∈ {0, . . . , p},
1. if i > 0 then (ri−1(li−1), ri(0)) ∈ Jump, and

2. if li > 0 then (ri(t), ṙi(t)) ∈ Flow, for all t ∈ [0, li], where ṙi is the derivative of the projection of ri to
its continuous component.

A (concrete) error trajectory of a system H is a trajectory r0, . . . , rp of H such that r0(0) ∈ Init and
rp(l) ∈ Unsafe, where l is the length of rp. H is safe if it does not have an error trajectory.

In the rest of the paper we will assume an arbitrary, but fixed system H . We will denote the set of its
error trajectories by E . In this paper, we study the problem of safety verification. This means that we want
to check whether a given system has an error trajectory, that is, whether the set E is empty.

3. Safety Verification

One method for safety verification (that is used in so-called ”bounded model checking”(Biere et al., 2003;
Fränzle et al., 2007)) in the discrete time case is, to take the set of initial states, and compute the set of states
reachable in one step, two steps, etc. and to check whether the result intersects the set of unsafe states. This
has the drawback that it verifies safety of a given system over a bounded number of steps (at least for infinite
state systems, and without additional techniques). Since the number of steps realistic systems can take is
often huge, it is often more useful to design methods that check safety over unbounded time.

The straight-forward approach to verify safety over an unbounded number of steps is, to check whether
the union of reachable states for subsequent time steps reaches a fix-point (in other words, further times
steps do not result in further reachable states). For finite-state systems this is the main topic of the field of
unbounded model checking (Clarke et al., 1999). For infinite state (but discrete time) systems in the form of
computer programs, this is studied by abstract interpretation (Nielson et al., 1999). Such approaches make it
necessary to first choose a representation for sets of system states for which a fix-point check can be easily
done, and then to over-approximate the reachable states of the system using that representation.

This technique is also the basis of the first tools for safety verification of hybrid systems (Henzinger
et al., 1997). However, for systems with non-trivial continuous evolution, this strategy has one severe draw-
back: For hybrid systems with non-trivial continuous dynamics even bounded time reach set computation
necessarily involves over-approximation. A-priori it is not clear how precisely the reachable sets have to
be computed to prove a given safety property. Hence, it may be advantageous to first compute approximate
information using loose over-approximation, and then incrementally refine this.

Such techniques are popular in finite state and program verification under the name of ”counter-example
guided abstraction refinement” (CEGAR) (Clarke et al., 2003b) that has also been tried for hybrid sys-
tems (Alur et al., 2006; Clarke et al., 2003a). However, for systems with a partially continuous state space,
this easily results in a behavior where the computed approximate information radically grows in size without
representing enough information necessary for proving the safety property at hand.

 

 
 
 
5th International Conference on Reliable Engineering Computing (REC 2012)

 
 
 
 
 

 
 
 
459



Stefan Ratschan

In some earlier work (Dzetkulič and Ratschan, 2011), we presented a technique for avoiding this behav-
ior for hybrid systems, and here we extend the technique to complex heterogeneous systems of the type
described above.

Our approach is be based on an incremental refinement of a covering of the systems state space Φ by
connected sets that we will call regions. We will form the regions in such a way that no two regions will
overlap (i.e., regions are allowed to intersect, but only on their boundaries of the continuous part of the state
space). The method is independent of the class of regions used. For example, in the special case of hybrid
systems with a state space M × Rn, where M is finite, the regions can be formed by pairs consisting of
an element of M and a Cartesian product of closed intervals (i.e., a box). But other classes of regions (e.g.,
based on polyhedra) are equally conceivable.

DEFINITION 3. An abstraction is a graph whose vertices (which we will also call abstract states) are
formed by regions that may be labeled with labels Init or Unsafe. We call the edges of an abstraction
abstract transitions.

This is the basic form of abstraction. However, an abstraction might be extended with much more infor-
mation about the concrete system. For example, in our instantiation of this approach to the hybrid systems
case (Dzetkulič and Ratschan, 2011), we store additional information on where trajectories might leave the
regions.

For example, for a state space Φ = R2, and the regions delimited by the black lines in Figure 1, a

Figure 1. Abstraction Example

corresponding abstraction might be the graph consisting of those regions as nodes, the vertices given by the
arrows (colored in blue), and with the region on the left-hand side (colored in green) marked as initial, and
two regions on the right-hand side (colored in red) marked as unsafe. Such an abstraction represents the
set of all trajectories that start in a region marked as initial (i.e., in a region colored in green in the figure),
follows the edges of the graph (i.e.., the blue arrows in the figure), and ends in a region marked as unsafe
(i.e., in a region colored in green in the figure). We will formalize this now.

We call a sequence of abstract states a1, . . . , al an abstract trajectory. If all abstract states and all tran-
sitions between successive abstract states in an abstract trajectory belong to an abstraction A, we call it an

 

 
 
 
460

 
 
 
 
 

 
 
 
5th International Conference on Reliable Engineering Computing (REC 2012)



Formal Safety Verification of Complex Heterogeneous Systems

A-abstract trajectory and we denote it by a1 → . . . → an. An (A-)abstract trajectory represents the set of
concrete trajectories that begin in the region of a1, move from one abstract state region to the next only if
there is a corresponding concrete transition, and end in the region of an. We denote this set by [[a1, . . . , an]]
for a given abstract trajectory or [[a1 → . . .→ an]] for some A-abstract trajectory.

This can be formalized as follows: We define a splitting of a flow l to be a sequence of flows s1, . . . , sr
such that for all i ∈ {1, . . . , r}, for all t ∈ [0, length(si)], si(t) = l(

∑
j∈{1,...,i−1} t + length(sj)). A

trajectory splitting is a concatenation of splittings of its individual contained flows. [[a1, . . . , an]] then is
the set of all concrete trajectories r1, . . . , rp that have a trajectory splitting q1, . . . qn, such that for all i ∈
{1, . . . , n}, for all t ∈ [0, length(qi)], qi(t) ∈ ai.

An A-abstract error trajectory is an A-abstract trajectory a1 → . . . → an such that in A, a1 is labelled
initial, and an is labelled unsafe.

An abstraction A represents the set of all concrete trajectories [[a1 → . . . → an]] for abstract error
trajectories a1 → . . .→ an in the abstraction A. We denote this set by [[A]].

The intuition is that, during abstraction refinement, the abstraction stays an over-approximation of the set
of error trajectories E of a given system. We say that an abstraction A∗ is a refinement of an abstraction A
iff
− the abstraction A∗ represents less trajectories than A, that is, [[A∗]] ⊆ [[A]], and

− the abstraction A∗ does not lose error trajectories that are present in A, that is [[A∗]] ⊇ [[A]] ∩ E .
Now we will come up with an algorithm that will incrementally improve an abstraction by refining it, without
increasing the number of abstract states in the abstraction. Note that, in particular, A is a refinement of A
itself, but in practice we will try to remove as many trajectories from the abstraction as possible.

Given abstract states a and a′, we will assume a procedure Init(a) that computes an over-approximation
of the set of points in a that are initial (i.e., an element of Init), and a procedure Reach(a, a′) that computes
an over-approximation of the set of points in a′ reachable from a according to the system dynamics (here we
do not assume any time bound, implementations of those procedures that compute reachability over bounded
time would only require slight modifications of our algorithms). Our method is independent of the concrete
technique used to compute those procedures. Still, in Section 4 we will discuss in detail how this can be
implemented in practice. We assume that smaller inputs improve the precision of these operations, that is:
− a1 ⊆ a2 implies Init(a1) ⊆ Init(a2)

− a1 ⊆ a2 and a′1 ⊆ a′2 implies Reach(a1, a
′
1) ⊆ Reach(a2, a

′
2)

Furthermore, we assume that these procedures exploit information about empty inputs, that is:
− a = ∅ implies Init(a) = ∅

− a = ∅ implies Reach(a, a′) = ∅

− a′ = ∅ implies Reach(a, a′) = ∅
In the following, we require the existence of operationsv and] on regions, with the following properties.

− v such that if a∗ v a, then for all n ∈ N, for all i ∈ {1 . . . n} and for all regions b1 . . . bi−1, bi+1 . . . bn
we have that [[b1, . . . , bi−1, a

∗, bi+1, . . . , bn]] ⊆ [[b1, . . . , bi−1, a, bi+1, . . . , bn]] i.e., less concrete tra-
jectories follow a given abstract trajectory after replacing an abstract state by smaller one wrt. v
operation.

 

 
 
 
5th International Conference on Reliable Engineering Computing (REC 2012)

 
 
 
 
 

 
 
 
461



Stefan Ratschan

− ] s.t. for all regions a1, a2, b : a1 v b∧ a2 v b implies a1 ]b a2 v b, a1 v a1 ]b a2 and a2 v a1 ]b a2.

Since in our case abstract states represent sets, this can be ensured by the following:

− ] s.t. for all a1, a2 ⊆ b: a1 ∪ a2 ⊆ a1 ]b a2 and a1 ]b a2 ⊆ b

− v s.t. a1 v a2 iff a1 ⊆ a2

This is our natural interpretation of ] and v. However, different choices are possible, as long as they fulfill
the above properties: For certain representations of regions it might be convenient to use a weaker form of
v efficiency reasons. Also, when encoding more information into abstract states (Dzetkulič and Ratschan,
2011), different interpretations of those symbols are often convenient.

In the instantiation of the method with boxes, a1 ]b a2 is the smallest box that includes both argument
boxes a1 and a2, but does not exceed b (i.e., box union intersected with bounding box), and v is the subset
operation on boxes. Note that for a1, a2 ⊆ b defining a1 v a2 iff a1 ]b a2 = a2 fulfills the above property.

The following algorithm (which we will call pruning algorithm) computes a refinement of a given ab-
stractionA. The intuition is to remove parts from the regions forming the abstraction for which we can prove
that they cannot lie on an error trajectory.

A∗ ← copy of A, all regions set to ∅, no initial labels, no edges
// from now on, for every abstract state a of A,
// we denote by a∗ the corresponding abstract state of A∗
for all a ∈ A, a is initial

a∗ ← Init(a)
if a∗ 6= ∅ then

mark a∗ as initial
while there is a pair of abstract states (a1, a2) in A with

a1 → a2, s.t. Reach(a∗1, a2) 6v a∗2 or (a∗1 6→ a∗2 and Reach(a∗1, a2) 6= ∅) do
if a∗1 6→ a∗2 in A∗ then introduce an edge a∗1 → a∗2 into A∗
if Reach(a∗1, a2) 6v a∗2 then a∗2 ← (a∗2 ]a2 Reach(a∗1, a2))

return A∗

Algorithms of such a type are known in the literature under them name ”chaotic iteration” or ”worklist
algorithms” (Cousot and Cousot, 1977; Bourdoncle, 1993; Nielson et al., 1999; Apt, 1999; Apt, 2000).

Like similar algorithms in abstract interpretation, this algorithm computes unbounded reachability based
on a fixpoint argument. However, unlike those algorithms, it exploits and refines the knowledge already
available in the abstraction A. In contrast to CEGAR approaches, the algorithm does not increase the size
(i.e., the number of nodes) of the abstraction. Still it deduces some interesting information:

THEOREM 1. The result of the pruning algorithm is a refinement of the input abstraction A.

Since the algorithm uses knowledge about the given system only through the operations Init and Reach ,
the correctness proof for the hybrid systems case (Dzetkulič and Ratschan, 2011) also applies here. For
a similar approach in a completely discrete context see the notion of abstraction slicing (Brückner et al.,
2008).

 

 
 
 
462

 
 
 
 
 

 
 
 
5th International Conference on Reliable Engineering Computing (REC 2012)



Formal Safety Verification of Complex Heterogeneous Systems

Note, that it is a-priori not clear, that the pruning algorithm terminates. However, termination can be
ensured, for example, by using a representation for which, for given regions a and b, there is not infinite
chain a v a1 v a2 v . . . v b.

In the case where the discrete part of the state space is finite, and the regions describing the contin-
uous part are formed by boxes, this holds if the endpoints of the corresponding intervals are formed by
floating-point numbers, and the continuous state space is compact. Strategies for ensuring termination of
such fixpoint computations are widely studied in the abstract interpretation community under the term
”widening”.

As already mentioned, the pruning algorithm tries to deduce information about a given system without
increasing the size of the abstraction. In cases, where it can deduce no more information, we have to fall
back to some increase of the size of the abstraction (cf. to a similar approach in constraint programming
where one falls back to exponential-time splitting, when polynomial-time deduction does not succeed any
more).

A simple method for doing this is a Split operation that chooses an abstract state and splits it into two,
copying all the involved edges and introducing edges between the two new states. All the labels and abstract
transitions to other abstract states are copied as well. Moreover, two new abstract transitions that connect the
original abstract state with its copy are added. The region assigned to the abstract state is equally split among
two abstract states. Such a refinement decreases the amount of over-approximation in subsequent calls to
the pruning algorithm due to the properties of Reach and Init . For example, Henzinger et. al. (Henzinger
et al., 1998) use such a splitting step to reduce the over-approximation of the continuous system dynamics
by differential inclusions of the form ẋ ∈ A, where A is a polyhedron. It is possible to use much more so-
phisticated splitting strategies, for example, a splitting step that removes as specific abstract error trajectory
(i.e., one CEGAR step) (Alur et al., 2006; Clarke et al., 2003a) instead.

It is clear that the pruning algorithm can also be applied backward in time (i.e., removing parts of the
abstraction not leading to an unsafe state) (Henzinger and Ho, 1995; Frehse et al., 2006). We will denote the
resulting algorithm by Prune−(A).

Now we have to following overall algorithm for computing increasingly fine abstractions:

initialize A with an arbitrary abstraction such that
[[A]] contains all error trajectories of the input system

while there is an A-abstract error trajectory
A ← Prune(A)
A ← Prune−(A)
A ← Split(A)

return ”safe”

The most simple way to initialize the abstraction A in this algorithm is to use the trivial abstraction
containing just one vertex for every mode marked as Init and Unsafe, containing a transition to all other
vertices and itself, and a region containing the whole state space of the input system.

Since neither pruning nor splitting removes an error trajectory, the absence of an A-abstract error trajec-
tory at the termination of the while loop implies the absence of an error trajectory of the original system.
Hence, in such a case, the algorithm correctly returns the information that the input system was safe. In cases
where the input does have an error trajectory, this algorithm does not terminate. However, in such cases, the

 

 
 
 
5th International Conference on Reliable Engineering Computing (REC 2012)

 
 
 
 
 

 
 
 
463



Stefan Ratschan

algorithm maintains an abstraction that, at any time, can be used by other algorithms (Ratschan and Smaus,
2009) for searching for this error trajectory.

Note that forward pruning may enable further backward pruning and vice versa, hence the algorithm may
be extended in such a way that forward and backward pruning are done in a loop until no further improve-
ment occurs. If either forward or backward pruning is dropped from the algorithm, it will incrementally
compute a tighter and tighter over-approximation of the (forward/backward) reach set.

The improvements to this algorithm introduced in an earlier paper (Dzetkulič and Ratschan, 2011) for
the special case of classical hybrid systems can all easily be adapted to the more general case discussed in
this paper.

4. Computation of Reachability Information

For applying the techniques in the previous sections to a concrete system one needs to

− choose a class of regions that will be used for representing subsets of the state space,

− instantiate the operations v and ] with concrete algorithms, and

− provide algorithms for computing the reachability operations Reach and Init .

Here we make the observation that for this, techniques from computational logic can be used. First we
assume that (as in all examples above) the language L is based on first-order predicate logic. Moreover we
assume that also the regions of the abstraction are formed by predicate logical formulas representing the set
of all values that satisfy a given formula. For example, formulas of the form

∧
i∈{1,...,n} ai ≤ xi ∧ xi ≤

ai represent hyper-rectangles (boxes). A concrete implementation may, of course, use a more optimized
representation, but the usage of a formula representation in this section helps us to gain more insight into
the nature of the problem.

Then, the region operationsv and ] can be implemented by (a sound approximation of) logical implica-
tion (a v b is such that a v b implies a⇒ b) and (a conservative approximation of) disjunction (a1 ]b a2 is
such that (a1 ∨ a2) ∧ b implies a1 ]b a2). For example, when using boxes, a ] b might be the box hull (i.e.,
the smallest box containing both arguments) which clearly fulfills the above requirement.

Now we turn to the reachability operations Reach and Init . We will write them as first-order predicate
logical formulas. The operation Init(a) must be such that the formula

a(x) ∧ Init(x)

implies Init(a)(x).
For analyzing reachability we provide two separate logical formulas for reachability through jumps

ReachJ(a, a′) and reachability through flows ReachF (a, a′) which will result in reachability Reach(a, a′)
being

ReachJ(a, a′) ∨ ReachF (a, a′).

The first part, ReachJ(a, a′) must be such that

∃x . a(x) ∧ Jump(x, x′) ∧ a′(x′)

 

 
 
 
464

 
 
 
 
 

 
 
 
5th International Conference on Reliable Engineering Computing (REC 2012)



Formal Safety Verification of Complex Heterogeneous Systems

implies ReachJ(a, a′)(x′), and ReachF (a, a′) must be such that

∃x∃t . 0 ≤ t ∧ t ≤ c ∧ a(x) ∧ Ta(x, x′, t) ∧ a′(x′)

implies ReachF (a, a′)(x′), where Ta(x, x′, t) models the fact that there is a continuous flow from x to x′ in
a taking time t (we will later show how to model this as a logical formula), and c is an arbitrary positive real
constant, or∞, in which case the constraint t ≤ c can be dropped.

Now, one could just take the above formulas as the implementation of the operations themselves, in
which case the implications above are implemented as equivalences. This is, in fact, the approach taken by
bounded model checking of finite state systems, where there are techniques for representing and checking
satisfiability of huge formulas in propositional logic using so-called SAT solvers (Biere et al., 2009). For
discrete time systems with other data types/domains this can be extended to so-called satisfiability modulo
theory (SMT) solvers (De Moura and Bjørner, 2011; Fränzle et al., 2007).

However, in the unbounded time case this has the disadvantage that when concatenating reachability
over several steps (in our case, several applications of the Reach(a, a′) operator), more and more quantifiers
accumulate, resulting in high-dimensional formulas, on which—in the unbounded time case—a fixpoint
check (in our case based on v) has to be done.

Another approach would be, to use the above formulas, but to eliminate the quantifiers in each application
by quantifier elimination algorithms (Harrison, 2009), that is, algorithms that that compute equivalent, but
quantifier-free formulas. In fact, this is precisely the approach taken in the finite state/propositional case,
where practically efficient algorithms based on binary decision diagrams (BDDs) (Drechsler and Becker,
1998) exist. Also, early algorithms for hybrid systems verification took this approach (for very simple
continuous dynamics). However, as soon as we leave the purely propositional case, even for quite simple
individual theories, quantifier elimination is often not possible (e.g., non-linear integer arithmetic), or highly
complex (e.g., linear integer arithmetic).

Hence, it makes sense, to use some form of over-approximation here, not implementing the above
implications as equivalences any more. In program verification, the design of such regions with correspond-
ing algorithms is the subject of abstract domain design (Filé et al., 1996), and—when using techniques
from logic—logical interpretation (Tiwari and Gulwani, 2007; Gulwani and Tiwari, 2006). However, those
abstract domains cannot directly be applied to systems with continuous time dynamics.

In our instantiation of the method for hybrid systems (Dzetkulič and Ratschan, 2011) we use interval con-
straint propagation (Benhamou and Granvilliers, 2006) (we also have a generalization of this technique avail-
able (Ratschan, 2006)). We also have investigated an alternative method based on an over-approximation of
Fourier-Motzkin elimination (Dzetkulič and Ratschan, 2009).

We will now analyze how to handle continuous dynamics in this context. Above we used the expression
Ta(x, x′, t) to model the fact that there is a continuous flow from x to x′ in a taking time t. This could be
directly written down in second order predicate logic (i.e., where variable and quantifier are allowed to range
over functions and such functions can model system trajectories), however this would bring in additional
difficulties for algorithmic analysis.

But, even if we need second order logic to model continuous reachability, we can at least approximate
continuous reachability in first order logic. Here one get rid of second order quantifiers as follows: For each
v ∈ {1, . . . , n}, we can do a Taylor expansion at x of the projection of the trajectory to its v-th variable.

 

 
 
 
5th International Conference on Reliable Engineering Computing (REC 2012)

 
 
 
 
 

 
 
 
465



Stefan Ratschan

From this we get

∃y, d . a(y)∧Flowk+1(x, x(1))∧. . .∧Flow(x, x(k))∧Flowk+1(y, d)∧x′ = x+. . .+
x(k)

k!
tk+

d|v
(k + 1)!

tk+1,

where the notation d|v denote the projection of d to its v-th variable, and Flowi denotes a constraint that
assigns to a point y its i-th derivative. If, as in the original Definition 1, only first-order derivatives are
available, the formula can be applied only for k = 0 (i.e., the case corresponding to the mean-value
theorem). The expression Ta(x, x′, t) can now be replaced by a conjunction of the above formula over
all v ∈ {1, . . . , n}. One can think of many variations of this approach, for example, by applying Taylor
expansion backward in time.

5. Conclusion

In this paper we introduced a framework for formal safety verification of systems with both continuous
and discrete dynamics, where the discrete part of the state space may include data structures such as lists
and arrays. The framework includes an algorithm for safety verification of hybrid systems as an instantia-
tion (Dzetkulič and Ratschan, 2011; Ratschan and She, ). Computational experiments with that instantiation
confirm the usefulness of the approach.

The remaining challenge is to instantiate the framework to cases with more interesting data structures, to
design corresponding reachability analysis algorithms both for the discrete and continuous cases, and their
combinations.

References

Alur, R., T. Dang, and F. Ivančić: 2006, ‘Predicate abstraction for reachability analysis of hybrid systems’. Trans. on Embedded
Computing Sys. 5(1), 152–199.

Apt, K. R.: 1999, ‘The Essence of Constraint Propagation’. Theoretical Computer Science 221(1–2), 179–210.
Apt, K. R.: 2000, ‘The Role of Commutativity in Constraint Propagation Algorithms’. ACM Transactions on Programming

Languages and Systems 22(6), 1002–1036.
Benhamou, F. and L. Granvilliers: 2006, ‘Continuous and Interval Constraints’. In: F. Rossi, P. van Beek, and T. Walsh (eds.):

Handbook of Constraint Programming. Amsterdam: Elsevier, Chapt. 16, pp. 571–603.
Biere, A., A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu: 2003, ‘Bounded Model Checking’. Advances in Computers 58, 117

– 148.
Biere, A., M. J. H. Heule, H. van Maaren, and T. Walsh (eds.): 2009, Handbook of Satisfiability, Vol. 185 of Frontiers in Artificial

Intelligence and Applications. IOS Press.
Bourdoncle, F.: 1993, ‘Efficient chaotic iteration strategies with widenings’. In: D. Bjørner, M. Broy, and I. Pottosin (eds.): Formal

Methods in Programming and Their Applications, Vol. 735 of LNCS. Springer, pp. 128–141.
Brückner, I., K. Dräger, B. Finkbeiner, and H. Wehrheim: 2008, ‘Slicing Abstractions’. Fundamenta Informaticae 89(4), 369–392.
Clarke, E., A. Fehnker, Z. Han, B. Krogh, J. Ouaknine, O. Stursberg, and M. Theobald: 2003a, ‘Abstraction and Counterexample-

Guided Refinement in Model Checking of Hybrid Systems’. Int. J. of Foundations of Comp. Sc. 14(4), 583–604.
Clarke, E., O. Grumberg, S. Jha, Y. Lu, and H. Veith: 2003b, ‘Counterexample-Guided Abstraction Refinement for Symbolic Model

Checking’. Journal of the ACM 50(5), 752–794.
Clarke, E. M., O. Grumberg, and D. A. Peled: 1999, Model Checking. MIT Press.

 

 
 
 
466

 
 
 
 
 

 
 
 
5th International Conference on Reliable Engineering Computing (REC 2012)



Formal Safety Verification of Complex Heterogeneous Systems

Cousot, P. and R. Cousot: 1977, ‘Automatic synthesis of optimal invariant assertions: Mathematical foundations’. In: Proceedings
of the 1977 symposium on Artificial intelligence and programming languages. pp. 1–12.

De Moura, L. and N. Bjørner: 2011, ‘Satisfiability modulo theories: introduction and applications’. Commun. ACM 54, 69–77.
Drechsler, R. and B. Becker: 1998, Binary Decision Diagrams. Springer.
Dzetkulič, T. and S. Ratschan: 2009, ‘How to Capture Hybrid Systems Evolution Into Slices of Parallel Hyperplanes’. In: ADHS’09:

3rd IFAC Conference on Analysis and Design of Hybrid Systems. pp. 274–279.
Dzetkulič, T. and S. Ratschan: 2011, ‘Incremental Computation of Succinct Abstractions For Hybrid Systems’. In: FORMATS

2011, Vol. 6919 of LNCS. pp. 271–285, Springer, Heidelberg (2011).
Filé, G., R. Giacobazzi, and F. Ranzato: 1996, ‘A Unifying View of Abstract Domain Design’. ACM Comput. Surv. 28, 333–336.
Fränzle, M., C. Herde, S. Ratschan, T. Schubert, and T. Teige: 2007, ‘Efficient Solving of Large Non-linear Arithmetic Constraint

Systems with Complex Boolean Structure’. JSAT—Journal on Satisfiability, Boolean Modeling and Computation, Special Issue
on SAT/CP Integration 1, 209–236.

Frehse, G., B. H. Krogh, and R. A. Rutenbar: 2006, ‘Verifying Analog Oscillator Circuits Using Forward/Backward Abstraction
Refinement’. In: DATE 2006: Design, Automation and Test in Europe.

Gulwani, S. and A. Tiwari: 2006, ‘Combining abstract interpreters’. In: Proceedings of the 2006 ACM SIGPLAN conference on
Programming language design and implementation. New York, NY, USA, pp. 376–386, ACM.

Harrison, J.: 2009, Handbook of Practical Logic and Automated Reasoning. Cambridge University Press.
Henzinger, T. A. and P.-H. Ho: 1995, ‘A note on abstract interpretation strategies for hybrid automata’. In: Hybrid Systems II, Vol.

999 of LNCS. pp. 252–264.
Henzinger, T. A., P.-H. Ho, and H. Wong-Toi: 1997, ‘HYTECH: a model checker for hybrid systems’. International Journal on

Software Tools for Technology Transfer (STTT) 1, 110–122.
Henzinger, T. A., P.-H. Ho, and H. Wong-Toi: 1998, ‘Algorithmic Analysis of Nonlinear Hybrid Systems’. IEEE Transactions on

Automatic Control 43, 540–554.
Lunze, J. and F. Lamnabhi-Lagarrigue (eds.): 2009, Handbook of Hybrid Systems Control. Cambridge University Press.
Nielson, F., H. R. Nielson, and C. Hankin: 1999, Principles of Program Analysis. Springer.
Ratschan, S.: 2006, ‘Efficient Solving of Quantified Inequality Constraints over the Real Numbers’. ACM Transactions on

Computational Logic 7(4), 723–748.
Ratschan, S. and Z. She, ‘HSOLVER’. http://hsolver.sourceforge.net. Software package.
Ratschan, S. and J.-G. Smaus: 2009, ‘Finding Errors of Hybrid Systems by Optimising an Abstraction-Based Quality Estimate’.

In: C. Dubois (ed.): Tests and Proofs, Vol. 5668 of LNCS. pp. 153–168, Springer.
Tiwari, A. and S. Gulwani: 2007, ‘Logical Interpretation: Static Program Analysis Using Theorem Proving’. In: F. Pfenning (ed.):

Automated Deduction CADE-21, Vol. 4603 of LNCS. Springer, pp. 147–166.

 

 
 
 
5th International Conference on Reliable Engineering Computing (REC 2012)

 
 
 
 
 

 
 
 
467



 

 
 
 
468

 
 
 
 
 

 
 
 
5th International Conference on Reliable Engineering Computing (REC 2012)


